Lecture 2

Lecturer: Elena Grigorescu

1 Overview

In this lecture:

- Basic facts about random variables and expectations;
- Markov's inequality;
- Chebyshev's inequality;
- Chernoff/Hoeffding's inequality;
- Applications.

2 Review of probability theory needed

Let D be a finite domain, then we call a function $p: D \rightarrow[0,1]$ a probability distribution if $\sum_{x \in D} p(x)=1$. Examples of common probability distributions are

- Uniform distribution $u(x)=1 /|D|$;
- Bernoulli distribution (corresponding to flipping a biased coin which gives heads with probability q and tails with probability $1-q$)

$$
p(x)= \begin{cases}q & \text { if } x=1 \\ 1-q & \text { if } x=0\end{cases}
$$

- Binomial distribution (corresponding to flipping a biased coin n times)

$$
\operatorname{Pr}[\text { get } k \text { heads in } n \text { flips }]=\binom{n}{k} q^{k}(1-q)^{n-k} .
$$

Definition $1 A$ random variable is a function $V: D \rightarrow S \subset \mathbb{R}$.
Definition 2 (Expectation) For a random variable V defined over domain D and distributed according to a probability distribution p, we define the expectation of V as

$$
E[V] \equiv \sum_{x \in D} p(x) V(x) .
$$

Definition 3 (Indicator random variable) Given an event A, we define the indicator random variable of A as

$$
I_{A}:= \begin{cases}1 & \text { if } A \text { is true } \\ 0 & \text { else. }\end{cases}
$$

Proposition 4 If A is an event then $E\left[I_{A}\right]=\operatorname{Pr}[A]$,
Proof $E\left[I_{A}\right]=1 \cdot \operatorname{Pr}[A$ is true $]+0 \cdot \operatorname{Pr}[A$ is false $]$.

Definition 5 (Pairwise independence) We call two random variables, A and B, over D pairwise independent if for all $a, b \in D, \operatorname{Pr}[A=a \wedge B=b]=\operatorname{Pr}[A=a] \cdot \operatorname{Pr}[B=b]$.

Fact 6 (Linearity of expectation) For any two random variables A, B (not necessarily independent) over D we have $E[A+B]=E[A]+E[B]$.

Examples:

- $E[$ sum of 3 dice $]=3 \cdot 7 / 2$
- Expected value of a binomial distribution. Let us flip n biased coins (with each coin having q probability of head, $1-q$ the probability of landing tails). Denote with X_{i} the indicator variable that the $i^{\text {th }}$ coin landed heads. Then $X=\sum_{i=1 \ldots n} X_{i}$ is the random variable for the number of heads, and its expectation is

$$
\begin{aligned}
E[X] & =E\left[\sum_{1 \ldots . .} X_{i}\right]=\sum_{i=1 \ldots n} E\left[X_{i}\right] \\
& =\sum_{i=1 \ldots n} q=n q .
\end{aligned}
$$

Proposition 7 If A and B are pairwise independent then $E[A B]=E[A] E[B]$.
Definition 8 (Conditional probability) For two random variables A and B over the domain D the conditional probability of event A occurring given that B occurs, denoted $\operatorname{Pr}[A \mid B]$, is defined as follows

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \wedge B]}{\operatorname{Pr}[B]}
$$

Definition 9 (Conditional expectation) For a random variable X over a domain D,

$$
E[X \mid A]=\sum_{x \in D} \operatorname{Pr}[X=x \mid A] \cdot x .
$$

For example, the expected value of a roll of a die, given the event A that we rolled something less than 3 is

$$
E[X \mid A]=\sum_{x=1,2,3} \operatorname{Pr}[X=x \mid A] \cdot x=1 \cdot 1 / 3+2 \cdot 1 / 3+3 \cdot 1 / 3+0=2 .
$$

Proposition 10 (Union bound) Given events E_{1} and E_{2}, the probability that at least one happens is bounded by $\operatorname{Pr}\left[E_{1} \cup E_{2}\right] \leq \operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]$.

For example, if we roll 3 dice, then $\operatorname{Pr}[$ at least one $=6] \leq 3 \cdot 1 / 6$.

Theorem 11 (Markov's inequality) Let X be a non-zero, random variable, and a>0 then

$$
\operatorname{Pr}[|X| \geq a] \leq \frac{E[|X|]}{a}
$$

Or equivalently $\operatorname{Pr}[|X| \geq a E[|X|]] \leq 1 / a$.
As an example, for the toss of n fair coins let X_{i} denote the event that the $i^{\text {th }}$ coin lands heads. Then $E\left[\sum X_{i}\right]=n / 2$ so the probability that more than $2 / 3$'s of the coins come up heads is

$$
\operatorname{Pr}[2 n / 3 \text { come up heads }] \leq \frac{n / 2}{2 n / 3}=\frac{3}{4}
$$

Theorem 12 (Chebyshev's inequality)

$$
\operatorname{Pr}[|X-E[X]| \geq a] \leq \frac{\operatorname{Var}[X]}{a^{2}}
$$

where $\operatorname{Var}[X]:=E\left[(X-E[X])^{2}\right]$.
Proof Let random variable $Y=|X-E[X]|$. Using Markov's inequality we have that

$$
\operatorname{Pr}[Y \geq a]=\operatorname{Pr}\left[Y^{2} \geq a^{2}\right] \leq \frac{E\left[Y^{2}\right]}{a^{2}}=\frac{\operatorname{Var}[X]}{a^{2}}
$$

Theorem 13 (Chernoff/Hoeffding inequality) Let X_{1}, \ldots, X_{n} be independent random variables in the interval $[0,1]$ and let $X=\sum X_{i}$. Then

$$
\operatorname{Pr}[|X-E[X]| \geq t] \leq 2 \exp \left(-2 t^{2} / n\right)
$$

Equivalently

$$
\operatorname{Pr}[|X-E[X]| \geq \epsilon \cdot E[X]] \leq 2 \exp \left(-2 \epsilon^{2} E[X]^{2} / n\right)
$$

and

$$
\operatorname{Pr}[|X-E[X]| \geq \epsilon n] \leq 2 \exp \left(-2 \epsilon^{2} n\right)
$$

3 Applications

In this section we shall discuss two applications of the Chernoff bound.

3.1 Approximating the fraction of 1's in a binary string

Suppose we want to estimate the fraction of 1 's in a given string $S \subset\{0,1\}^{n}$. That is, we wish to find a fast randomized algorithm that, given ϵ and string S outputs a value V such that $\mid V-$ fraction of 1 's $\mid<\epsilon$ with probability $2 / 3$.

Algorithm Pick $k=1 / \epsilon^{2}$ uniformly random indices in the string S and output the fraction of 1's in the sample.

Analysis Let X_{1}, \ldots, X_{k} be random variables indicating if a 1 was found in the string position for the $i^{\text {th }}$ index selected $(1 \leq i \leq k)$. It follows that $E\left[X_{i}\right]$ is equal to the fraction of 1 's in S. Let X be the random variable for the number of 1's in the sample, so $X=\sum X_{i}$ and the indicator variable for the value output by the algorithm (i.e. for the fraction of 1's in the sample) is $\frac{X}{k}$. Then by Chernoff's bound

$$
\operatorname{Pr}\left[\left|\frac{X}{k}-\frac{E[X]}{k}\right|>\epsilon\right] \leq 2 e^{-2 \epsilon^{2} k}=2 e^{-2}<1 / 3
$$

as $\epsilon^{2} k=1$.
Therefore

$$
\operatorname{Pr}\left[\left|\frac{X}{k}-E\left[X_{i}\right]\right|>\epsilon\right]<1 / 3
$$

meaning that we output a good estimate (i.e. within ϵ from the true fraction of 1's in the string) with probability $>2 / 3$.

3.2 Improving a random algorithm's correctness

Suppose we are given a randomized algorithm A which on each input x from some domain D outputs a 0 or 1 answer and it is correct with probability $p=2 / 3$. (In other words there is some function $f: D \rightarrow\{0,1\}$ such that, for any $x \in D$ we have that $\operatorname{Pr}[A(x)=f(x)] \geq 2 / 3$, where the probability is computed over the randomness of the algorithm A.) Let algorithm B run A for t times and output the majority answer. We next show that algorithm B is correct (on each input) with probability greater than $1-2^{-c t}$ for some constant c (that is, $\forall x \in D$, $\operatorname{Pr}[B(x)=f(x)] \geq 1-2^{-c t}$.)

Analysis Fix some input x. Let X_{1}, \ldots, X_{t} be indicator variables such that $X_{i}=1$ if A outputs the correct answer in the $i^{\text {th }}$ step. Therefore, $E\left[X_{i}\right]=p=2 / 3$. Set $X=\sum X_{i}$, that is X is the random variable counting the number of correct answers, and notice that $E[X]=2 t / 3$.

$$
\begin{aligned}
\operatorname{Pr}[B \text { outputs incorrect answer }] & =\operatorname{Pr}[A \text { outputs incorrect answer more than } t / 2 \text { times }] \\
& =\operatorname{Pr}[X<t / 2] \leq \operatorname{Pr}[X-2 t / 3<t / 2-2 t / 3] \\
& =\operatorname{Pr}[X-2 t / 3<-t / 6] \leq \operatorname{Pr}[|X-2 t / 3|>t / 6] \\
& \leq 2 e^{-2 t^{2}(1 / 6)^{2} / t}=2^{-c t}
\end{aligned}
$$

