Current Topics in Theoretical CS

Lecture 1
Logistics

Instructor: Elena Grigorescu, elena-g@purdue.edu
Course website: http://www.cs.purdue.edu/homes/egrigore/Fall12/

Introductions: name, year, background

Assignments:
- scribe notes for 1-2 lectures
- project:
 - full lecture where you present a theory paper
 + notes for it
 you can work in pairs
 meet with me twice before the presentation
Course topics

- Sublinear models of computation
- Error-correcting codes
- Expander graphs
- Communication complexity
Sublinear models of computation

- **Program checking**
 Quickly determine whether a piece of code computes the right function

- **Property testing**
 Quickly decide whether a mathematical object has a property or is very far from having it

- **Approximation algorithms**
 Quickly output an approximate value for the solution of a hard problem

- **Streaming algorithms**
 Quickly compute a function of a data stream arriving in an online fashion

- **Local correction/local decoding**
 Quickly recover a possibly corrupted value in a string of bits

Quickly = using time/space resources $<<$ linear in the input size

How? Must use randomness!
Sublinear models of computation

- Have lots of practical applications
- Analyzing these applications require beautiful mathematics

 - Probabilistic methods
 - Extremal combinatorics
 - Fourier analysis
 - Markov chains
 - High-dimensional geometry
Sublinear algorithms in this course

• Testing properties of graphs:
 o Testing if a graph contains triangles
 Powerful tool: Szemeredi regularity lemma
 Further application to additive combinatorics
 o Testing connectedness
 Related application: approximating the number of connected components

• Testing properties of functions:
 o Testing monotonicity
 Combinatorial tool: spanner graphs

• Local algorithms for error-correcting codes
 o Computational tasks: testing, correcting, decoding
 Tools: polynomials

• Streaming algorithm (example in this lecture)
Error-correcting codes

• ECC: way to encode data so that it can be recovered after corruption

\[011 \quad \rightarrow \quad 000111111 \]

• Used everywhere in practice:
 o Communication: deep space transmission, cell lines, TV broadcast
 o Storage: CDs, DVDs, clouds
 o Networks protocols, data indexing (bar codes, ISBN), etc.

• Questions:
 o What features can be achieved?
 o Explicit constructions?
 o Algorithms?
 o Tools for applications in computational complexity?
 (eg. PCP theorem)

• Techniques: analysis of polynomials over finite fields, expander graphs, etc.
Expander graphs

- **Def:** Sparse graphs (i.e. with few edges) that are highly connected.

- **Applications:**
 - Coding theory: building codes with good parameters
 - Study of pseudorandomness in computation
 - Computational complexity (eg. PCP theorem)
 - Cryptography
 - Data structures
 - Distributed computation
Communication Complexity

• Two parties want to compute a function of their input by exchanging only a few bits

• Provides successful techniques for proving lower bounds in
 o Data structures
 o Streaming algorithms
 o Property testing

Other topics?

Your own choice goes here
Tentative schedule

• Introduction to sublinear models of computation
• Probability basics
• Testing connectivity. Estimating the number of connected components and minimum spanning tree weight.
• Szemeredi regularity lemma. Testing triangle freeness in dense graphs. Applications to additive combinatorics.
• Proof of the triangle removal lemma.
• Testing monotonicity of functions. Spanner graphs.
• Intro to codes. Finite fields. Hadamard, Reed-Solomon, Reed Muller.
• Locally testable codes. Testing membership in the Hadamard code (aka linearity testing). The Fourier analytic method.
• Locally decodable codes.
• Expander graphs. Codes from graphs. Other applications.
• Communication complexity. Application to Property Testing lower bounds
The remainder of this lecture

(on the board)

• An example of a sublinear deterministic algorithm
 o estimating the diameter of a set of points in a metric space

• A simple example of a streaming algorithm
 o taking a uniform sample from an online stream

• Property testing intro

• Survey