Scientific Computing via the World Wide Web:
The Net //ELLPACK PSE Server

Shahani Markus, Sanjiva Weerawarana, Elias N. Houstis and John R. Rice
Department of Computer Sciences
Purdue University
West Lafayette, IN 47907-1396, USA.

{markus,saw,enh,jrr}@cs.purdue.edu

Abstract

The World Wide Vb is nav the defactoervironment for preiding (electronic) informa-

tion to the werldwide user communitywith the aailability of programming languages

like Jaa, Web bravsers nav can handle documents with programs embedded in them.
This nev functionality presents opportunities fecientific computingn the Vérld Wide

Web while its realization requires addressingesal nev research issues includinger
interface and potocol design, lgacy softwag encapsulation, securjtgoftwae delivery

in directly usable form, and netwatk computational serverin this paper we address
these issues in the context of PDE (Partial Differential Equation) network computing sup-
ported by the well knen problem solving erironment (PSE) //ELLRCK and its net-
worked, Web accessible, counterpart which is referred throughout as the Net AEKLP
PSE. Using Net //ELLRCK one can sol comple PDE problems using gnWeb
browser that supports ¥a applets. The design of Net /ELAGK includes a Ja applet

that seres as the graphical user intaé, a stateful x¢-based protocol, and Net //ELL-
PACK sener(s) running on some machine(syahere on the netark. In addition to its
native protocol, the Net //ELLACK seners also support the & Hyperext Transfer
Protocol (HTTP). This approach allows the reuse of existing public domain or proprietary
applets to visualize or post-process the computation resutprégent and justify the
overall design of the system and present some data on solving a paeiandifl equa-

tion problem via the \&b to illustrate the &ctiveness of the Net /ELIACK architec-

ture.

1.0 Introduction

High performance computing and the Internet enétlpossible to greatly increase the problem solvinggpdhat a
scientist or engineer has at his finger tips. Examples of this are reusabbresafdmponents, monolithic problem-
solving systems, softave testing systems, and widely disiitdd compute seevs. This pwer is not easily accessi-
ble nav to the application scientist or engineer because using these resources requires skillwladdetivat most
do not have.

Enabled by adances in hardare, netwrking infrastructure and algorithms, highly compute intengiroblems in
mary areas can wo be successfully attaell using netword scientific computing. In the nedvk-based paradigm,
vital pieces of softare and information used by a computing process are spread across t&,reetd are identi-
fied and linlked together only at run time. This paradigm is in contrast to the currenasoiigage model where one
purchases a cgpor copies) of a general-purpose, monolithic safevpackage for use on local hosts, possibly dis-
tributed on a collection of local hostsittWnetwork-accessible sofawe repositories and natvked computing, the
view of software changes from a product to a service. A agkvaccessible repository pridles access to up-to-date
copies of soft@re components on an as-needed basis, so called “disposabkraoftiith networked computing,
the softvare deeloper proides a computing service to interested partiesr ahe netwrk. The rav computing

power to run this service may be purchased from the soéservice provider, provided by the end user, or even pur-
chased from a third party computing servicevigter. The information needed to use this service mightvadadle
only from disparate sources.

The disposable sof@ve and netarked computing models do not apply to all computing services; basic operating
system and netwk access softare, as well as Wo-level mathematical routines that are tuned for the particular
machine architecture, will be permanently resident on the user machine. @néagéwof the netwwked computing

model is that as sofave is improed upon by the softare prwider, there is no need to releasevneersions and

upgrades. The user simply sees an improved service. The analogy could be to the phone system - changes in the soft-
ware of the local switch are completely transparent to the saer for the aailability of additional or enhanced
functionality Similarly, the service pnader can upgrade the hardwe without decting the usernWe erwvision that

the network-based paradigm of software usage waéhtally become fully automated andeefively transparent to

the user. It is the aim of this research effort to demonstrate this in the context of PDE computing and problem solving
environments (PSESs) utilizing the existing Web technologies and infrastructure.

Realizing Web based computing involves several research issues including user interface and protocol design, legacy
software encapsulation, security, software @ejnin directly usable form, and nedvk computational servers. In this

paper we address these issues in the xbotehe well known PSE //ELLPACK [1] and its Web enabled counterpart
referred throughout as Net //ELLPACK.

A PSE is a computer system that\pdes all the computationadilities necessary to s@h\a taget class of problems

[2]. It uses the language of the target class of problems and provides a “natural” user interface, so users can run them
without specialized kneledge of the underlying computer hae or softare. A PSE xploits modern technolo-

gies such as interaet color graphics, peerful processors, and netvks of specialized services. The main design
objective in Net //ELLRACK is to prwide the //ELLRACK interface to remote //ELLACK users in an é&ctive,

secure and efficient manner.

Once the Net //ELLRCK user has selected a solution path through interactions with /&LKPone or more

library software modules need to bewddoaded from a repository and used logadiythe problem is sent to a com-
putational sergr with an implementation of that algorithm. In both cases, there is a higlhAterface between the

PSE user inteaite and the library routines itviskes. In the case of dmloaded soft@re modules, there is also a
low-level interface between the library routines and the-level machine-dependent math and (in the case of a par-

allel machine) communicationadilities that are resident in the usddcal computing efronment. In order for the
network-based computing paradigm to succeed, bothlével and high-lgel library interbces must be standard-

ized. Standards permit the effort of developing and maintaining bodies of mathematical software to be leveraged over
as many different computer systems as possible. This issue is addressed in the context of //ELLPACK interfaces [1].

One of the biggest obstacles that applications programmeesri using library routines doloaded from softare
repositories is the correct installation of these routines. These routines typically need to be compileddndttink

the user’s program and with local libraries before they can be executed. Users often spend hours to days trying to run
down unresolved references or name conflicts that occur during the compile and link process.

When softvare is to be used only occasionatly when a softare library needs the performance or specialiaet-f

ities provided by a specific platform that is not available to the user locally, it is advantageous for the user to send his
problem and data to a remote computationalesethat can perform the computations and return the resittoe

network. Remote computational servers are also useful for software that is difficult to install or is frequently updated,
or that authors do not wish to distitle for other reasons. Users may also find paying for time on remote computa-
tional servers to be more economical than purchasing one or more high performance platforms themselves.

In the work reported here, we concentrate on the computersapproach: once the solution algorithm is determined,
the solution computation is performed on a remoteesefthe user interaction with the compute serg entirely via
existing \ieb based technologies. In an on-going collaboration with the National Institute of Standardsharud-T
ogy and the University oféhnessee-Knoxville, the problem of transporting code from acddtwepositories on to the
user's machine in directly usable form is investigated.

There are manother projects that attempt to address the issues related to scientific computing underoifke netw
based or network-centric paradigm. The NEOS optimization system [3] provides electronic mail, Web or customized
X-based tools as intex€es for its NEOS segy, praviding computational resources and access to state-of-the-art opti-
mization softvare. Utilization of the graphical user intecé for NEOS requires themicit downloading and instal-
lation of the submission tool. The computational results\aishle via the Wb or electronic mail. There are nyan
sites that preide access via the & to serers running specialized mathematical saftevsystems such as Mathe-
matica [4], Maxima [5] and Maple [6]. Meever at these sites the user can interact only in a non-session oriented,
request-response manneraking it dificult to accomplish ancomple problem solving tasks. The &l //ELL-

PACK system [7] preides a session-oriented int&cé to a remote //ELIAZK computational sear. Howvever the
performance of the remote user inked oer a wide area netwk is poor In the Net //ELLRCK system, we attempt

to address all these problems andvjate viable solutions utilizing currentlyailable Wb technologies and infra-
structure.

This paper is organized in 6 sections. The software architecture of /ELLPACK is presented in Section 2. In section 3
we present four diérent scenarios foruilding Web-based PSEs byal' enabling lgagy components of xésting

PDE softvare. Section 4 presents aveoview of the Wb technologies needed to design and implemerft-Nésed

PSEs, particularly Net //ELLPACK. Section 5 defines the Web computing research issues associated with the realiza-
tion of Web based PSEs. The sadding architecture and components of Net /EACR are presented in Section 6. Its
accessibility together with somgamples is outlined in Section 7. The justification of melwcomputing is summa-

rized in Section 8.

2.0 /[ELLPACK: A Distributed PDE Problem Solving Environment

/[ELLPACK is a problem solving eironment for solving PDE problems on high performance computing platforms
as well as a development environment for building new PDE solvers or PDE solver components. It currently supports
the solution of steady-state and time depenfieldtand fluid mechanicaD and 3-D PDE problems.

The main design objective of //ELLEK is to create an intelligent softme enironment where both sequential and
parallel PDE solers can be implemented in a reasonable time. //BOKPpresents application users with a high
level ervironment to abstractly specify PDE problems anidosolvers for them using intrinsic s@vcomponents.
Knowledgeable users apply //ELLPACK'’s solver development facilities to build new solvers which are then available
as intrinsic solver components for application users.

The software architecture of the system is depicted in Figure 1. It consists of four layers afrsofthe top layer is

a collection of graphical tools supporting the PDE problem and solution specification and all the required pre- and
post- processing phases. Each tool consists of a GUI editor and some are supported by appropriate libraries to sup-
port their computational objeg#. The outcome of the usage of these toolsvisdsa the //ELLRCK main session

editor in some predefined high level languafas language can be used to specify both the PDE problem and algo-
rithm including the pre- and post- processing computations required by the PBE sdhe third layer consists of

the scripting code required toakeand executethe specified PDE computation and define eékecution platform

which can be gnmachine or a cluster ofaskstations in a LAN facilityAn instance of the user intade to this soft-

ware layer, called ecution tool, is depicted in Figure 4. This tool supports tkewdion of //ELLPACK programs on

MPI and PVM virtual parallel machines running on clusters of workstations, nCUBE II, and Paragon.

The fourth layer in Figure 1 supports well-defined data structures, functions, and file formats on which the //ELL-
PACK library has been implemented. This layerwaicusers to easily injeate their wn specialized sobrs and

solver parts into the efronment and “foreign” PDE soérs. The n& code must be modified to access the required
data from //ELLIACK data structures. Its name and arserspecifiable parameters are then placed in the //ELL-
PACK software repositoryand the modified code is installed in the //EACK library system. In this ay, “soft-

ware parts” such as mesh generators, discretizers, amitssoan be added to the system with mininfaref Some
software parts with compkeinput requirements taksignificantly more ébrt to integrate. r example, some are
defined through FORRAN functions. //ELLRCK can generate these functions through the graphical dnerf

using its symbolic manipulation capabilities which are available through the equation specification tool.

Prcl:)’lagm Solljtﬁi%n Execution Post-processing
Specification Specification L AR TE
. __|
PDE Framework
Specification
PYTHIA Visualization
. Tools
E Lé%tmn
itor Solution
Iélrltz)lélr_aprﬁr(r:ﬁg Framework Execute Performance
Environment Geometry Specification Tool Analysis Tools
Editrors worith
A é’i{grsm Data Analysis
Initial &Boundary Tools
Condition Editors
Very High Level PDE Language Layer
fLanguage
Infrastructure Procedural Language Layer
Domain
Discretization Pel ?bcrlélriseglver
I//fELLPACK Libraries Knowledge
nfrastructure Bases
De%gr%metry Foreign Interface
mposition Libraries
Libraries
“Foreign”
MAXIMA System
Libraries ~ Data
System Visualization
Infrastructure Geometry Parallel Libraries
Modeling Communication
X Toolkit, Motif, Mesa Libraries

FIGURE 1. The software architecture of //ELLPACK.

The libraries of solvers available in //ELLPACK include both finite difference and finite element solution schemes. In
addition to the sokr components that we Vedeveloped locally, seval publicly aailable PDE solers have been
integrated into //ELLPACK. Some of the “foreign” systems we have integrated, include VECFEM [8], FIDISOL [9],
PDECOL [10], PARC [11]. &r solving the PDE discrete system of algebraic equations, /ARLKhcludes several

of the widely used linear system setg including ITRCK, LINPACK, SPARSKIT and NSPCG. //ELLIRCK sup-

ports three dferent parallel domain decomposition methodologies [12]. One of the domain decomposition
approaches, including a tool for controlling it, allothe user to reuse the sequential discretizatioreisobnd to
compute in parallel the PDE discretization systenas.this we hae parallelized the ITACK library and imple-
mented it using VEREX, MPI, PVM, PICL and RRMACS communciation libraries [12]. These parallel libraries
hawe been implemented for distuted memory parallel machines as well as oeta of workstations. The code has
been ported to and tested on an nCUBE/2, an Intel iPSC/860, andragbR and on Ethernet an@M based work-
station netwrks. In addition we hee integrated the MGGXX [13] library running on the nCUBE Il and thegrde

tion of several other parallel linear solvers is underway.

FIGURE 2. The //[ELLPACK session editor and the equation specification editor..

FIGURE 3. The //ELLPACK boundary specification editor, mesh generator and solution visualizer.

Load Haur [FT13

Conpdla Expcistaf AL R L] WY e
fikoto Hamas [kt Biaka b Wil it

e 1 o Lt bl fom LR
e T e ——
'/b'r'm- k—f Enp Bk un. daka. 10084
] ¥ i dsts. IF yois get & ""Fermnission Beniod"" error vhen r
pef ipack = 8 T T e e programs check ko pake sure that Bhe l:l:rat LNI rl-m:hme
I cﬁsfrm R Teackor—hosk loss . pp 5N -3 fHchang 13 ia in ynur .rhoaks File. (This is becois e 1}

i il ST

| i Awrmﬂnr—mnlﬂ: i Gl e .
ngru'rn -l' FEnpreactor=host leas . pp. m_ﬁ PR S

Machine 1 Iz uvsed ko mek up Bhe WPD virtusl netlnrk:l

Aewrin L 1EL

em AAnpereactor=hoat less . hosk .o Maching 1z chocolate . cs
i —F CEnpeTaector—tost liss host o Fowrde Fyprdanii .+ ot bt
-ﬁ‘% AEnperaackor-host loas host . F e L TN T PR Y TR k?":h‘["’="'= f- othena.cx

Prafsban B il [ils oo oe

. gy o Lk i iy | P45 1017 BGr id T e 13 | Closs |

Cosstranad © !
SEofim: Presprocessed and Conpl led Coeer.) ST SR
Cathona.ce
Ve Parwi Il kel \earaia.es [T
e ol s -

Tkt

FIGURE 4. The //ELLPACK Execute Tool

3.0 Web-based Problem Solving Environments

While mary of the issues and solutions discussedralare applicable to generak¥/computing systems, there are

some that need to be addressed in particular towards the realization of scientific PSEs on the Web. We consider PSEs
with the followving structure: A GUI for pre-processing, a run-time system consisting over gniogram which

invokes \arious libraries for the scientific problem “solution” and a GUI for post-processing. Since both the pre- and
post-processing GUIs are similar in structure, we consider those to be all part of onevigisineent (Figure 5).

The driver program consists of a collection of calls to library routines with data passed between the routines via the
software busn the driver. For the simplest case, the softve lus is the global and localriables (memories) of the

driver program. Based on this model for PSEs, we identify foterdiit scenarios foruilding Web-based PSEs by

Web enabling legacy components of existing PSEs.

The first approach is to takhe PSE and makt available oer the V&b in its entirety (Figure 6). &8 //ELLPACK

[7] is an instance of this scenario. The®W//ELLFRACK service allavs remote users to access and use the //ELL-

PACK PSE in a safe and secure manfee re-engineering requirecag/mainly in hilding a suitable security mech-

anism to implement a user account based system for remote access. Feedback from this project has led us to conclude
that while this approach is feasible on a high speed local arearkgettvs not practically viable due texy slav

response speeds of graphical software operating over the Internet.

GUI
H

Driver Program

%braries Da@

FIGURE 5. Model for Scientific PSEs

Service provider

GUI
]
. Network
Driver Program

%braries Da@ .

FIGURE 6. Distributed users accessing a central service

The second approach is to use a eked software bs to distrilnite the libraries to multiple service pider sites.
We call such librariesirtual libraries This scenario is illustrated in Figure 7. A netked softvare tus could be
implemented by using either standard rekncommunication technologies such as RPC [14] or CORB] or by
incorporating a proprietary or custonilb network communication system such as DCOM [16] or the PSEBus soft-
ware lus [17]. The realization of virtual librariesowld also require the use of intelligent saiter agents. Tlye
would be avare of the functionalities, characteristics and iaiegE of the remote libraries andwid provide assis-
tance in accessing and linking these virtual library modules. High performance computatoswenid be utilized
to remotely gecute specialized library modules. This approach can also encompass the goalané ststwery in
directly usable form. The directly usable sait® in this case auld be virtual library modules that may be either
statically or dynamically linéd to a program on the remote usenachine. These modules may bwidaded onto
the users machine during compilation or at runtime. The NetSginoject [18] which is being jointly deloped by
University of Tennessee and Oak Ridge National Laboratory is an instance of this scenario.

The third approach is to disttite components of the PSE GUI to multiple serviceviger sites. GUI components

may include PSE tools such as domaiiiders, mesh generators and scientific data visualizers. This approach may
involve the distribution of parts of the driver program to these sites as well. The remote user would access the distrib-
uted GUIs for problem specification and/or post-processing.\&rmprogram at the central service sitewd coor-

dinate and gther the problem specification data, solhe problem, and pviwle access for distritted post-
processing of the solution data. The problem solving computations may be done on high performance parallel

Service provider

GUI
¥
Driver Program
AN
/ \ Network

y A

%braries

Service Provider Service Provider

ibraries

FIGURE 7. Distributed users accessing a central service which uses virtual libraries.

Service provider

GUI
; -

Driver Program A

Network
%braries Data

Y

GUI GUI
[orier]] ~ ' " [orer] 3

Service Provider Service Provider

FIGURE 8. Distributed users accessing distributed PSE GUI component services coordinated by a
central service.

machines or may be disttited ower a virtual netwrk of cooperating compute serg. This scenario is illustrated in
Figure 8. This approachowuld also require the use of intelligent saftey agents. Theyauld assist the user in select-

ing and locating the appropriate GUI component sites for problem specification and post-processing asgeell as ne
tiate communication protocols between componentsy Teuld also intelligently prade ary data filtering
necessitated byavious legag components adhering to fdifent formatting standards anawd transparently me

the pertinent data to the target compute servers. The Net //ELKRBjstem described in this paper is an instance of
this scenario.

The final approach is a fully distrited, fully collaborative, multi-usgvirtual library based, netwked, Web acces-
sible intelligent PSE efronment where one can freely combine components from participating serwigepsdo
analyze and solve the problem at hand. On-going work at Purdue and elsewhere is moving in this direction.

4.0 Web Infrastructure

The World Wide Web is a distributed information system build on a hypertext model where pieces of information are
linked to one another in a naturahyinformation is preided to the VEb by Wb serers which communicate with

clients seeking information (basers) using the Hyperekt Transfer Protocol (HTTP). Information (documents) on

the Wb is identified / addressed by Uniform Resource Locators (URLS). €healdb now subsumes other informa-

tion sources such as files made available to the network via the File Transfer Protocol and the Usenet news system.

The World Wide Web has mofirmly established itself as the defo standard for publishing (electronic) information

to the global communityWeb browsers, the software thatyide point-and-click type graphical intades for navi-

gating the V&b, hae evolved recently to go lyond being just Wb bravsers: thg nov seamlessly intgrate other
networked communication / interaction protocols and media such as file transfer, Usenet news and electronic mail. In
addition to static content, thealy also supports dynamically generated content; i.e., information in a “document” that
is generated just when someone requests such a virtual document. In a separate dimensitutjcheoteecut-

able content has brought forth asngense of dynamism to theed/ documents can now have programs embedded in
them. Executable content alles a document author to embed a program written in some portable language under-
stood or supported by the client tmser in the document itself. When a client visits the document, the program is
transparently donloaded into the clierg’bravser and eecuted by the brmser Obviously security considerations

are the primary issue here: blindlyvddoading and running others’ programs is clearly a high-riskigctHow-

8

ever barring security implications, such programswllssers to perform useful computations on treb\Wy daevn-
loading pre-compiled programs into their Web browser and running them with appropriate input.

In 1995 Sun Microsystems announced the release of tagpdagramming language [19], a language designed spe-
cifically for writing executable content so that someone can safelynlbad it and gecute it. Jea has sinceajned
wide acceptance and iswa@vailable on most hardave and softare platforms. While Ja does not sotvall the
security problems, it prades a solid foundation upon which applications and clienw$ecs can hild the level of
security they desire.

4.1 HTTP: The Web Communication Protocol

The primary protocol that drés the VEb, HTTR is a simple, te&-based, request-response type stateless protocol. A
browser requests a document from an HTTP exeby gving a URL and the seev responds to that request by pro-

viding the document. The document is typed using the Multipurpose Internet Mail Extensions (MIME) type system
and browsers use this type to invoke the appropriate handler for the information received from the server. The request
made by a bser may result in a program beingeeuted on the seev to generate the information requested - this
allows a dgree of dynamicism where the requested information may be generated dynamrcaitgms xecuted

by the serer interact with the seev via the Common Gatay Interface (CGl), a standard which specifiesvhiibe

server provides input to it and how the program should provide output to the server.

HTTP has a fleble challenge-response type security model to control access to documents @hthéhdh an
access controlled document is requested, theseefuses the document and requests that thesbropreide a
response to a gen challenge and resubmit the quévultiple security schemes can be yided with the core
requirement being that both the client and theesenust support them. The protocol itself defines a security scheme
called “Basic” where the segv issues a challenge to which the client must respond bidjprg a user name and a
password as the authorization for a document. Someessralso support other forms of access control, such as
(dis)allaving requests from certain domain names / IP addressethdse are segv specific and not part of the
HTTP protocol.

4.2 Executable Content

While the ability to hae the serer run programs in response to a client query is a formetif ¥8mputing, the pri-
mary enabling technology for truly interaaiV\eb computing isxecutable content. The idea behixgéeutable con-
tent is simple: embed a program within a document and when a cligrgdsraisits that page the program will be run
automatically by the browser on the client’'s machine.

Many issues must heever be resolgd to fully realize wecutable content in anfefient, safe and secure manner

Given that bravsers may be running on ariety of hardware / softvare platforms, the programs must be written in

an extremely portable language in order for them to be useful to a wide audience. Interpreting high level languages is
a common solution to portability questionsit leficiency is a primary concern too: if the language is not rery v
efficiently, then the usefulness of the language to write nerattr@pplications will be limited. Security is a crucial

issue: if a program is run automatically by just visiting sonab \Wage, ho can the client ensure the program will

not perform ay malicious actiities? Seeral languages / gimonments for gecutable content ke been deesloped

recently [19][20][21][22][23], lnt the Jaa programming language andvegnonment stands out both in terms of the
language itself and in terms of the wide support it has received in a very short time.

4.3 The Java Programming Language and Environment

Java is a new programming languageddieped by Sun Microsystems, Inc. andsAfirst released to the public in the
summer of 1995. Sun describesalas a simple, object-oriented, distitied, interpreted, raist, safe, architecture

neutral, portable, high performance, multithreaded, dynamic language. Syntacticallgry smmilar to C++ and

hence immediately familiar to many users. Java programs are executed by compiling the source into bytecodes which
are then interpreted by thevaavirtual machine. Since mbytecodes are defined in a portable, architecture-neutral
manner, any Javprogram is immediately and automatically ported jo@atform to which the Java virtual machine

has been ported. The bytecodes and the virtual machine provide a fairly efficient execution environment for Java pro-
grams. The language includes support for digted computing and for graphics and graphical user adest
Object-oriented and multithreadedness as well as the ability to dynamidaihdehe run-time system nmek Jaa

powerful environment for Web computing.

Most Web browsers now have the Java virtual machine embedded in them. Barring implementation bugs, the embed-
ded Jaa virtual machine enforces a set of strict security rules whicrepte davnloaded program (applet) from
adwersely afecting the cliens machine or from communicating with Internet hosts rando&dye of the security
measures enforced include disaling file I/O on the client machine and disallog network access to gnhost

other than the host the appleaswdownloaded from. dmloaded programs (bytecode) are also chédkr correct-

ness to ensure that they follow the language rules before they are executed by the virtual machine.

5.0 Web Computing: Issues and Solutions

As described in the alie section, the b infrastructure and the aght of executable content provide a mechanism
to develop Web computing systems. We have chosena¥athe means of realizingeeutable content, mainly due to
its current popularity within the ¥ communityIn this section we consider the research issues in designing ne
software and re-engineeringgiacy softvare to mak them wailable as Wb computing systems. While some of the
solutions to these issues are dependent on the features and restrictions v #reirdemment, most are general.
Since security is an underlying concern in all of the other issues, we do not treat it separatelt b along with

the others. Also, while some of the issues and solutions gedttad towards scientific problem solving in particular,
others are of general scope.

5.1 Architecture of Java-based Web Computing Systems

Java and Java-enabled Web browsersigeoa mechanism to write programs that useysvaere in the world could
execute safely using any hardware platform. Howevbkat is not clear is woto architecture new software and how

to re-engineer existing software to make thewlakble in this form. The Ja-based Web computing environment is
basically a client-sear world where the client is a i applet that is denloaded into a da-enabled Web browser

and run within it. The Java security framework constrains the client (applet) to interact only with the Web server host
from which it was downloaded.

The simplest design for a&l computing system is to re-write the entire system as an appletvetothere are

many reasons for this being a bad idea. The applets cannot perform file I/O on the local host. Hence, while the applet
can run and do many computations, it cannot save any state or load any state. Clearly for non-trivial applications this
is an unrealistic constraint. In addition to applets being I/O constrained, if an entire system weratibttée as an

applet then the latepdn dowvnloading the system into the rser would be prohibitre. However, browser caching

will all but eliminate this problem after the first time, so the initial latanay be somewhat acceptable. On the other
hand, for all the adantages of Ja and Jea-like languages, there is a significant performance hiten ¢he most
optimized Jaa code; typically adctor of at least 2 when compared to compiled imperdinguages such as C and
FORTRAN. In non-triial applications adctor of 2 performance loss in the compute intenparts of the application

would be unacceptable. Hence, it is clear that one generally shouldveatdmapute-intensive components of a sys-

tem be danloaded and run directly within the lvser; some separation of user inded from the compute-intemsi

portions of an application is needede®Mtomputing systems must therefore foli® client-serer architecture with

an appropriate protocol for communication between them.

5.2 Client-Server Communication Protocol

There are both adwtages and disadntages in choosing theely protocol, HTTPas the communication protocol

for a client-serer Web computing system. A significant aavage is in the ease of use of the system acrosba W
traffic compliant computer netwk firewall. In the case of a customized communication protocol, additional soft-
ware would hag to be installed on thextpway to dcilitate communication across the el or a suitable method of
bundling the custom protocol within the HTTP protocol would have to be devised. On the other hand, since the client

10

(applet) cannot maintain yasstate, all application state must be maintained by theis8escause HTTP is a stateless
protocol, if one were to use the HTTP server and HTTP for communication then state would have to be encapsulated
into the messages themsedv Also, since HTTP is a request-response model, each communication between the client
and server would effectively be afdifent connection, which also requires that significant state be transferred in each
message. Messageuid be acted upon in this scheme by the HTTPeserwoking programs on the seaw

machine. While this approach is a feasible one to implement a Web computing system, it is clear that all client-server
communication will need to be shoehorned to fit the HTTP mold. The security model in HTTP also doegmyot fit v

well with the needs of applications. The alternative is to use a custom server and a private protocol between the client
and the server along with a custom security model.

When designing a private protocol for communication between the user interface and the remote computational com-
ponents, manissues need to be carefully considereat. iRstance, both stateless and stateful protocals tieeir

merits and demerits and must lvaleated on a case-by-case basis based on the frgcquahgranularity of commu-

nication between the twentities as well as otheadtors. Ier the Net //ELLRCK case, assuming that all compute
intensive components are found on the serand that the entire user intaé is the client, the communication
between client and serveiowld occur when defining a problem, when defining a solution scheme and when analyz-
ing a computed solution. Some of the problem specification componeoligeiheay computing, and henceould

require sergr communication. Some problem components are small (a short string) while some aregguiselar

eral hundred kilobytes). Also, problem components may depend on one aBaiseat on these obsatons, we

chose a stateful protocol for the Net //ELLPACK system.

Another consideration is whether to use x-teased protocol or a binary protocokxT protocols (for gample,

HTTP) have several benefits including human readability, hardware platform independence and ease of testing (using
telnet). The cons for x¢ protocols include cost of parsing (messages must be parsed), ingagiurapresenting
numerical quantities (printing numbers to ASCII and reading them back may change some bits in the number) and
inefficieng/ of space usage for numerical data (for better number representation numbers must be printed using a
large number of digits (bytes)). The pros for binary protocols inclasiegarsing and tient and accurate number
representations while cons include dgbing dificulties and portability problems (€#rences in binary representa-

tions between heterogenous haad@). This design choice must also balgated on a case-by-case basw. the

Net //ELLPACK case we chose axtebased protocol as we felt that the benefits outweighed the costs. The biggest
negative (cost and inaccurpof representing humbers)aw not a real concern since masfi the &isting pieces of

software we wanted to reuse required a text representation of the data.

Protocol security is aery important issue: the communication protocol mustwakigplications to pndde the

desired lgel of security to users. Since in our architecture state is maintained at thievgeich may be simulta-

neously accessed by fifent users throughout theowld, it is important that users be separated from one another

The serer uses an account model with a login identifier and a padgw separate one user from another and also to
provide security We use an Internet-unique string (such as®eenail address) as a login identification for each

user The user is allwed to specify a pas®nd when the account is first created. Later accesses require thisqohssw
Authentication is once per session; i.e., after a user authenticates himself or herself, the authentication is valid for the
duration of the session. A session is defined as the duration of a computation and may be named so that it can be
returned to later (withalid authentication). @ improwe security we will eentually use authentication certificates in
conjunction with some standard certificates server.

While an ad-hoc communication scheme such as this is certainly a feasible approach for implemgatstaliar
Web computing systems 8kNet //ELLPACK, the approach that best utilizes todagchnologies wuld be to use a
Common Object Request BrakArchitecture (CORB [xxx-corba]) compliant Object Request Berk(ORB) for

the client-serer communication. Using such ORBs (which intrinsically use standard binary protooalsl) elimi-

nate some of the nega of binary protocols (since CORRlefines a machine independent type system with which
types and intedces may be defined) and also significantly ease theogenent dbrt. Two Jaa-based CORB-
compliant ORBs are currentlywailable (HORB [xxx-horb] and JOE [xxx-joe]). A related feature ofa)dhe Jea
Distributed Object Method (JDOM) [xxx-jdom] and the Remote Method Invocation (RMI) [xxx-rmi] scheme, is also
available. Howeveras these systems are still in their early stagegadfitton we hae chosen not to use them in the
current version of Net //ELLPACK.

11

5.3 Designing Applet User Interfaces

Large scale software systems tend to have large, complex GUIs for controlling and manipulating them. In addition to
the cost of darnloading such lare GUIs, it is not clear that the original GUI desigowd be appropriate for g%
applications. The GUI building facilities in Java (and similar languages) do allow one to build user interfaces that are
comparable to onestit using X or Microsoft Vihdows. But our intuition is that an appletwioloaded from the Web

should not haw the same look and feel as an installed application os ore£hine. Due to the dearth ofgarscale

Web computing systems today, it is difficult to evaluate the validity of this intuition. We expect to use the Net //ELL-
PACK system as a testbed for user interface design ideas after it is fully deployed.

5.4 Reusing Existing Components

An important feature of systems such as Net //EACR that build Web computing systems fromisting software is

reuse of legacy code from the original system. Since in the Web enabled version the user interface will run on the cli-
ent end, that part must clearly be re-engineered andvedeged using the GUI capabilities of the languagevi-en
ronment used. ¢ computational components, the custom eseraust be able to ke leggag code components,

either locally via subroutine calls or remotely via remot@a@ation techniques. This requires that theeselpe aware

of the interfaces to these legacy components.

Similarly, there are hundred and perhaps thousands of applets being produceeldyyede the wrld ower that one

must not preclude a &% computing system from using. The most useful of these from a scientific computing stand-
point are probably scientific data visualization applets. Such applets typically displsnadgta set and support
interactive manipulation as well. The data sets avemito these applets as URLSs, rather than as files in the typical
application scenario. Keever in the design of \@b computing systems we agbated in Section 4.1, all the state is
maintained by the seev which used a custom protocol to communicate with the applet. Bhisl wreclude using

any applets which require the data to be available on the Web unless the server supported the HTTP protocol as well;
i.e., the server must have a facility for exporting some or all of its data to the Web.

6.0 Net//ELLPACK

Net //ELLPACK is a Web computing system based on the //ELLPACK PDE problem solving environment. This Web
computing system as designed along the guidelines discussed editierdesign incorporates the security and other
constraints of the ¥a programming enronment. The current prototype implementationvafidhe user to graphi-

cally define a PDE problem domainxtigally specify symbolic equations for the PDE operatoundary condition

and true solution, define the mesh/grid generator parameters and select an appropriate disdes&zeand linear

solver. In terms of functionality, the version of Net //ELLPACK described here supports solving 2-dimensional, ellip-
tic problems sequentially usingailable solers only The java based //ELLRCK graphical intetfice applet pre-

sented to the useconsists of the minimum functionality necessary to define a PDE problem to the AEKLP
compute server. This minimizes the size of the java classes that the client applet needs to download from the server.

Our on-going wrk is addressing issues in using multiple Net //EACR servers to form a virtual parallel machine
to run parallel solers as well as issues in alimg users to introduce theiima solhers to the system as is possible
with the //ELLRACK PSE. The limitations on the types of problems adl{i.e., restricting to only 2D problems) is
not a technical oneub a practical one; we do notugathe person-peer to produce a completely generatsion of
Net //ELLPACK.

The architecture of this system includegalanabled \&b bravsers, Net //ELLRCK seners (NetPPDs), a custom
communication protocol (NetPP) and a standard communication protocol (HTTP). When a user initially \afits a W

site ofering the Net //ELLRCK service, a Ja applet with a choice of NetPPDs atious geographic locations is
downloaded and presented to the user. The user can either select a preferred server, or the applet may suggest a selec-
tion based on the network connectivity distance between the client and a potential server. Once a NetPPD is selected,
the Net //ELLRACK interface applets are dmloaded to the @b client from the selected seris HTTP compliant

component. The Net //ELLPACK intede (GUI components) use the NETPP protocol to communicate with the Net-

PPD serer during the problem specification and solution stages. Thes ssdution data is madeailable via an

12

HTTP compliant NetPPD component, permitting for instance, the use of foreign data visualization applets for solu-
tion analysis. In the rest of this section we describe each component of this architecture in more detail.

6.1 The Net //[ELLPACK Web Server

The Net //ELLPACK Web server offers users a selection of Net //ELLPACK servers located at many sites worldwide.
This selection is dynamically configurable to permit the addition wfseers and the deletion of out-of-service or
inaccessible servers.

When a user visits this website and selects a NetPPD locatiomkefma CGI script on the Net //ELREK Web

server The script sends an HTTP redirect response which forces the ckénbrdiser to contact the selected Net-

PPD serer using the HTTP protocol. When initially contacted by a client, the HTTP compliant NetPPD component
responds with a NetPP login applet. The NetPP client applet and NetPPD establish a reliable stream connection and
communicate using the NetPP protocol.

6.2 NetPP: The Net //ELLPACK Communication Protocol

The NetPP communication protocol is a simplgt-based, request-reponse type, session-oriented, stateful protocol.
Although it is broadly similar to the HTTP protocol, it is designed for communicatien @ single reliable byte

stream connection. The protocol is based on the interaction pattern between a user and a PSE. It is designed to shield
the user as much as possible from some of the inherent problems associated with remote applicatiesgoske

time, bandwidth limitations, loss of connedtly and client memory limitations. It is also designed to protect the
server host from any potentially malicious intrusions.

Each authenticated user is assigned a non-hierarchical directory space on the NetBtRiosterfter successfully
logging in, the remote usertlient applet generates a NetPP request-response sequence with the Net®fRD serv
setup a computation session. The user specifies a session name to either stgmoblem solving session or to
restart a praously saed session. A subdirectory within the usespace on the NetPPD semhost is associated
with each session.

For security purposes, the NetPP protocol does not permiindiscriminate bravsing of the user spaces on the
sener host. The protocol also pents ag dovnloading or uploading of files between the client and user space on
the NetPPD serr host. Havewer for solution analysis, remote users arevadld to devnload solution data files via

an HTTP compliant NetPPD server component. Supporting the HTTP protocol in this manner requires precautionary
security measures. &8 security protocols are meant for human interaction and are not designezbfoomputing

system client interactions. It is also unintuwatifor a client applet to request HTTP security information solely for the
solution analysis phase while the other problem solving phases interact wigrendifecurity model. Our solution

to this security concern is to use thevate, secure NetPP protocol tewdeage the security in the HTTP protocol
compliant NetPPD server components.tfiis end, the NetPPD servcreates a random path containing the solution

data and communicates this path (URL) to the client applet using the NetPP protocol. The client may then supply this
URL to foreign data visualization and analysis applets and assume that the supplied data is safes Ebéutiser’

data is madewailable in this manner only as long as the user is logged on to the NetPBD@ape the user logs

out, this temporary location is made inaccessible. The NetPP protocol alsdeprasers with the capability of
selecting and specifying the format of the solution files that are to be nettladdessible. For instance, when a cli-

ent sends a NetPP request for a solution file in a particular format, the NetPBDpseimrms the requisite oger-

sion, malks the file Wb accessible and sends a response message back to the remote NetPP client with the
corresponding temporarily accessible URL.

To address the problem of sloesponse time, the NetPP communication protocol has been designed to minimize the
interactions between the remote client and theeselor instance in the PDE problem specification phase, communi-
cation between the client and senoccurs only when the user presses a suluttibrb after each definition stage.

The user can request periodic checkpointing to allow for easy recovery in the event of a network failure. If requested,
checkpointing occurs after each client-sgrgommunication stage and the clisrturrent state is gad on the Net-

PPD serer host in the architecture-independent XDR format (xxx). PDE problem specifications often result in a
large amount of data. Due to possible bandwidth limitations avd stmnectiity, the NetPP protocol has been

13

designed to refrain from the mement of lage data files to and from the client and serkor example, when the

sener generates a mesh for a udefined PDE domain, itxeracts and transmits only the control points neccessary

for visualization back to the client. The client applet then reconstructs the mesh structure and displays it to the remote
user.

6.3 NetPPD: The Net //[ELLPACK Daemon

The /[ELLPACK compute serr (NetPPD) is a stateful, concurrent sgrwith the ability to handle multiple NetPP

clients simultaneousl\NetPPD preides the important inteate between remote NetPP GUI clients and the //ELL-
PACK PSE backend. It is connected to the //ELLPACK PSE components and the //ELLPACK libraries via a software
bus. NetPPD has twcommunication components operating on separate ports; a NetPP request handler and a limited
HTTP request handlefhe HTTP handler is restricted to honor only the HTTP GET/HEAD requests. In addition to

its communication components, NetPPD also has logging and security modules. Figure 9 illustratzsalttsoi-

ware architecture of the NetPPD samnDue to the compute intersi nature of its operation, NetPPaswesigned

to be lightweight. It is even possible to run multiple copies of NetPPD on a single machine with each communication
handler listening on different ports. This design feature has been useful in our on-going research on using Net //ELL-
PACK in a distributed, collaborative scientific agent system.

The compute server requires a fairlygkadisk space allocation. It pides non-hierarchical, session-based directory
spaces for each uséll intermediate files generated during the problem specificationxaudition stages are stored

in these locations. This includes potentiallyglamesh files that are generated during the session. The alssk-

pointing data is also stored in this location, enabling the user to restart a computation or problem specification after a
break in connectity. NetPPD praides randomly named, temporayeb accessible locations for the solution data.

This space is reclaimed at the end of each session. The GUI client applet class files are storeebim¢hesaible

area in NetPPD. These Java class files are athivminimize the initial class dmload time. Archived Java classes

are downloaded in a single HTTP request-response sequence unlike regular class files which result in multiple HTTP
request-response sequences.

The intrinsic problem specifications that NetPPD rexirom the remote GUI client are stored in specialized PDE

data structures [xxx-PDELab paper]. For optimum performance, these data structures are kept in-core. However, they
may be serialized and savif the user requests checkpointing. Some problem specifications requiretatiam of

external programs incorporated within the //EIA®K system. Br instance, the //ELIACK PSE includes seral

finite element mesh generators. When the remote client requests a mesh to be generated for its domain specification,
NetPPD’s //ELLPACK interice component wokes the rternal mesh generation library module with the necessary

/[ELLPACK PSE BUS
Components goftwar®
/I[ELLPACK Log
Interface Module
NetPP . HTTP
| Handler Filters Handler
Security Module
JIELLPACK
Libraries D
User Web | Java
GUI
Spaces Classes

FIGURE 9. NetPPD Software Architecture

14

parameters. NetPPD thextiacts the mesh display points from the generated mesh specification and transmits them
to the client GUI. The generated mesh is saved in a file for future reference. To reduce the communication cost, some
problem specification tasks are performed entirely by the GUI client which transmits just the resulting pertinent infor-
mation back to NetPPDoFinstance, if the remote user requests a grid based domain decomposition, the grid is gen-
erated and displayed by the GUI client applet and only the grid parameters are transmitted to the compute server.

Once the user has completed the PDE problem specification and requests the probleedpblet?D corerts

and saes the specification data from either the latest checkpointed memory state or from its current memory state
into the //ELLRACK natural PDE specification language. This PDE language specificationet® isaa te&t file

known as the .e file. NetPPD then invokes //ELCRAcompute engine with this problem specification file (.e file) as

input. If requested by the user, NetPPD transmits the //ELLPACK compute engine execution status messages via the
NetPP protocol, to be displayed on the remote clients log window.

The //ELLPACK PSE includes a compreheresi graphical excution tool (Figure 3) to assist in the program compila-
tion, e>ecution and post-processing. Thieeution tool does the necessary access aaithhility checks for all the

data files required during the computation. In the case of paradlelion, the xecute tool transparently starts the
program &ecution on the user specified parallel architecture using a user defined communicatianN#trRPD

has the necessary intelligence built in to handle this complex execution process. NetPPD has the capability to initiate
a parallel execution on a high speed local areaar&tusing a communication library such as MPI or PVM, or on a
parallel machine using a native communication libratthe end of the parallel or sequential computation, the PDE
problem solution and thexecution timing information are stored in the usesession specific storage space.
Depending on the remote useselection, this solution is filtered into a particular visualization format avddno

into a temporary \&b accessible location for analysis and visualization. NetPPD sends the solution URL to the GUI
client which then accesses it via the specified foreign scientific visualization appleebrladiser helper or plug-

in application such as a VRML viewer (xxx).

The design of NetPPD is not dependent on the communication channel between itself and the remote GUI client. It
would be possible to incorporate an egieg Web technology to substitute the current connection-oriented TCP

level communication. &r instance the Castenet channel transmitter system (xxx) along witheritua Véb

browser lindled tuner could be used to pide the communication layer. The Net /ELLER GUI client could then

be stored on the remote client machine and transparently updated via the Castenet update mechanism, greatly reduc-
ing the initial start-up communication cost. lowd also preide the added benefit of awigting proxy serer to

enable Net //ELLPACK access to remote clients behind firewalls. The automatic update mechanism within the Casta-
net system could bextended to the solution anaysis process also by transparemtijodaling the computed solu-

tion in a user specified format onto the remote chentachine. An foreign visualization applets or applications

could also be downloaded at the same time.

The ease of seamlessly antkefively Web enabling the //ELLACK PSE via the //[ELLRCK interface component

of NetPPD can be attributed to //ELLPAGKbosely coupled component architecture. On tests conductad Huef

design and implementation of NetPPD has/proto be dst, effectie, safe, secure and scalable. NetPPD itsaff w
designed with inherent characteristics of a PSE andtén&ible and loosely coupled. Itgevall architecture and
framework could be used to effectively Web enable any other scientific PSE with suitable modifications to the private
communication protocol.

6.4 The Net //ELLPACK GUI Components

The //ELLRACK system has a complgyraphical user inteate (Figures 2, 3 and 4 shan instances of it). The
design used for the //ELICK GUI is along the lines of a graphical editor per PDE problem / solution component.
For exkample, one editor alles users to specify the tifential equation to be s@w Another editor allas the user to

specify the domain on which the equation holds. Using the //BOKPlanguage, a separate editorwhdhe prob-

lem components that % so &r been specified. While this is awerful organization of a GUI of a PDE computing
system, this structure results in egltamount of code being used toypde this interhce. In a separate issue, the //
ELLPACK GUI is designed with the intention that the user is willing to use most of his/her screen real estate for the /
/ELLPACK environment’s operation.

15

e 68 ex = Dwimrts s ey Yo Hl
| Locationi ﬁhhbp: {laristoble, cn, pordus. adua B0 natpp/
-l B“;'ﬁhbbpl F i nniwean . o8 . pucdus, =dng BRGL fnetpp/d indes. hbml
Net fELLPACK Homepage .
il
Met FELLPACK Problem Solving Envirenmen:
Weligme e Heq (ELLFATE Frables Raldig Ewirasmen {PEEN
VRt NELLPACE & 8 Wk 8 ewprin f soatmett baged <o ke SELLEACE PR 1a7 sodwing sl X erenmil
euarkn [FDE) probleres This 3 & peool =l =vocap prammy e iopl exsonsdn
Khota Mer CELLFAGH orb 188, S0, o0un b0 FDB [ooblees WIeg aa Wahy Kymwspty ThAT Gupgeoms Mavas s B Lo markusBcz purdusedi
NELLPACK wses o bova ayder thar gepves ns thet prophocal ieser innerfacs, & stenchi] tem -] yowms i sl [HePFy b
il & e NELLPACE. 8erwer rnnlig o § ik Briobine of wexbines savewler of The ferodl T S0 T e o ST
niris EwTe AL oot K NELLPACK s erwer sopfens (i Wby HTTF peoncod. This fesmues sloess the e o aodsmig " pastwerd. 1
Fkin dommsin oy proprienany sppders oo wisaing aY poeaprooeng The oI Tes I 2
IF niew User. re-anbar passwor
w : - o : T
1 oy e s ohis Froom vaonstile of the g oy, then please be wwoses tharthis 15 noeeleased sofrane Pl “J'f""ﬁ"' The zystam logs you an,
Tgially INnT ek Fer We Wil ERAERR A 5 & e ety 3
Login| - Glear]
Fa] W TR AT (LS 10,
(i VELLEACT
Preperrevist o Coegeer N s, Parlas Uedviraly,
Wi Lagiorme, I ATROT, 410 O ’
Pl YELLPALR oxresily mpporis S seletam of secosd srder, e dsnsiemd, e el PUC
nizfels
Tha problem spacdicaton a buand oo dacorpoonay tha FUE el ool the seknes procees i i ool
. . -—— coratzrngt poarts. Than tuche the PDE apuation, da dexots ared th beaxedury coadmnan. For nluign clag o o
| Hedeepl o e VELLPACE sereeri Tesl RetFFD (e oo pardee oS00 | | Comea rexuarical wolution tarkexpes, thre conporanes dlaw tha soletion preceas g b decooprnnd o b
T-MI"I'I PO Hl] = & Ricreimstn, sprsins Ao cratoeian wd ek of the. e ineg sprisn o slgako apestone
'I“-.Pl‘l-l'".F duz. il] Hui ELLPACK can b v i wpcaty tha PLE problam conporsnis, tha thponthons {n tha aeksiis procons
- - — - wred tha dasirad wobution veipet feerat Srew the sohetion i cerpated, the nbonnn dub i woeds armdsih i
- and mralpr r
Fo [1 Y
|zt Povis agpatagn monng " = |

FIGURE 10. The Net //ELLPACK Web server homepage and a NetPPD login applet

In the case of applications run from thel/both of these issues must bevahgated. First, the structure of user
interfaces must be designed so thaytbensist of may small pieces which can be brougkeoon demand. Having

such a modular structure alle the GUI to become operational quickly and also to only breg jast the pieces of

code that the user is using in the current sessmmeXxample, the //ELLPBK equation editor has weral templates

for specifying the equation. The user selects one of these based on some properties of the problem at hand and on the
solution scheme to be applied. In the applet case, rather tharodding all the functionality initiallywe hae
restructured the intex€e so that only the framverk of the user intedice (the part that alls the user to select a tem-

plate) is initially devnloaded. The code for a certain template isrdoaded only when that is selected by the.user

similar example is present in the domain editor: the editor hag/raptions for ha boundary pieces will be con-
structed. The algorithm and code for interpolating control points for each of these options willnt@aded only

when that option is selected. In addition to the micro-structure issues, we also restructure thegaaization of

the GUI in a similar manner: a basic framoek which praides the user with the ability to bringer the needed
functionality on demand. From the usepoint-of-view this has resulted in our changing the irgteef model to one

that follows the object being constructructed rather than the process being used to construct that object. The entire
GUI is now built around a graphical monitor/editor that shows the problem and solution being defined. The function-
ality available at ap point (in terms of menu actions andttons etc.) is based on the witti in progress (defining

the equation, drawing the domain etc.) and is changed by a set of controls that select the current activity. Since in our
system design the state is maintained at the server, once an activity is completed it must be “committed” to the server
before one is allowed to change the activity.

This approach of hng the GUI be based on a frawak that follovs the current aatity implicity addresses the
second issue we listed aleoof screen real estate usage. The design usesxactly one top-leel window for the
entire GUI. The //ELLPACK GUI in comparison uses many windows.

16

The design of GUIs for Web computing systemasyvmuch of an open research issue. Due to the lack of real appli-
cations that operate in this form, ther@dheen very few lessons learnt as yet. We expect to use the Net //ELLPACK
system$ GUI as a testbed to testrious GUI design approaches in order teeligp the most natural andfedtive
interfaces for such Web computing systems.

7.0 Example: Solving a PDE Problem with Net //ELLPACK

In this section we present a typical PDE problem solving session within Net AEIKLPA sample set of response
timings and computation timings for remote access via the internet fr@rakgeographical locations is presented
in Table 1.

In this xkample, we use the widelyailable Netscape @b bravser to access the Net //ELAGK Web server. The
initial NetPPD selection page and the subsequent login page from the selected NetPPD are shown in Figure 11.

When the remote user is succefully authenticated and logged in, the NetPP client applet is displayed. The user may
then begin by selecting the tmesession” option within the file menu and entering\a session name. Once thexne

session has been succesfullgogated, the Net //ELLACK PDE problem specification applet is displayed to the
remote userThe user first defines the domain of the PDE problem by clicking the control points counterclockwise on
the canas and completes the last edge by <shift> clicking (Figure 11). Similar to the AEKLPSE domain editor

the Net //ELLPACK domain specification editor also allows the user to enter the desired X and Y direction ranges.

The user then decides on the general solution giréie selecting the domain discretization scheme. If a grid discret-
ization is selected, then the subsequent templates presented to the user by the GUI client will be restricted to finite
difference operator discretization methods. If a mesh discretization scheme is selected, then the user will be presented

Pl ELLIPACE w10 finieeriad Bala)

Filg Ophadres Servar

- LATCR A e

g Tar allal (IR
II!.lII.uI.u..I.' Lalat Ly

58] s o] Jras Applet Mindss

e

Enter Naw Sezsion Mame | apizod

Al

|,
| TSR Urlagesd -Lrey Applet Windod

FIGURE 11. The NetPP startup client, session applet and the domain specification editor

17

? it MELLPACR w1 D) (irtieenal Barki) i |
Fils Sptans - Server ' Halo

HMESH PARAME

Edua 1t et

-

| araiivatasd Iria Aeplet Mindw

FIGURE 12. Net //ELLPACK mesh generator interface

with templates for finite element discretization methods. Figure 2#ssho instance of a mesh generation for the
given domain definition. The mesh generator iategfpresented to the user has most of the opti@ilalze within
the standard //ELLPACK PSE mesh generator.

Figure 15 shas the equation and true solution specification iaterfand the algorithm specification editeor this
example, we hee chosen a simple Laplace PDE problem with dirichlet boundary conditions and we force the true
solution, Sin(4x)Cog4x). At each stage the user has to commit the problem specification component. Figure 13
shavs the boundary condition specification iné&d. The true solution is specified as the boundary condition for

each boundary piece since this is a PDE problem with Dirichlet boundary conditions. The boundary condition speci-
fication editor is tailored for the current boundary definition (in this example, a boundary with seven pieces).

Once the problem specification is complete, the remote user submits the problem for solution by tR&KEREE

via the sole interice. When the problem solution is completed, a message is displayed on the rematdogjient’
window. The remote user can then use the output specificatioraireenrd select the output format for solution visu-
alization. Depending on the output format type, the remote client will display the problem solution either within the
remote user’'s Web bwser or as a b bravser helper or plug-in application. Figure 14whdhe output specifica-

tion interface and the problem solution (in othé [ekx] format) displayed within the remote useieb bravser.

The solution visualization applet used in this case is a foreign scientific data visualization applet [xxx].

8.0 Conclusion

Internet and Intranet based senv hae already become the commoayof delvery services in maneconomical

and goerment sectors todayThe scenario of scientific computing senw and services updated and maintained
transperantly and accessible through the internet has just appeared as a future research gastientifercircles.

Our experience in building Net//ELLPACK, a Web-based PSE, hagnstihat net-centric scenario for scientific com-
puting is feasible ean with current technologies and bandwidths. The challenge of preserving thevbightézac-

tive user intedces during remote computations has beencome using the technology of applets and.J@ther

(and maybe wen better) solutions may be possible using upcoming net-centric computing platforms (e.g., inferno).
We have not seen the beginning of the revolution yet!

18

%
L o h
P e By
a e

| ginzigned Jeas Applat Hinds

FIGURE 15. Net //ELLPACK equation & true solution specification interface and algorithm editor

o

R

T
£
-

1

FIGURE 13. Net //ELLPACK boundary condition specification editor

19

i il WELLPWCS, 1.0 faitamal Bt} <L
flls Cotlans Server o

—| Metscape: OFF Visualization of Het /fELLPACK Results
File Edit View Go Bookmarks Options Directory Windowr

Location: Ehtt}_:u Finuwan.ce.purdue.edu: 8001 /httpds =

Click here if yon want the off format data.

| s lnignad Jean dpplat Hinds

This OFF viewer is due to Daeron Meyer (thenks!).

i=sl —

FIGURE 14. Net //ELLPACK solution specification interface and a foreign solution data visualization
applet

9.0 References

[1] Houstis, E.N., Rice, J.R., &ravarana, S., Catlin, A.C.,apchiou, IN., Wang, K.-Y, Gaitatzes, M.G. 1996,
Parallel (//) ELLPACK: A Problem Solving Evironments for PDE Based Applications on Multicomputer Plat-
forms.CSD-TR-96-070Department of Computer Sciences. Purdue University.

[2] Gallopoulos, E., Houstis, E.N., and Rice, J. R. 1994. Computer aertlioér: Problem solving environments
for computational sciencéEEE Comp. Sci. Engr., 1,1-23

[3] http://lwww.mcs.anl.gov/home/otc/Server/.
[4] Mathematica network server

[5] Maxima network server

[6] Maple network server

[7] Weeravarana, S., Houstis, E.N., Rice, J. R., Gaitatzes, M.G., Markus, S., and Joshi, A. £B9BEM!-
PACK: A Networked Computing Service on the World Wide WEIBD-TR-95-011 Department of Computer
Science, Purdue University.

20

(8]

9]
[10]

[11]

[12]

[13]
[14]
[15]
[16]

[17]

[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]

[32]

Gross, L., Roll, C., and Schoenauéat 1993. VECFEM for migd finite elementsTednical Report Interner
Bericht Nr. 50/9Rechenzentrum der Universitat Karlsruhe.

FIDISOL ref

Madsen, N.K. and Sinwec, R.F 1979. Algorithm 540: PDECOL, general collocation safefor partial dif-
ferential equationsACM Trans. Math. Software, 326-351.

PARC reference ?

Kim, S. B., Houstis, E. N., and Rice, J. R. 199afel stationary iterate methods and their performance.
Marinescu, D. and Frost, R. (EddN,TEL Supercomputer Users Group Conference

MGGXX (?)

Stevens, W.RUJnix Network ProgrammingPrentice Hall, 1990.
CORBA

DCOM

Weeravarana, S., Houstis, E.N., Rice, J. R., Catlin, A.C., Gaitatzes, M.G., Crabill, C.L., Markus, S., and Dras-
hansky, T.T1996. The Purdue PSEekel. CSD-TR-96-082 Department of Computer Science, Purdue Uni-
versity.

http://www.cs.utk.edu/netsolve/.
http://www.javasoft.com/.
http://surfit.anu.edu.au/Surflt/.
oblets

inferno

javascript
http://ring.etl.go.jp/openlab/horb/
joe

java-idl

RMI

pdelab

VRML
http://www.marimba.com/

off format

off visualization applet url

21

