Today: Local codes. Locally decodable codes

Code: \[C : \Sigma^k \rightarrow \Sigma^n \]

Parameters:
- rate: \(\frac{k}{n} \rightarrow \) amount of redundancy
- (rel) distance: \(\text{dist}(C) = \min \{ \delta(a_i, c_j) \} \)
 - \(c_i \neq c_j \) \(\rightarrow \) rel. Hamming distance
 - \(\downarrow \) amount of error/corruption the code can withstand.

Ideally:
- \(\frac{k}{n} = \Theta(1) \) (even \(\rightarrow 1 - o(1) \))
- \(\text{dist}(C) = \Theta(1) \)

Unique decoding: Given a corrupted version \(c(m) \) find \(m \), if fraction of error \(< \frac{\text{dist}(C)}{2} \).
Usually $\Sigma = F_2$ (also can think of \mathbb{Z}_q, the ring of \mathbb{Z} mod. q).

Linear code: $C \subseteq F_q^n$ is linear if it forms a subspace (vector space) i.e. $\forall a, c_2 \in C \Rightarrow a + c_2 \in C$.

Systematic code: Codeword contains the message.

Fact: Every linear code is systematic.

Local tasks:
- Local testing: Given $z \in F_q^n$, test if $z \in C$ or is far from C (with few queries).
- Local decoding: Given $z \in F_q^n$ and $i \in [k]$ if z is close to $C(m)$ find m_i.
- Local correction: Given $i \in [k]$, find $C(m)_i$.
Locally decodable/correctable code:

Given \(C : \Sigma^k \rightarrow \Sigma^n \), \(C \) is \((g, \delta, \varepsilon)\)-locally decodable if \(\forall i \in [k] \) \(\exists \) rand alg \(A_i \) st. \(A_i \) makes \(g \) queries to \(x \) \(\forall \) msg \(x \in \Sigma^k \), \(\forall \) \(z \in \Sigma^n \) with \(\text{dist}(z, C(x)) \leq \delta n \) then

\[
\Pr \left[A_i(z) = C(x)_i \right] > 1 - \varepsilon.
\]

\(x \rightarrow C(x) = \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix} \)

\(z = \begin{bmatrix} 0 & 1 & 1 & 1 \end{bmatrix} \)

\(i \in [k] \)

\(g \) queries

\(A_i \)

\(x_i \)

\(C \) is \((g, \delta, \varepsilon)\)-locally decodable if \(\forall i \in [n] \)

\[
\Pr \left[A_i(z) = C(x)_i \right] > 1 - \varepsilon.
\]
Fact: Every linear locally correctable code is locally decodable. (Since it is systematic.)

Example: Hadamard code.

- Linear code
 - \(l_a(x) = a \cdot x \mod 2 \)

\[
\text{Had} = \sum \frac{1}{2} l_a^\mathbf{H}_2^k \rightarrow \mathbb{F}_2^2 \quad a \in \mathbb{F}_2^k
\]

msg: \(a \in \mathbb{F}_2^k \)
index by \(x \): 00 01 10 11
\(2^k \)
a

<table>
<thead>
<tr>
<th>l</th>
<th>(\langle 0, 0, 0, 0, 0 \rangle)</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>l0</td>
<td>(\langle 0, 1, 1, 1, 0 \rangle)</td>
<td>01</td>
</tr>
<tr>
<td>l01</td>
<td>(\langle 0, 1, 1, 0, 1 \rangle)</td>
<td>01</td>
</tr>
<tr>
<td>l011</td>
<td>(\langle 0, 1, 1, 0, 1 \rangle)</td>
<td>11</td>
</tr>
</tbody>
</table>
Thm: Had is $(3, 5, 25) \text{ - locally dec. (LDC)}$

\[\forall i \in [k], x \in \mathbb{F}_2^k \rightarrow \text{decode } m_i \text{ output } l_a(x) \]

Alg: on x and $z \in \mathbb{F}_2^n$

\[n = 2^k \]

\[\text{think of } z \text{ as } \]

\[f: \mathbb{F}_2^k \rightarrow \mathbb{F}_2, \]

\[s.t. \text{ dist } (f, l_a) \leq 5n \]

\[z \in \text{ Had} \]

Pick b uniform at rand. in \mathbb{F}_2^k

Output $f(b) + f(b + x)$

Recall: $l_a(b) + l_a(f + b) = l_a(x)$

What we want to output
Analysis:

Since b is m.a.r. in \mathbb{F}_2^k

$$\Pr[f(b) \neq \lambda_a(b)] \leq \delta.$$

Also, for fixed x, b m.a.r.

$x + b$ is m.m.f. at rand. in \mathbb{F}_2^k, so

$$\Pr[f(x + b) \neq \lambda_a(x + b)] \leq \delta.$$

By union bound, at least one of bad events happen w.p. 2δ.

So none hold w.p. $1 - 2 \delta$.

When that is the case, we have

$$f(b) = \lambda_a(b)$$

$$f(x+b) = \lambda_a(x+b)$$

hence $f(b) + f(x+b) = \lambda_a(b) + \lambda_a(x+b) = \lambda_a(x)$.
Remark: Had is 2-query Loc. dec.

- rate = \(\frac{k}{2^k} \to 0 \)

- distance: \(\frac{1}{2} \)

Can get better 2-query LDC?

- No: every 2-query LDC has \(n = 2 \frac{8}{k} \) (GKST02, Kremeridis, deWolf)

Constant \(> 2 \) queries

UB: subexponential (Yekhanin, others)

16: \(n > k + O(1/2) \) \(\# \) of queries.

(Woodruff 07) Slightly super linear.

0Q: \(O(\log n) \) queries for \(n = \Omega(k) \)?

- tighter constant UBs for d-query LDCs
Reed Muller codes:

\[\# \text{vars} \leq \deg \]

\[\text{Def: } m, l \text{ and } \mathbb{F}_q, \quad l \leq q-1 \]

\[\text{RM}(m, l) = \{ \langle p(x) \rangle \mid p \in \mathbb{F}_q[x_1, \ldots, x_m], \deg p \leq l \} \]

If \(m = 1 \), \(\text{RM}(1, l) \) is a Reed Solomon code.

Example: \(\text{RS: } m = 1 \)

\[\# p \quad \text{RS}(l) = \{ \langle p(x) \rangle \mid p \in \mathbb{F}_q, \deg p \leq l \} \]

eg: \(p = 2x^5 + 10 \) in \(\mathbb{F}_11 \); \(l \leq 6 \)

codeword \(p: \langle p(0), p(1), \ldots, p(10) \rangle \)

\(\text{RS}(l) : \text{ take all codewords gen by every } \)

\(p \in \mathbb{F}_q[x_1] \) of \(\deg \leq 6 \).
message \((0, 2, 0, 0, 0, 0, 10) \)

Coefficients of \(p \)

\[K = l + 1 \leq \# \text{ of coefficients} \]

\[n = \left| \mathbb{F}_q^l \right| = q \]

\[\frac{k}{n} = \frac{l + 1}{q} \quad \text{(rate of when)} \]

\[l = \Theta \left(\frac{q}{l} \right) \]

\(RM: \) \(2 \) vars in \(\mathbb{F}_q^{l} [x_1, x_2] \) \(\text{deg} \leq q \)

\[p(x_1, x_2) = 3x_1^4 + 5x_1^3x_2 + x_2^3 + 6x_1^2x_2 \]

indexing by \(\mathbb{F}_q^2 \) \(: (0,0)(0,1) \ldots (10,10) \)

Encoding of \(p \): \(\langle p(00), p(01) \ldots p(10,10) \rangle \)

\[K: \# \text{ of monomials in } x_1, x_2 \text{ of } \text{deg} \leq l. \]

In general

\[x_1^{a_1} x_2^{a_2} \ldots x_m^{a_m} \quad \text{st. } \sum a_i = l \]

\[l < \frac{q}{2} \]
\[l, l_2 \quad \frac{\partial f}{\partial x_m} \quad (l + m) - (l + m) \]

\[K = O \left(\frac{m + e}{m} \right) \]

\[n = \left| \mathbb{F}_q^m \right| = q^m \]

distance of RM: \((1 - \frac{e}{q})^m \)

Proof: Schwartz-Zippel Lemma: Let \(p \in \mathbb{F}_q[x_1, \ldots, x_m] \) of total deg \(l \). Then \# of \(x \in \mathbb{F}_q[x_1, \ldots, x_m] \) s.t. \(p(x) = 0 \) is \(\leq l q^{m-1} \)

Proof: By induction on \# of vars.

So, \(\Pr \left[f(x) = 0 \right] \leq \frac{e}{q} \)

\[x \leftarrow \text{var} \quad \mathbb{F}_q^m \]

Assume \(e \leq \frac{q}{2} \).
Distance of RM: 2 codewords are evuls of 2 polys over $\mathbb{F}_q \rightarrow (\mathbb{Q}^*)$

$\langle p(000), p(001) \rangle$

$\langle 2(000), 2(010) \rangle$

$\text{dist} (p, q) = \# \text{ non-0s} / Q^m$

$\geq (Q^m - \ell Q^{m-1}) / Q^m$

$= \left(1 - \ell / Q\right)$

Thm. $RM (\ell, m) \text{ is } (\ell + 1, \frac{1}{3(\ell + 1)}, \frac{1}{3}) \text{ LD C}$.

of queries

dist that can with T depend on ℓ.

confid.
Def: A line in \mathbb{F}_q^m is def by $a \in \mathbb{F}_q^m$, $b \in \mathbb{F}_q^m / \{0\}$.

\[L_{a,b} = \{ a + bt \mid t \in \mathbb{F}_q \} \]

Lem: Given $a \in \mathbb{F}_q^m$, $t \in \mathbb{F}_q^*$. For $b \in \mathbb{F}_q^m / \{0\}$, $a + bt$ is uniform in \mathbb{F}_q^m.
Lem: If \(p \in \mathbb{F}_q[x_1, \ldots, x_m] \) of degree \(n \),

Then \(P_L = p \circ L \) (the restriction of \(p \) to line \(L \)) is a poly in one var of degree \(n \).

Eg: \(p(x, x_2) = x_1^3 x_2 \) in \(\mathbb{F}_4 \rightarrow \deg 2 \)

\(L = (3, 2) + t(5, 1) = (3 + 5t, 2 + t) \)

\(p \circ L : \quad p(3+5t, 2+t) = (3+5t)^3 (2+t) \)

\(\uparrow \) univ. int.

\(\cdot \deg 4 \)

(To be continued)