Lecture 16 (Part II: Graph Streaming)

\[G = (V, E) \text{ or weighted } G = (V, E, W) \]

Streaming models:

- **insertion only**: token inserts edges \(e \in V \times V \)
 - \(|V| = n \) is known in advance
 - \# edges is not known
 - promise: edges appear only once in stream

- **insertion for weighted graphs**:
 - token is \((e, w) \), \(e \in E(G), w \text{ weight of } e \)

- **dynamic stream**:
 - token is \((e, b) \in E(G) \times \{\pm 1, -1\} \)
 - \((e, +1) \Rightarrow \text{edge } e \text{ is inserted}\)
 - \((e, -1) \Rightarrow \text{edge } e \text{ is deleted}\)

- **turnstile** \((e, m) \in E(G) \times \mathbb{Z} \)
 - \(m \) is the multiplicity of edge.
Connectivity

- Maintain a spanning forest greedily
 - Use union-find data structure to test if new edge makes a cycle with currently saved edges.

Space: $O(n \log n) = o(n^2)$ 2 bits

Bipartiteness

- Check if odd cycle.

$O(n \log n)$ space.
Shortest path: query \((x, y) \forall x, y \in G\)

\(t\)-Spanner \(H\) for \(G\) is subgraph s.t.
\[
d(x, y) \leq d(x, y) \leq t \cdot d(x, y)
\]

Correctness: \(H\) is spanner.

\(H \subseteq \phi\)

- On edge \((u, v)\)
 \[
 \text{if } d_H(u, v) \geq t + 1
 \]
 \[
 H \leftarrow H \cup \exists (u, v) \in G
 \]

- On query \((x, y)\) output \(d_H(x, y)\).

Each edge \(e \in G\) is stretched by path of length \(t + 1\)
How large is the stored H?

Girth of G is length of smallest cycle

Obs: Girth of H above is $\geq t+2$

Alon, Hoory, Linial:

Any graph G on n vertices, of girth $> k$ must have $\leq n + n^{0(1/k)}$ edges.

For t-approx: $O(n \log n)$ space.