Today: Locally decodable codes from Reed-Muller codes.

Matching vector codes (overview)

Recall:

Reed Solomon codes

\[RS_{\mathbb{F}}(k) : \mathbb{F}^k \rightarrow \mathbb{F}^n \]
\[(p_0, p_1, \ldots, p_{k-1}) \rightarrow \langle p(x_1), p(x_2), \ldots, p(x_n) \rangle \]
\[x_1, \ldots, x_n \in \mathbb{F} \]

\[p(x) = \sum p_i x^i \]

Reed Muller codes

\[RM(m, l) \]
\[RM(m, l) = \langle \langle p(x) \rangle \rangle \quad | \quad \forall p \in \mathbb{F}[X_1, \ldots, X_m] \]
\[\deg p \leq l \}

\[(p_{0000}, \ldots, p_{1111}) \rightarrow \langle p(x_1), p(x_2), \ldots, p(x_m) \rangle \]
\[\uparrow \text{msg} \]
\[\text{coefficients of monomials in } X_1, X_2, \ldots, X_m \]
\[k = \binom{m+e}{m} = \binom{m+e}{e} \quad (\text{msg size}) \]

\[n = \left| \mathbb{F} \right|^m \quad (\text{codeword size}) \]

rel. distance : \[1 - \frac{e}{\left| \mathbb{F} \right|} \]

(by Schwartz-Zippel)

Local decoding for RM

Alg: on a set \(\text{dist} (f, g) \leq 5 \) for some \(g \in \text{RM} \)

- goal: output \(g(a) \). (\(a \in \#^m \))

1. pick random line passing through a \(\epsilon \)
 (i.e. pick \(b \in \mathbb{F}^m \setminus \{0\} \)
 and consider elts \(L_{a,b} = g + b + t \cdot \)
 \(t \in \mathbb{F} \)

Query \(f(\alpha + b \alpha_i), f(\alpha + b \alpha_2), \ldots, f(\alpha + b \alpha_{e+1}) \)

for some distinct \(\alpha_1, \alpha_2, \ldots, \alpha_{e+1} \in \mathbb{F} \)
2. Interpolate the values of \(f(a + b\alpha_i) \) to obtain a unique \(\ell \)-degree poly \(G \) that agrees with \(f(L(\alpha_i)) \) for every \(i \in \mathbb{N} \).

3. Output \(G(0) \): \(\left(e_i = g(0) \approx f(0) \right) \) supposed to be thin:

\[\text{Thm: } RM(l, m) \text{ is a } \left(l + 1, \frac{1}{3(l+1)}, \frac{1}{3} \right) \text{-LDC.} \]

\[\text{Pf: } \]

\[\text{Obs: } \]

It may be that \(f(a) \neq g(a) \) in the coding, we care abt.

So we "vote" for a via restrictions to random lines.
Claim 1: For fixed $a \neq \mathbb{F}^n$, $L \in \mathbb{F}^n$
and for b picked u.a.r from $\mathbb{F}^n / \mathbb{F}_3$.
The elt $a + \lambda b$ is u.a.r in \mathbb{F}^n.

Claim 2: For $g : \mathbb{F}^n \to \mathbb{F}$ of deg $\leq l$.
restriction of f to line $L_{a,b} : \mathbb{F}^2 \to \mathbb{F}$
with $g(t) = f(L_{a,b}(t)) = f(a + b t)$
is a poly in 1 var of deg $\leq l$.

Eg: $p(x_1, x_2) = x_1^2 x_2 + x_2^3 + 1$, $a = (5, 1)$, $b = (4, 3)$

$L_{a,b} = \{(5,1) + t(4,3) \mid t \in \mathbb{F}\}$

$p \circ L_{a,b}(t) = p(5+4t, 1+3t)$

$= (5+4t)^2 (1+3t) + (1+3t)^3 + 1$

\uparrow deg ≤ 3

\text{1 univariate poly.}
Claim 3: Given values of a deg l poly g at $l+1$ pts can interpolate to find g explicitly (of deg l). This is unique.

\[a_1, a_2, \ldots, a_n \rightarrow \text{deg } k-1 \text{ poly that passes through } f(a_1), f(a_2), \ldots, f(a_n) \]

\[\forall a, \alpha_i \text{ if } b \text{ is i.i.d. in } \mathbb{F}_m \text{ then } \Pr \left[f(a + \alpha_i b) \neq g(a + \alpha_i b) \right] \leq \delta = \frac{1}{3(l+1)} \]

So by union bound, for all $\alpha_0, \ldots, \alpha_k$ \[f(a + \alpha_i b) = g(a + \alpha_i b) \]

wp $1 - (l+1) \cdot \frac{1}{3(l+1)} = \frac{2}{3}$
So when all the \(f(a + x_i b) \) are correct
then the interpolating poly \(G \) that
passes through \(\{ f(a + x_i b) \} \) \(i \in 30, \ldots, 43 \)
is exactly the restriction of \(g \) to \(L_{a,b} \).
(by uniqueness)

Then \(G(a) = g(a + 0, b) = g(a) \lor wp \ 2/3 \).

Parameters: \#queries = \(l + 1 = \Theta(n) \)
\(l \) = \(|F| - 2 = O(1) \)
\(n = |F|^m \) \(k = \binom{m + \ell}{m} \)
\(n \equiv \Theta(k^{1/(\ell - 2)}) \)
\(b : n > k^{1+o(1/\ell)} \) \{ exp. gap \}
Issue: $\delta \to 0$ as $\deg l \to \infty$

\[
\delta = \frac{1}{3(l+1)}
\]

Can we get $\delta = \frac{1}{100}$?

New tool:

Berlekamp-Welch: Unique decoding of RS(\textcolor{red}{l})

Given received vector $\langle r_1, \ldots, r_n \rangle$ that is within $\frac{1}{2} (n - l)$ from a RS(l) codeword, find c in $\text{poly}(n, \log |\mathbb{F}|)$ time.

\[\text{We'll use above as black box to get LDC for } \delta = \frac{1}{100} \]

independent of $\deg l$!
LDCAlg: Given access to $f: \mathbb{F}^m \to \mathbb{F}$, and $a \in \mathbb{F}^m$; find $g(a)$ (where $\text{dist}(f,g) \leq \delta$).

1. Pick a random line through a.

 Query every $f(a + bt)$ for $t \in \mathbb{F}^n$.

 Let H be the \mathbb{F}-length vector collecting these values.

 H is the received vector from Berlekamp-Welch because $g(a + bt)$ is a $\text{RS}(\mathbb{F}^e)$ codeword.

2. Decode H to a $\text{RS}(\mathbb{F}^e)$ codeword G using Berlekamp-Welch.

3. Output $G(0)$.
Thm: RM(m, l) is a F
\[(|F|, \frac{1}{100}, \frac{1}{20}) \text{-LDC} \]
\[\delta \leq 3 \]

Pf: \[\Pr[f(a+bt) \neq g(a+bt)] \leq \frac{1}{100} \]

So \[\mathbb{E}_{a,b} \left[\text{# of errors on } f \circ L_{ab} \right] \leq \frac{|F|}{100} \]

By Markov \[\Pr[\text{# of errors on } f \circ L_{ab} > 20 \cdot \mathbb{E}] < \frac{1}{20} \]
\[\frac{|F|}{5} \]

So wp \[\frac{19}{20} \]
\[f \circ L_{ab} \] has \[\leq \frac{|F|}{5} \] error

Pick \[l = \frac{|F|}{2} \]. Then BW decodes from \[\frac{|F|}{4} \] error
So, in particular, BW can decode (uniquely) from \(\frac{IFL}{5} \) error. Let \(G \) be the decoded poly. By uniqueness, we must have \(G(t) = g(a+bt), \forall t \). So when decoding succeeds, the unique poly \(g \odot L \) is output, hence

\[
g(a) = g(a+0 \cdot b) = G(0) \quad \text{(Supposed to equal } f(a))
\]

Parameters:

- \(m = \Theta(n) \) vars.
- \(|IFL| = n^{1/m} \)
- \(d = \frac{|IFL|}{2} \)
- \(k = \frac{m^n}{m!} \)
- \(\text{rate} = \frac{k}{n} = \frac{1}{m! 2^m} = \Theta(1) \)
- \(|IFL|-1 = n^{1/m} \ll n \quad \text{(sublinear query complexity)} \)
Better LDCs from families of Matching Vectors.

(Thigh-level ideas)

Let $S \triangleq \mathbb{Z}/m$

Then vectors u_1, u_2, \ldots, u_k are S-matching

\[
\begin{aligned}
\langle u_i, v_j \rangle &= 0 & \text{if } i = j \\
\langle u_i, v_j \rangle &\in S & \text{if } i \neq j
\end{aligned}
\]

Let F be a field. Let w be primitive root, so

\[w^m = 1 \quad \text{(primitive roots of unity in } F)\]

Eg: over \mathbb{C}

\[w = \frac{2k\bar{\omega}}{m} \quad \kappa \in \{0, \ldots, m-1\}\]

\[= \cos \frac{2k\bar{\omega}}{m} + i \sin \frac{2k\bar{\omega}}{m}.
\]

Such roots can be defined in every field.

Def: \(X_i : \mathbb{Z}_m^n \rightarrow \mathbb{F} \)
\[X \rightarrow \langle x, u_i \rangle \]

For msg \(c \in \mathbb{F}^k \) encode it using
\[g : \mathbb{Z}_m^k \rightarrow \mathbb{F} \]
\[g(x) = \sum_{i=1}^{k} c_i X_i(x) \]

Local decoding: Given oracle access to \(f \), to find \(c_j \)
- Pick \(x \) u.a.r. \(\mathbb{Z}_m^n \)
- Query \(f(x), f(x+v_j), f(x+2v_j), \ldots, f(x+(m-1)v_j) \)
 (i.e. a line through \(x \) of slope \(v_j \))

... Can solve lin system for \(c_j \)...
Thin (Yekhanin, Efremenko)

If S-MVF over Z_m^d of size k

then $\exists a (c, \delta, 1-c\delta)$ LDC

$C : \#k \to \mathbb{F}_m^n$, $n = m^d$, $r = \lfloor s \rfloor + 1$

(assuming $m \mid 1/\delta - 1$)

Thin (Grolmusz '99) Let $m = p_1 p_2 \cdots p_t$ distinct primes.

Then \exists an explicit S-MVF in Z_m^d of size

$$\exp \left(\frac{(\log d)^{t^3}}{\log \log d^{t^3}} \right)$$

for sets of size 2^{t-1}.

Imply: 4-query LDC of length

$$n = \exp \left(\exp \left(\sqrt{\log k \log \log k} \right) \right) = \exp(k^{\alpha(1)})$$

\Rightarrow subexp!!!

(RM can give 4-query LDC with $n = \exp(k^{1/3})$)