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Abstract. The standard definition of causal Bayesian networks (CBNs) invokes
a global condition according to which the distribution resulting from any inter-
vention can be decomposed into a truncated product dictated by its respective
mutilated subgraph. We analyze alternative formulations which emphasizes local
aspects of the causal process and can serve therefore as more meaningful crite-
ria for coherence testing and network construction. We first examine a definition
based on “modularity” and prove its equivalence to the global definition. We then
introduce two new definitions, the first interprets the missing edges in the graph,
and the second interprets “zero direct effect” (i.e., ceteris paribus). We show that
these formulations are equivalent but carry different semantic content.

1 Introduction

Nowadays, graphical models are standard tools for encoding probabilistic and causal
information [Pearl, 1988; Spirtes et al., 1993; Heckerman and Shachter, 1995; Lau-
ritzen, 1999; Pearl, 2000; Dawid, 2001; Koller and Friedman, 2009]. One of the most
popular representations is a causal Bayesian network, namely, a directed acyclic graph
(DAG) G which, in addition to the traditional conditional independencies also conveys
causal information, and permits one to infer the effects of interventions. Specifically, if
an external intervention fixes any set X of variables to some constant x, the DAG per-
mits us to infer the resulting post-intervention distribution, denoted by Px(v), 3 from
the pre-intervention distribution P (v).

The standard reading of post-interventional probabilities invokes a mutilation of
the DAG G, cutting off incoming arrows to the manipulated variables and leads to
a “truncated product” formula [Pearl, 1993], also known as “manipulation theorem”

? This work was supported in parts by National Institutes of Health #1R01 LM009961-01, Na-
tional Science Foundation #IIS-0914211 and #IIS-1018922, and Office of Naval Research
#N000-14-09-1-0665 and #N00014-10-1-0933.

3 [Pearl, 2000] used the notation P (v | set(t)), P (v | do(t)), or P (v | t̂) for the post-
intervention distribution, while [Lauritzen, 1999] used P (v ‖ t).



[Spirtes et al., 1993] and “G-computation formula” [Robins, 1986]. A local charac-
terization of CBNs invoking the notion of modularity was presented in [Pearl, 2000,
p.24] and will be shown here to imply as well as to be implied by the truncated prod-
uct formula. This characterization requires the network builder to judge whether the
conditional probability P (Y | PAy) for each parents-child family remains invariant
under interventions outside this family. Whereas the “truncated product” formula com-
putes post-intervention from pre-intervention probabilities, given a correctly specified
CBN, the local condition assists the model builder in constructing a correctly speci-
fied CBN. It instructs the modeller to focus on each parent-child family separately and
judge whether the parent set is sufficiently rich so as to “shield” the child variable from
“foreign” interventions.

A second type of local characterization treated in this paper gives causal meaning
to individual arrows in the graph or, more accurately, to its missing arrows. These con-
ditions instruct the modeller to focus on non-adjacent pairs of nodes in the DAG and
judge whether it is justified to assume that there is no (direct) causal effect between the
corresponding variables. Two such conditions are formulated; the first requires that any
variable be ”shielded” from the combined influence of its non-neighbours once we hold
its parents constant; the second requires that for every non-adjacent pair in the graph,
one of the variables in the pair to be “shielded” from the influence of the other, holding
every other variable constant (ceteris paribus).

From a philosophical perspective, these characterizations define the empirical con-
tent of a CBN since, in principle, each of these assumptions can be tested by controlled
experiments and, if any fails, we know that the DAG structure is not a faithful repre-
sentation of the causal forces in the domain, and will fail to correctly predict the effects
of some interventions. From a practical viewpoint, however, the main utility of the con-
ditions established in this paper lies in their guide to model builders, for they permit
the modeller to focus judgement on local aspects of the the model and ensure that the
sum total of those judgements be consistent with one’s knowledge and all predictions,
likewise, will cohere with that knowledge.

In several ways the conditions introduced in this paper echo the global, local, and
pairwise conditions that characterize directed Markov random fields [Pearl, 1988; Lau-
ritzen, 1996]. The global condition requires that every d-separation condition in the
DAG be confirmed by a corresponding conditional independence condition in the prob-
ability distribution. The local Markov condition requires that every variable be indepen-
dent of its non descendants, conditional on its parents. Finally, the pairwise condition
requires that every pair of variables be independent conditional on all other variables
in the graph. The equivalence of the three conditions has been established by several
authors [Pearl and Verma, 1987; Pearl, 1988; Geiger et al., 1990; Lauritzen, 1996]. Our
characterization will differ of course in its semantics, since our notion of “dependence”
is causal; it is similar nevertheless in its attempt to replace global with local conditions
for the sake of facilitating judgement of coherence.

[Tian and Pearl, 2002] provides another characterization of causal Bayesian net-
works with respect to three norms of coherence called Effectiveness, Markov and Re-
cursiveness, and showed their use in learning and identification when the causal graph
is not known in advance. This characterization relies on equalities among products of



probabilities under different interventions and lacks therefore the qualitative guidance
needed for constructing the network.

The rest of the paper is organized as follows. In Section 2, we introduce the basic
concepts, and present the standard global and local definitions of CBNs together with
discussion of their features. In Section 3, we prove the equivalence between these two
definitions. In Section 4, we introduce two new definitions which explicitly interpret
the missing links in the graph as representing absence of causal influence. In Section 5,
we prove the equivalence between these definitions and the previous ones. Finally, we
provide concluding remarks in Section 6.

2 Causal Bayesian networks and interventions

The notion of intervention and causality are tightly connected. Interventions are usually
interpreted as an external agent setting a variable to a certain level (e.g., treatment),
which contrasts with an agent just passively observing variables’ levels.

The dichotomy between observing and intervening is extensively studied in the lit-
erature [Pearl, 1994; Lindley, 2002; Pearl, 2009, pp. 384-387] , and one example of its
utilization is in the context of randomized clinical trials. It is known that performing
the trial (intervening), and then collecting the underlying data is equivalent to applying
the treatment uniformly over the entire population. This class of experiments is entirely
different from simply collecting passive census data, from which no causal information
can be obtained.

The concept of intervention precedes any graphical notion. We consider here the
most elementary kind of intervention, that is, the atomic one, where a set X of variables
is fixed to some constant X = x. All the probabilistic and causal information about a
set of variables V is encoded in a collection of interventional distributions over V, of
which the distribution associated with no intervention (also called pre-intervention or
observational distribution) is a special case.

Definition 1 (Set of interventional distributions). Let P (v) be a probability distribu-
tion over a set V of variables, and let Px(v) denote the distribution resulting from the
intervention do(X = x) that sets a subset X of variables to constant x. Denote by P∗
the set of all interventional distributions Px(v),X ⊆ V , including P (v), which repre-
sents no intervention (i.e., X = ∅). We assume that P∗ satisfies the following condition
for all X ⊆ V:

i. [Effectiveness] Px(vi) = 1, for all Vi ∈ X whenever vi is consistent with X = x;

The space of all interventional distributions can be arbitrary large and complex,
therefore we seek formal schemes to parsimoniously represent the set of such distribu-
tions without being required to explicitly list all of them. It is remarkable that a single
graph can represent the sum total all interventional distributions in such a compact and
convenient way. This compactness however means that the interventional distributions
are not arbitrary but highly structured. In other words, they are constrained by one an-
other through a set of constraints that forces one interventional distribution to share
properties with another. Our goal is to find meaningful and economical representations



of these constraints by identifying their ”basis”, namely, a minimal set of constraints
that imply all the others.

This exercise is similar in many ways to the one conducted in the 1980’s on or-
dinary Bayes netwroks [Pearl, 1988] where an economical basis was sought for the
set of observational distributions represented in a DAG. Moving from probabilistic to
causal Bayesian network will entail encoding of both probabilistic and interventional
information by a single basis.

Formally, a causal Bayesian network (also known as a Markovian model) con-
sists of two mathematical objects: (i) a DAG G, called a causal graph, over a set
V = {V1, ..., Vn} of vertices, and (ii) a probability distribution P (v), over the set
V of discrete variables that correspond to the vertices in G. The interpretation of the
underlying graph has two components, one probabilistic and another causal, and we
discuss in turn global and local characterizations of these two aspects/components.

2.1 Global characterization

We begin by reviewing the global conditions that provide an interpretation for the causal
Bayesian networks. 4

The probabilistic interpretation specifies that the full joint distribution is given by
the product

P (v) =
∏

i

P (vi | pai) (1)

where pai are (assignments of values to) the parents of variables Vi in G.
The causal interpretation is based on a global compatibility condition, which makes

explicit the joint post-intervention distribution under any arbitrary intervention, and
makes a parallel to the full factorization of the (pre-interventional) probabilistic inter-
pretation. This condition states that any intervention is associated with the removal of
the terms corresponding to the variables under intervention, reducing the product given
by the expression in eq. (1) to the so called “truncated product” formula.

This operation is formalized in the following definition.

Definition 2 (Global causal condition [Pearl, 2000]). A DAG G is said to be globally
compatible with a set of interventional distributions P∗ if and only if the distribution
Px(v) resulting from the intervention do(X = x) is given by the following expression:

Px(v) =
{∏

{i|Vi 6∈X} P (vi | pai) v consistent with x.
0 otherwise.

(2)

Eq. (2) is known as the truncated factorization product, since it has the factors cor-
responding to the manipulated variables “removed”. This formula can also be found

4 A more refined interpretation, called functional, is also common [Pearl, 2000], which, in addi-
tion to interventions, supports counterfactual readings. The functional interpretation assumes
deterministic functional relationships between variables in the model, some of which may be
unobserved. Complete axiomatizations of deterministic counterfactual relations are given in
[Galles and Pearl, 1998; Halpern, 1998].



in the literature under the name of “manipulation theorem” [Spirtes et al., 1993] and
is implicit in the “G-computation formula” [Robins, 1986]. Even when the graph is
not available in its entirety, knowledge of the parents of each manipulated variable is
sufficient for computing post-intervention from the preintervention distributions.

2.2 Local characterization

The truncated product is effective in computing post-interventional distributions but of-
fers little help in the process of constructing the causal graph from judgemental knowl-
edge. We next present a characterization that explicates a set of local assumptions lead-
ing to the global condition. Since the two definitions are syntactically very different, it
is required to prove that they are (logically) equivalent.

The local characterization of causal Bayesian networks also consists of a DAG
G and a probability distribution over V, and the probabilistic interpretation [Pearl,
1988] in this characterization views G as representing conditional independence re-
strictions on P : each variable is independent of all its non-descendants given its parents
in the graph. This property is known as the Markov condition, and can characterize the
Bayesian network absent of any causal reading. Interestingly, the collection of indepen-
dences assertions formed in this way suffices to derive the global assertion in eq. (1),
and vice versa.

Worth to remark that this local characterization is most useful in constructing Bayesian
networks, because selecting as parents the “direct causes” of a given variable automat-
ically satisfies the local conditional independence conditions. On the other hand, the
(probabilistic) global semantics leads directly to a variety of algorithms for reasoning.

More interestingly, the arrows in the graph G can be viewed as representing po-
tential causal influences between the corresponding variables, and the factorization of
eq. (1) still holds, but now the factors are further assumed to represent autonomous
data-generation processes. That is, each family conditional probability P (vi | pai)
represents a stochastic process by which the values of Vi are assigned in response to
the values pai (previously chosen for Vi’s parents), and the stochastic variation of this
assignment is assumed independent of the variations in all other assignments in the
model.

This interpretation implies all conditional independence relations of the graph (dic-
tated by Markov), and follows from two facts: (1) when we fix all parents, the only
source of randomness for each variable is the stochastic variation pointing to the nodes
5; (2) the stochastic variations are independent among themselves, which implies that
each variable is independent of all its non-descendents.

This fact together with the additional assumption known as modularity, i.e., each
assignment process remains invariant to possible changes in the assignments processes
that govern other variables in the system, enable us to predict the effects of interven-
tions, whenever interventions are described as specific modification of some factors in
the product of eq. (1).

Note that the truncated factorization of the global definition follows trivially from
this interpretation, because assuming modularity the post-intervention probabilitiesP (vi |

5 In the structural interpretation, they are represented by the error terms [Pearl, 2000, Ch. 7].



pai) corresponding to variables inX are either 1 or 0, while those corresponding to un-
manipulated variables remain unaltered.6

In order to formally capture the idea of invariance of the autonomous mechanism
for each family entailed by the local characterization, the following definition encodes
such feature facilitating subsequent discussions.

Definition 3 (Conditional invariance (CInv)). We say that Y is conditionally invari-
ant with respect to X given Z, denoted (Y ⊥⊥ci X | Z)P∗ , if intervening on X does not
change the conditional distribution of Y given Z = z, i.e., ∀x, y, z, Px(y | z) = P (y |
z).

We view CInv relations as the causal image of conditional independence (or simply
CInd) relations, and a causal Baysian network as as representing both. Recast in terms
of conditional invariance, [Pearl, 2000] proposed the following local definition of causal
Bayesian networks:

Definition 4 (Modular causal condition dbPearl, 2000, p.24ec). A DAG G is said to
be locally compatible with a set of interventional distributions P∗ if and only if the
following conditions hold for every Px ∈ P∗:

i. [Markov] Px(v) is Markov relative to G;
ii. [Modularity] (Vi ⊥⊥ci X | PAi)P∗ , for all Vi /∈ X whenever pai is consistent with

X = x. 7

In summary, the two definitions of CBNs emphasize different aspects of the causal
model; Definition 4 ensures that each conditional probability P (vi | pai) (locally) re-
mains invariant under interventions that do not include directly Vi, while Definition 2
ensures that each manipulated variable is not influenced by its previous parents (before
the manipulation), and every other variable is governed by its pre-interventional pro-
cess. Because the latter invokes theoretical conditions on the data-generating process,
it is not directly testable, and the question whether a given implemented intervention
conforms to an investigator’s intention (e.g., no side effects) is discernible only through
the testable properties of the truncated product formula (2). Definition 4 provides in
essence a series of local tests for Eq. (2), and the equivalence between the two (Theo-
rem 1 below) ensures that all empirically testable properties of Eq. (2) are covered by
the local tests provided by Definition 4.

2.3 Example

Figure 1 illustrates a simple yet typical causal Bayesian network. It describes the causal
relationships among the season of the year (X1), whether it is raining (X2), whether the
sprinkler is on (X3), whether the pavement is wet (X4), and whether the pavement is
slippery (X5).

6 In the literature, the other side of the implication is implicitly assumed to hold, but it is not
immediately obvious, and it is object of our formal analysis in the next section.

7 Explicitly, modularity states: P (vi|pai, do(s)) = P (vi|pai) for any set S of variables disjoint
of {Vi,PAi}.



Fig. 1. A causal Bayesian network representing influence among five variables.

In the probabilistic interpretation given by the global definition, we can also use eq.
(1) and write the full joint distribution:

P (x1, x2, x3, x4, x5) = P (x1)P (x2 | x1)P (x3 | x1)P (x4 | x2, x3)P (x5 | x4) (3)

Equivalently, the probabilistic interpretation entailed by the modular characteriza-
tion induces the joint distribution respecting the constraints of conditional indepen-
dences entailed by the graph through the underlying families. For example, P (x4 |
x2, x3) is the probability of wetness given the values of sprinkler and rain, and it is
independent of the value of season.

Nevertheless, both probabilistic interpretations say nothing about what will happen
if a certain intervention occurs – i.e., a certain agent interact with the system and exter-
nally change the value of a certain variable (also known as action). For example, what if
I turn the sprinkler on? What effect does that have on the season, or on the connection
between wetness and slipperness?

The causal interpretation, intuitively speaking, adds the idea that whenever the
sprinkler node is set to X3 = on, so the event (X3 = on) has all mass of probabil-
ity, which is clearly equivalent to as if the causal link between the season X1 and the
sprinkler X3 is removed8. Assuming that all other causal links and conditional prob-
abilities remain intact in the model, which is the less intrusive possible assumption to
make, the new model that generates the process is given by the equation:

P (x1, x2, x4, x5 | do(X3 = x3)) = P (x1)P (x2 | x1)P (x4 | x2, X3 = on)P (x5 | x4)

where we informally demonstrate the semantic content of the do operator (also known
as the interventional operator).

As another point, consider the problem of inferring the causal structure with two
variables such that V = {F, S}, and in which F stands for “Fire”, and S stands for
“Smoke”. If we consider only the probabilistic interpretation, both structures, G1 =
{F → S} and G2 = {S → F}, are equivalent, and both networks are equally capable

8 This can be shown more formally without difficulties.



of representing any joint distribution over these two variables. The global interpreta-
tion is hard to apply in this construction stage, but the modular interpretation is useful
here. To see why, the definition helps one in choosing the causal network G1 over G2,
because they encode different mechanisms, and so formally different responses under
intervention – notice that there is a directed edge from S to F in G2, but not in G1. The
modular condition as a collection of autonomous mechanisms that may be reconfigured
locally by interventions, with the correspondingly local changes in the model, rejects
the second network G2 based on our understanding of the world. (A more transparent
reasoning that makes us to prefer structure G1 over G2 should be even clearer when we
discuss about missing-links in Section 4. )

3 The equivalence between the local and global definitions

We prove next that the local and global definitions of causal Bayesian networks are
equivalent. To the best of our knowledge, the proof of equivalence has not been pub-
lished before.

Theorem 1 (Equivalence between local and global compatibility). Let G be a DAG
and P∗ a set of interventional distributions, the following statements are equivalent:

i. G is locally compatible with P∗
ii. G is globally compatible with P∗

Proof. (Definition 4⇒ Definition 2)
Given an intervention do(X = x), X ⊆ V, assume that conditions 4:(i-ii) are

satisfied. For any arbitrary instantiation v of variables V, consistent with X = x, we
can express Px(v) as

Px(v)
def.4:(i)

=
∏

i

Px(vi | pai)

=
∏

{i|vi∈X}

Px(vi | pai)
∏

{i|vi /∈X}

Px(vi | pai)

effectiveness=
∏

{i|vi /∈X}

Px(vi | pai)

def.4:(ii)
=

∏
{i|vi /∈X}

P (vi | pai) (4)

which is the truncated product as desired.
(Definition 2⇒ Definition 4)
We assume that the truncated factorization holds, i.e., the distribution Px(v) result-

ing from any intervention do(X = x) can be computed as eq. (2).
To prove effectiveness, consider an intervention do(X = x), and let vi ∈ X. Let

Dom(vi) = {vi1, vi2, ..., vim} be the domain of variable Vi, with only one of those
values consistent with X = x. Since Px(v) is a probability distribution, we must have



∑
j Px(Vi = vij) = 1. According to eq. (2), all terms not consistent with X = x have

probability zero, and thus we obtain Px(vi) = 1, vi consistent with X = x.
To show Definition 4:(ii), we consider an ordering π : (v1, ..., vn) of the variables,

consistent with the graph G induced by the truncated factorization with no intervention
P (v) =

∏
i P (vi | pai). Now, given an intervention do(X = x)

Px(vi | pai) =
Px(vi,pai)
Px(pai)

marginal.
=

∑
vj /∈{Vi,PAi} Px(v)∑

vj /∈{PAi} Px(v)

eq.(2)
=

∑
vj /∈{Vi,PAi,X}

∏
vk /∈X P (vk | pak)∑

vj /∈{PAi,X}
∏

vk /∈X P (vk | pak)

= P (vi | pai)×∑
vj /∈{Vi,PAi,X}

∏
vk /∈X,k 6=i P (vk | pak)∑

vj /∈{PAi,X}
∏

vk /∈X P (vk | pak)

(5)

The last step is due to the fact that variables in {Vi,PAi} do not appear in the sum-
mations in the numerator. Rewriting the numerator, breaking it in relation to variables
before and after vi, we obtain ∑

vj /∈{Vi,PAi,X}

∏
vk /∈X
k 6=i

P (vk | pak) =

∑
vj /∈{PAi,X}

j<i

∏
vk /∈X
k<i

P (vk | pak)
∑
vj /∈X
j>i

∏
vk /∈X
k>i

P (vk | pak)

(6)

Note that
∑

vj /∈X
j>i

∏
vk /∈X
k>i

P (vk | pak) = 1 because all Vj > Vi appear in the summa-

tion. Thus, we obtain∑
vj /∈{Vi,PAi,X}

∏
vk /∈X

P (vk | pak) =
∑

vj /∈{PAi,X}
j<i

∏
vk /∈X
k<i

P (vk | pak) (7)

Similarly for the denominator,∑
vj /∈{PAi,X}

∏
vk /∈X

P (vk | pak) =
∑

vj /∈{PAi,X}
j<i

∏
vk /∈X
k<i

P (vk | pak) (8)

Observe that eqs. (7) and (8) are identical, equation (5) reduces to Px(vi | pai) =
P (vi | pai) as desired.



To show Definition 4:(i), we first use the truncated factorization

Px(v)
eq.(2)
=

∏
{i,vi /∈X}

P (vi | pai)

def.4:(ii)
=

∏
{i,vi /∈X}

Px(vi | pai)

effectiveness=
∏

i

Px(vi | pai) (9)

Finally, def. 4:(i) follows from the definition of Markov compatibility (definition 1.2.2
in [Pearl, 2000]).

4 Alternative characterizations of Causal Bayesian Networks

In this section we propose an interpretation of CBNs which focuses on the absence of
edges in the causal graph, contrasting with the previous interpretation which focuses on
the presence of edges in the causal graph. I.e., now we consider that the missing-links
are relevant in the semantic perspective, which encode some sort of absence of causal
influence (to be formally defined later on).

Interestingly, the idea that the missing-links carry meaningful information at a higher
interpretation can be traced from much earlier. [Pearl, 1988] already discussed, in the
pure probabilistic setting, when the absence of edges gives one clue about the inexis-
tence of probabilistic dependence – or more directly, gives insight about the existence
of probabilistic irrelevance (usually called conditional independence). This has been
extensively studied, axiomatized and well understood since 80’s.

Specifically, a pair of variables that are not connected by a link in the graph can
be in one of the two possible exclusive conditions. First, if both variables are in some
ancestral relation (one is ancestor of the other, or they have a common ancestor), then
there exists a third set of variables that makes them conditionally independent in the
probabilistically sense. Otherwise (i.e. they are not in an ancestral relation), the vari-
ables are simply marginally independent.9 Thus we can see that the absence of an edge
between a pair of nodes is conveying some strong qualitative claim about the relation-
ships of the variables. Our goal in this section is to unfold the same kind of relation
tailored specifically to the causal domain.

4.1 Missing-link characterization

Let us study the causal intuition analogous to what was just discussed, and consider
again a pair of variables X and Y not connected by an edge, and the following two
non-exclusive conditions. First, X is not an ancestor of Y , and second X does not have
a directed edge going towards Y . In the former case, interventions on X do not affect
Y at all, independently of what happens with any other variables in the system. In the

9 It is possible to formally show both of these claims, but given that they are orthogonal to our
goal here, we assume that it suffices for this context to just informally state them.



latter case, an intervention on X may affect Y , but there exists a set of variables that
can break this “connection,” which in the former case is the empty set.

To formally capture the intuition behind this type of causal invariance, (the idea of)
“breaking” causal influence, we introduce the following relation over triplets.

Definition 5 (Interventional invariance (IInv)). We say that Y is interventionally in-
variant with respect to X fixing Z, denoted (Y⊥⊥iiX | Z)P∗ , if intervening on X does
not change the interventional distribution of Y given do(Z = z), i.e., ∀x, y, z, Px,z(y) =
Pz(y).

Now we can start envisioning CBNs through two orthogonal dimensions based on
the just defined IInv relation. As discussed above, this definition yields an analogous
claim of invariance – interventional-causal – contrasting with its probabilistic counter-
part, CInd relation. Further note that the relations CInv and IInv (definitions 3 and 5)
represent different types of invariance claims, the former relates to irrelevance given a
certain observation, while the latter relates to irrelevance given simply another inter-
vention. We are in both cases talking about breaking the causal flow and bringing about
a causal invariance claim. (We discuss more about this issue subsequently in the paper.)

We are ready to formally state the definition that explicitly builds on IInv relation
over the missing edges in the graph.

Definition 6 (Missing-link causal condition). A DAG G is said to be missing-link
compatible with a set of interventional distributions P∗ if and only if the following
conditions hold:

i. [Markov] ∀X ⊆ V, Px(v) is Markov relative to G;
ii. [Missing-link] ∀X ⊂ V, Y ∈ V,S ⊂ V, (Y ⊥⊥ii X | S,PAy) whenever there is

no arrow from X to Y in G, pay is consistent with {X = x,S = s} and X, {Y },S
are disjoint.

iii. [Parents do/see] ∀Y ∈ V,X ⊂ V, Px,pay(y) = Px(y | pay) whenever pay is
consistent with X = x and X, {Y } are disjoint.

Several remarks are worth to make at this point.
Remark 1: The missing-link condition 6:(ii) can be read as when we set X to some
value while keeping the variables S ∪ PAy constant, the marginal distribution of Y
remains unaltered, independent of the value of X, whenever there is no edge between
X and Y . That is, an intervention on X does not change Y ’s distribution while holding
constant its parents.

Remark 2: In addition to the missing-link condition, condition 6:(iii) describes the re-
lationship inside each family, i.e., the effect on Y should be the same whether observing
(seeing) or intervening (doing) on its parents PAy. That is, the missing-link condition
has to be supplemented to be able to fully characterize causal Bayesian networks –
condition 6:(iii) is necessary to describe the relationship between variables when there
exists a link between them.

To illustrate this fact, consider a DAG G with only two binary variables, A and
B, and an edge from A to B. Without condition 6:(iii), the interventional distribution
Pa(b) is unconstrained, which allows Pa(b) 6= P (b | a). However, Definition 4 implies



Pa(b) = P (b | a) since A is the only parent of B, and condition 6:(iii) ensures that this
equality will hold.

Remark 3: The CInd claims encoded by the CBNs are of the form (Y ⊥⊥ NDY |
PAy)P∗ , where NDY represents the set of non-descendants of Y , and the IInv claims
are of the form (Y ⊥⊥ii X | PAy,S)P∗ , ∀X,S. In both cases, PAy is required to
separate Y from other variables. In the observational case Y is separated from its non-
descendants, while in the experimental one it is separated from all other variables. This
is so because in the experimental case, an intervention on a descendant of a variable Z
cannot influence Z (as is easily shown by d-separation in the mutilated graph).

Interestingly, the IInv relation as used in the definition impose strong invariance
claims, and can be seen as sort of causal Markov blankets, making parallel with its
probabilistically counterpart that separates each node from all others in the network.

Remark 4: More importantly, we argue that the missing-link definition is more intuitive
than the previous ones because it relies exclusively on causal relationships in terms of
which the bulk of scientific knowledge is encoded. This is so because CInv as well
as CInd relations are subject to the phenomenon known as “explaining away” [Pearl,
1988], which can make the analysis of the data much more involved, while this does
happen in the IInv relation.

For instance, it is quite possible for two unrelated variables to become related upon
conditioning on a third variable, a phenomenon which surprises many people and is
even viewed as an optical illusion.

More concretely, consider the graph G = {A → B,C → B,C → D}, and from
modularity follows that PA(D) = P (D). But it also follows that PA(D | B) 6= PA(D),
which looks contrived given that A should not be able to “causally affect” D given the
topology of the graph, and our very first intuition about causality. It can be cumbersome
to judge and systematically perform reasoning in terms of CInvs.

4.2 Pairwise characterization

The missing-link definition requires some non-trivial knowledge about the parent sets,
which is not always available during the network construction phase. In this Section,
we still consider the missing-links but in a different perspective, extending the previous
definition towards a pairwise condition based on the more elementary notion of zero
direct effect, which is even more aligned with our intuition about causal relationships,
especially these emanating from typical experiments.

We want to capture the intuition behind the pairwise basic causal principle known
as ceteris paribus, which says that whenever all variables in the system are fixed but X
and Y (the universe is kept constant), if one “wriggles” X and Y does not “feel” these
variations emanating from X , it is possible to conclude that there is no “direct causal
effect” fromX on Y . This notion conveys a different kind of claim that the one encoded
in the previous missing-link condition, and now it is required that all variables in the
system are held fixed and not only some subset of it. It turns out that both definitions
are equivalent, to be shown next. First consider the following definition that formalizes
this notion of zero direct effect.



Definition 7 (Zero direct effect). Let X ⊂ V, Y ∈ V and SXY = V − {X,Y }. 10

We say that X has zero direct effect on Y , denoted ZDE(X, Y ), if

(Y ⊥⊥ii X | Sxy)

Now we are ready to incorporate this concept to CBNs as the following definition pur-
ports.

Definition 8 (Pairwise causal condition). A DAG G is pairwise compatible with a set
of interventional distributions P∗ if the following conditions hold:

i. [Markov] ∀X ⊆ V, Px(v) is Markov relative to G;
ii. [ZDE] ∀X,Y ∈ V, ZDE(X,Y ) whenever there is no arrow from X to Y in G;
iii. [Additivity] ∀X ⊂ V, Z, Y ∈ V, ZDE(X, Y ) and ZDE(Z, Y ) ⇒ ZDE(X ∪
{Z}, Y ) ;

iv. [Parents do/see] ∀Y ∈ V,X ⊂ V, Px,pay(y) = Px(y | pay) whenever pay is
consistent with X = x and X, {Y } are disjoint.

The main feature of Definition 8 resides in the pairwise condition (ii), which implies
that varying X from x to x′ while keeping all other variables constant does not change
Y ’s distribution – this corresponds to an ideal experiment in which all variables are kept
constant and the scientist “wriggles” one variable (or set) at a time, and contemplates
how the target variable reacts (i.e., ceteris paribus).

This condition is supplemented by condition 8:(iii), which has also an intuitive ap-
peal: if experiments show that separate interventions on X and Z have no direct effect
on Y , then a joint intervention on X and Z should also have no direct effect on Y (ex-
cept for a set of measure zero). It is tempting to believe that this condition automatically
holds, which usually happens in practice but still have to be formally contemplated for
technical reasons. Conditions (i) and (iv) are the same as in the missing-link definition.

One distinct feature of this new definition emerges when we test whether a given
pair < G,P∗ > is compatible. First, the modularity condition of Definition 3 requires
that each family is invariant to interventions on all subsets of elements “outside” the
family, which is combinatorially explosive and rarely feasible to evaluate in practice. So
the investigator is by her own without any normative procedure to help in constructing
the structure of the network.

In contrast, condition (ii) involves singleton pairwise experiments which are easier
to envision and perform. Put another way, when this pairwise condition does not hold,
it implies the existence of an edge between the respective pair of nodes thus providing
fewer and easier experiments in testing the structure of the graph. Further, one should
test the Markov compatibility of P and the new induced graph G.

We finally state our main result that all three local definitions of causal Bayesian
networks given so far are equivalent.

Theorem 2. LetG be a DAG and P∗ a set of interventional distributions, the following
statements are equivalent:

i. G is locally compatible with P∗
10 We use {A,B} to denote the union of A and B.



ii. G is missing-link compatible with P∗
iii. G is ZDE compatible with P∗

Note that even though the notion of “parents set” is less attached to modularity and
invariance, it is still invoked by the last two compatibility conditions. Therefore we
believe that it is an essential conceptual element in the definition of causal Bayesian
networks.

The following result follows directly from Theorems 1 and 2.

Corollary 1. All local and the global definitions of causal Bayesian networks are equiv-
alent.

5 Equivalence between the local definitions of causal Bayesian
network

Definition 9 (Strong Markov Condition). Each variable is interventionally indepen-
dent of every other variable after fixing its parents. That is, for all Y ∈ V and X ⊆
V − {Y,PAY} we have

Px,pay(y) = Ppay(y), for all x, y,pay (10)

5.1 [ZDE-CBN] ⇒ [local-CBN]

In this subsection, we assume that the four conditions in the definition of the Zero direct
effect causal Bayesian network are valid for a given graph G and set P∗.

The first result simply extends the Zero direct effect semantics to subset of variables:

Lemma 1. Zde(W, Y ) holds for every W ⊆ V − {Y,PAY}.

Proof. Note that W does not contain parents of Y . Then, [ZDE] gives that, for ev-
ery U in W, we have Zde(U, Y ). But then, it follows directly by [Additivity], that
Zde(W, Y ) holds.

The next Lemma shows that the strong Markov condition is also valid for G and P∗.

Lemma 2. For all Y ∈ V and X ⊂ V − {Y,PAY}, the relation (Y ⊥⊥ii X | PAY)
holds.

Proof. Let T1 = V − {Y,PAY}, and note that SY T1 = PAY. Since T1 does not
have parents of Y , by Lemma 1, we have Zde(T1, Y ), that is

Pt1,syt1
(y) = Psyt1

(y) = Ppay(y)

Now, let T2 = V − {Y,X,PAY}, and note that SY T2 = {X,PAY}. Since T2 does
not have parents of Y , by Lemma 1, we have Zde(T2, Y ), that is

Pt2,syt2
(y) = Psyt2

(y) = Px,pay(y)

Since (T1 ∪ SY T1) = (T2 ∪ SY T2), we obtain

Px,pay(y) = Ppay(y)



Lemma 3. The condition of [Modularity] is valid for G and P∗.

Proof. Fix a variable Y and X ⊂ V − {Y }. We need to show that

Px(y | pay) = P (y | pay)

Applying the condition [Parents do/see] to both sides in the equation above, we obtain

Px,pay(y) = Ppay(y)

and we immediately recognize here a claim of the strong Markov condition.

Finally, the observation that the condition [Markov] is present in both definitions, we
complete the proof that G is a local causal Bayesian network for P∗.

5.2 [local-CBN] ⇒ [ZDE-CBN]

In this subsection, we assume that the two conditions in the definition of the local causal
Bayesian network are valid for a given graph G and set P∗.

Lemma 4. For all Y ∈ V and X ⊂ V − {Y,PAY} we have

Px,pay(pay | y) = 1

whenever Px,pay(y) > 0, and pay is compatible with x.

Proof. This is an immediate consequence of the property of [Effectiveness], in the def-
inition of P∗.

Lemma 5. The condition [Parents do/see] is valid for G and P∗.

Proof. Fix a variable X ⊂ V and consider an arbitrary instantiation v of variables V,
and pay consistent with x.

Consider the intervention do(X = x), and given the condition [Modularity], Px(y |
pay) = P (y | pay), Y /∈ X. Now consider the intervention do(X = x,PAY = pay),
and again by the condition [Modularity] Px,pay(y | pay) = P (y | pay). The r.h.s.
coincide, therefore

Px(y | pay) = Px,pay(y | pay)

Bayes thm.
=

Px,pay(pay | y)Px,pay(y)
Px,pay(pay)

effectiveness= Px,pay(pay | y)Px,pay(y)
(11)

We consider two cases. If Px,pay(y) > 0, by lemma 4 Px,pay(pay | y) = 1, and then
substituting back in eq. (11) we obtain Px(y | pay) = Px,pay(y). If Px,pay(y) = 0,
substituting back in eq. (11) we obtain Px(y | pay) = Px,pay(pay | y) ∗ 0 = 0, and
then Px(y | pay) = Px,pay(y).



Lemma 6. The condition [ZDE] is valid for G and P∗.

Proof. Fix Y,X ∈ V such that there is no arrow pointing from X to Y . Let SXY =
V − {X,Y }. We want to show

Px,sxy(y) = Psxy(y), for all x, y, sxy

Note that PAy ⊆ Sxy, and then by the [Parent do/see] condition we have to show

Px,s′xy
(y | pay) = Ps′xy

(y | pay)

where S′xy = Sxy − {PAy}.
The condition [Modularity] implies that Px,s′xy

(y | pay) = P (y | pay). Again
by [Modularity], we obtain P (y | pay) = Ps′xy

(y | pay). Applying [Parents do/see],
[ZDE] follows.

Lemma 7. The condition [Additivity] is valid for G and P∗.

Proof. Fix X ⊂ V and Z, Y ∈ V. Let Sxzy = V − {X, Y, Z}. Assume Zde(X, Y )
and Zde(Z, Y ). For the sake of contradiction, suppose that Zde(X ∪ {Z}, Y ) is false.

We can rewrite it based on the law of total probability,

∑
pay

P{x,z},sxzy
(y | pay)P{x,z},sxzy

(pay) 6=

∑
pay

Psxzy(y | pay)Psxzy(pay)

Notice that there is only one configuration of pay consistent with sxzy in both sides
because PAy ⊆ Sxzy and [Effectiveness]. Then, this equation reduces to

P{x,z},sxzy
(y | pay) 6=

Psxzy(y | pay)

We reach a contradiction given [Modularity].

The proof for the Missing-link CBN is analogous for the just shown.



6 Conclusions

We first proved the equivalence between two characterizations of Causal Bayesian Net-
works, one local, based on the modularity condition, and another global, based on
the truncated product formula. We then introduced two alternative characterizations
of CBNs, proved their equivalence with the previous ones, and showed that some of
their features make the tasks of empirically testing the network structure, as well as
judgmentally assessing its plausibility more manageable.

Another way to look at the results of our analysis is in terms of the information
content of CBNs, that is, what constraints a given CBN imposes on both observational
and experimental findings.

For a probabilistic Bayes network the answer is simple and is given by the set of
conditional independences that are imposed by the d-separation criterion. For a CBN,
the truncated product formula (2) imposes conditional independencies on any interven-
tional distribution Px(v). But this does not sum up the entire information content of a
CBN. The truncated product formula further tells us that the relationship between any
two interventional distributions, say Px(v) and Px′(v), is not entirely arbitrary; the two
distributions constrain each other in various ways. For example, the conditional distri-
butions Px(vi|pai) and Px′(vi|pai) must be the same for any unmanipulated family.
Or, as another example, for any CBN we have the inequality: Px(y) ≥ P (x, y) [Tian et
al., 2006].

A natural question to ask is whether there exists a representation that encodes all
constraints of a given type. The modularity property of Definition 4 constitutes such a
representation, and so do the missing-link and the pairwise definitions. Each encodes
constraints of a given type and our equivalence Theorems imply that all constraints en-
coded by one representation can be reconstructed from the other representation without
loss of information.
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