
Counting Markov Equivalence Classes by Number of Immoralities

Adityanarayanan Radhakrishnan
Laboratory for Information and

Decision Systems, and Institute for
Data, Systems and Society

Massachusetts Institute of Technology
Cambridge, MA, USA

Liam Solus
Department of Mathematics

KTH Royal Institute of Technology
Stockholm, Sweden

Caroline Uhler
Laboratory for Information and

Decision Systems, and Institute for
Data, Systems and Society

Massachusetts Institute of Technology
Cambridge, MA, USA

Abstract

Two directed acyclic graphs (DAGs) are called
Markov equivalent if and only if they have the
same underlying undirected graph (i.e. skele-
ton) and the same set of immoralities. When
using observational data alone and typical
identifiability assumptions, such as faithful-
ness, a DAG model can only be determined
up to Markov equivalence. Therefore, it is de-
sirable to understand the size and number of
Markov equivalence classes (MECs) combina-
torially. In this paper, we address this enu-
merative question using a pair of generating
functions that encode the number and size of
MECs on a skeleton G, and in doing so we
connect this problem to classical problems in
combinatorial optimization. The first generat-
ing function is a graph polynomial that counts
the number of MECs on G by their number of
immoralities. Using connections to the inde-
pendent set problem, we show that computing
a DAG on G with the maximum possible num-
ber of immoralities is NP-hard. The second
generating function counts the MECs on G ac-
cording to their size. Via computer enumera-
tion, we show that this generating function is
distinct for every connected graph on p nodes
for all p ≤ 10.

1 INTRODUCTION

Graphical models based on directed acyclic graphs
(DAGs) are widely used to represent complex causal sys-
tems in applications ranging from computational biol-
ogy to epidemiology, and sociology (Friedman et al.,
2000; Pearl, 2000; Robins et al., 2000; Spirtes et al.,
2001). A DAG entails a set of conditional indepen-
dence (CI) relations through the Markov properties. Two

DAGs are said to be Markov equivalent if they entail the
same CI relations. Verma and Pearl (1992) show that a
Markov equivalence class (MEC) is determined by the
underlying undirected graph (or skeleton) and the place-
ment of immoralities, i.e. induced subgraphs of the form
X → Z ← Y . From observational data alone, a DAG
can only be identified up to Markov equivalence, and it is
therefore important to describe the set of MECs and their
sizes. For instance, if the MECs are large in size, then
causal inference algorithms that operate in the space of
MECs as compared to DAGs could significantly increase
efficiency. In a similar fashion, the general problem of
understanding the size and number of MECs on a given
skeleton is statistically relevant. Causal discovery algo-
rithms such as the PC algorithm (Spirtes et al., 2001) first
learn a skeleton and then orient the edges. If the number
of MECs on the learned skeleton is relatively small, it
may not be necessary to complete the orientation step in
order to determine the true MEC. This paper focuses on
the complexity of deciding the number and size of MECs
on a fixed skeleton.

The literature on the MEC enumeration problem is sur-
prisingly sparse, and it can be summarized in terms of
two important perspectives: (1) enumerate all MECs on
p nodes (as in (Gillespie and Perlman, 2001)), and (2)
enumerate all MECs of a given size (as in (Gillespie,
2006; Steinsky, 2003; Wagner, 2013; He and Yu, 2016)).
The characterization of Markov equivalence of Verma
and Pearl (1992) results in a representation of a MEC
by a graph with directed and undirected edges known as
the essential graph (Andersson et al., 1997) (or cPDAG
(Chickering, 2002) or maximally oriented graph (Meek,
1995)). Gillespie and Perlman (Gillespie et al., 2001)
use this characterization to identify all MECs on p ≤ 10
nodes; namely, they fix a skeleton on p nodes, and then
count the number of ways to compatibly place immoral-
ities within the skeleton. The study of He and Yu (2016)
counts the size of a single MEC in terms of the core
graph of its essential graph. The works (Gillespie, 2006;



Steinsky, 2003; Wagner 2013) give inclusion-exclusion
formulae for MECs of a fixed size by utilizing the struc-
ture of the essential graph. However, since essential
graphs can be complicated, these formulae are only real-
izable for constrained classes of MECs. Namely, (Stein-
sky, 2003) and (Wagner, 2013) only consider MECs of
size one, and (Gillespie, 2006) must fix the undirected
edges of the essential graphs to be enumerated. These
results show that the enumeration of MECs by number
of nodes and size is a difficult problem in general.

A common approach to difficult graphical structure enu-
meration problems is to specify a type of graph for which
to solve the problem. The purpose of this paper is to
study the MEC enumeration problem from this perspec-
tive. This approach is used in classic combinatorial op-
timization problems such as the enumeration of inde-
pendent sets, matchings, and colorings (Ellis-Monaghan
and Merino, 2011; Levit and Mandrescu, 2005). In
each case, it is typical to consider a generating func-
tion P (G;x) :=

∑
k≥0 αk(G)xk, that when evaluated

at x = 1 returns the desired statistic for the graph G.
Such a generating function is called a graph polynomial.
For example, the independence polynomial of G is the
graph polynomial in which αk(G) is the number of inde-
pendent sets of size k in G. Researchers can gain useful
information about the original enumeration problem by
studying the properties and coefficients of a graph poly-
nomial. For instance, the independence polynomial of
G encodes the total number of independent sets (or the
Fibonacci number of G) (Prodinger and Tichy, 1982),
the maximum size of an independent set (or indepen-
dence number of G) (van Lint and Wilson, 2001), and
the number of independent sets of a fixed size (Levit and
Mandrescu, 2005); all of which have been studied exten-
sively. These refined statistics work together to give a
complete understanding of the problem of enumerating
independent sets for G. Here, we are interested in the
combinatorial statistics of a graph G:

(1) M(G), the total number of MECs on G,

(2) m(G), the maximum number of immoralities on G,

(3) mk(G), the number of ways to place exactly k im-
moralities on G, and

(4) M(G)freq := (s1(G), s2(G), . . .), where sk(G) de-
notes the number of MECs on G of size k.

The first three statistics fit together naturally in the graph
polynomial presentation

M(G;x) :=

m(G)∑
k=0

mk(G)xk,

since then M(G; 1) = M(G). Similarly, we can express
the vector M(G)freq as a graph polynomial of the form∑
k≥0 sk(G)xk. However, it is perhaps more natural to

encode the entries of M(G)freq in the arithmetic func-
tion

S(G;x) :=
∑
k≥0

sk(G)

kx
.

We then have that S(G; 0) = M(G) = M(G; 1), and
both generating functions are multiplicative with respect
to disjoint unions of graphs. That is,

M(G tH;X) = M(G;x)M(H;x), and
S(G tH;X) = S(G;x)S(H;x),

where GtH denotes the disjoint union of two graphs G
and H .

We are interested in the complexity of computing the
combinatorial statistics associated to the generating func-
tions M(G;x) and S(G;x). The resulting theorems in-
form the complexity of computing the number and size
of MECs on a fixed skeleton G. Our first main theorem,
proven in Section 2.2, establishes the difficulty of com-
puting a MEC on a skeleton G with many immoralities.

Theorem 1.1. Given an undirected graph G, the prob-
lem of computing a DAG G with skeleton G and m(G)
immoralities is NP-hard.

In analogy to the independence number of G, we call
m(G) the immorality number of G. This number is
natural to consider when one attempts to enumerate the
MECs on G by counting all compatible placements of
immoralities. Here, we use the notion of NP-hardness
as defined in (Chapter 5, Garey and Johnson, 1979). We
will prove Theorem 1.1 in Section 2 via a reduction of
the minimum vertex cover problem. To do so, we first
prove a correspondence between minimum vertex cov-
ers of a given triangle-free graph G and minimum de-
compositions of G into non-overlapping stars, which we
call minimum star decompositions. As with most NP-
hard problems, restricting to special cases can make the
problem tractable. In this case, the connection with mini-
mum star decompositions allows us to compute m(G) in
some special cases. In particular, we can compute m(G)
for triangle-free graphs whose minimum star decompo-
sitions are isomorphic as forests, and we apply this result
to recover m(G) for the complete bipartite graph Kp,p

and some special types of circulant graphs.

Our second complexity result is computer-aided and ob-
servational. In order to study the generating functions
M(G;x) and S(G;x), we developed a computer pro-
gram for the enumeration of the combinatorial statistics
(1), (2), (3), and (4) that expands on the original program



of Gillespie and Perlman (2001). Using this program, we
prove the following intriguing theorem.

Theorem 1.2. The arithmetic generating function
S(G;x) is distinct for every connected graph G on p
nodes for all p ≤ 10.

Theorem 1.2 can be viewed as a complexity result in the
sense that it tells us that recovering the complete set of
statistics M(G)freq for some unknown connected graph
G from observational data alone is equally hard as recov-
ering G itself. In Section 3, we describe our computer
program for the computation of the statistics (1), (2) (3),
and (4), and verify Theorem 1.2.

2 IMMORALITY NUMBERS AND
STAR DECOMPOSITIONS

In this section, we show that computing the immorality
number m(G) of a graph G is an NP-hard problem by
showing that it is a reduction of the problem of comput-
ing minimum vertex covers of G. Recall that a vertex
cover of G is a subset S of vertices of G for which each
edge ofG is incident to some vertex in S. A classic prob-
lem in combinatorial optimization is to identify a vertex
cover of minimum size for a given graph G. Formally
stated, this is the search problem

Problem 2.1. MINIMUM VERTEX COVER

INPUT: An undirected graph G = (V,E).

OUTPUT: A subset C ⊂ V such that for all edges
{u, v} ∈ E either u ∈ C or v ∈ C and |C| is mini-
mized with respect to this property.

The decision version of this problem is called VERTEX
COVER (Karp, 1972) and is stated as follows.

Problem 2.2. VERTEX COVER

INPUT: An undirected graphG = (V,E) and a nonneg-
ative integer k.

PROPERTY: G has a vertex cover of size less than or
equal to k.

A search problem Π is said to be NP-hard if there is a
polynomial time Turing reduction from an NP-complete
Π′ problem to Π (Chapter 5, Garey and Johnson, 1979).
That is, if we are given a polynomial time algorithm A
for solving Π, then there exists a polynomial time al-
gorithm for solving Π′ using A as a hypothetical sub-
routine. In (Poljak, 1974), it is shown that VERTEX
COVER is NP-complete even when restricted to triangle-
free graphs. Moreover, given a polynomial time algo-
rithm for solving MINIMUM VERTEX COVER, we can
certainly derive a polynomial time algorithm to solve

VERTEX COVER (for triangle-free graphs or other-
wise). Thus, MINIMUM VERTEX COVER is NP-hard
for both triangle-free and arbitrary graphs. Analogously,
we consider the following search and decision problems
related to the computation of the immorality number
m(G).

Problem 2.3. MAXIMUM IMMORALITIES

INPUT: An undirected graph G = (V,E).

OUTPUT: A DAG G with skeleton G and m(G) im-
moralities.

Problem 2.4. IMMORALITES

INPUT: An undirected graphG = (V,E) and a nonneg-
ative integer k.

PROPERTY: There is a DAG G with skeleton G having
at least k immoralities.

In the following, we will identify a polynomial time
Turing reduction of MINIMUM VERTEX COVER
to MAXIMUM IMMORALITIES when restricted to
triangle-free graphs. A polynomial time solution to
MAXIMUM IMMORALITIES would trivially yield a
polynomial time solution to the same problem in the
triangle-free case. Since this would in turn solve an
NP-complete problem, we can conclude that the general
instance of MAXIMUM IMMORALITIES is NP-hard.
This will prove Theorem 1.1.

In order to reduce MINIMUM VERTEX COVER to
MAXIMUM IMMORALITIES for triangle-free graphs,
we will utilize a notion of star decompositions of G. We
then use this connection to compute m(G) in the special
cases of the complete bipartite graph Kp,p and a family
of circulant graphs.

2.1 STAR DECOMPOSITIONS

Let G = (V,E) be a connected, undirected graph, and
let Kp,q denote the complete bipartite graph with nodes
partitioned into a collection of size p and a collection of
size q. Recall that a p-star is the complete bipartite graph
K1,p and its center is the unique degree p node. A collec-
tion of stars {S1, . . . , Sk} is called a star decomposition
of G if each Si is a subgraph of G and each edge of G is
an edge of exactly one star in the collection. Our defini-
tion of star decomposition is a bit more general than the
standard notion studied in graph decompositions. The
classic notion of a star decomposition adds the require-
ment that the stars S1, . . . , Sk are all isomorphic to one
another. While the literature on which graphs admit a
star decomposition of this type is quite extensive (Cain,
1974; Cohen and Tarsi, 1991; Ushio et al., 1978), there
is substantially less work relating to the more general no-



tion we use here (Lin and Shyu, 1996).

In the following, the trivial star refers to K1,0, and the
size of a star S is the size of its edge set, which we
denote by |S|. The size of a star decomposition S is
the number of stars in the decomposition, and it is de-
noted |S|. Given a star decomposition S = {S1, . . . , Sk}
let v(S) ∈ Rk denote the vector of the sizes of stars
in S ordered greatest-to-least from left-to-right. So if
|S1| ≥ · · · ≥ |Sk| then v(S) = (|S1|, |S2|, . . . , |Sk|). If
S is a star decomposition of size k with cardinality vec-
tor v(S) ∈ Rk, for m ≥ k we embed v(S) ∈ Rm by ap-
pending zeros to the right end of v(S) ∈ Rk. Notice that
this corresponds to appending trivial stars to S. We call a
star decomposition of G reduced if it contains no trivial
stars. Notice that the largest reduced star decomposition
contains at most |E| stars. A minimum star decomposi-
tion of G contains the minimum number of stars over all
star decompositions of G. Notice that a minimum star
decomposition will always be reduced. Since the maxi-
mum number of stars in a reduced star decomposition of
G is |E|, then any minimum star decomposition contains
at most |E| stars. Also, given a star decomposition S,
we call the set of all centers of stars in S the center set of
S, and we denote it by C(S). Note that if a star consists
only of a single edge, then we simply choose one of its
endpoints to be the center node.

For any DAG G on the undirected graph G we can con-
struct a star decomposition of G as follows. For each
node v ∈ V , consider the substar Sv in G whose center
is v and whose edges are those directed into v in the DAG
G. The star decomposition of G induced by G is then

S(G) := {Sv : v ∈ V }.

Notice that an induced star decomposition will not be
reduced, and may contain intervals K1,1.
Remark 2.1. Not all star decompositions of a graphG are
induced by some DAG on G. For example, any graph
has a star decomposition consisting of precisely its set
of edges. In the case of the 4-cycle, for instance, this
decomposition cannot arise from a DAG.

Since a star decomposition induced by a DAG always
contains at least one trivial star, we make the following
important definition. A minimum star decomposition of
G is induced by a DAG G on G if it is a reduction of the
star decomposition induced by G.

Example 2.1. Consider C4, the cycle on 4 nodes. Up to
isomorphism, C4 admits the three reduced star decompo-
sitions depicted in Figure 1. From this we can see that the
minimum star decompositions of C4 are all isomorphic
to {K1,2,K1,2}. The two right-most star decompositions
in Figure 1 are each induced by DAGs. For example, the
middle decomposition is induced by the DAG G1 and the

Figure 1: The three nonisomorphic reduced star decom-
positions of the 4-cycle

right-most decomposition is induced by the DAG G2 as
depicted in Figure 2. The left-most star decomposition
in Figure 1 is the maximum cardinality reduced star de-
composition of the 4-cycle, which consists of exactly one
copy of K1,1 for each edge of C4.

Example 2.1 demonstrates the properties of minimum
star decompositions that we will use to study the im-
morality number of triangle-free graphs. Notice first that
the center set of each star decomposition is a vertex cover
of C4 and that the minimum vertex covers of G are cen-
ter sets of minimum star decompositions. Indeed, there
exists a many-to-one correspondence between minimum
star decompositions and minimum vertex covers of G.

Lemma 2.5. Suppose S is a minimum star decomposi-
tion with center set C(S). Then C(S) is a minimum ver-
tex cover of G.

Proof. Recall that the center set C(S) of any star de-
composition S is a vertex cover of G. Therefore, any
minimum star decomposition has to be at least as large
as any minimum vertex cover of G. Suppose that for any
minimum vertex cover C of G we can find a star decom-
position of G with center set C. Then it follows that any
minimum star decomposition has size exactly that of a
minimum vertex cover of G. Moreover, the center set
of any minimum star decomposition must be a minimum
vertex cover. Thus, to complete the proof, we need only
show that any minimum vertex cover of G is the center
set of some star decomposition of G.

For a node v of a graph G we let N [v] denote the neigh-
bors of v in G including the node v itself. Suppose that
C = {c1, . . . , ck} is a minimum vertex cover of G. Let
S(C) = {S1, . . . , Sk} denote the star decomposition of

G1 S(G1) G2 S(G2)

Figure 2: The DAGs G1 and G2 and their induced (nonre-
duced) star decompositions.



G given by setting

S1 := 〈N [c1]〉,
Si := 〈N [ci]\ (∪j≤iN [cj ])〉, for i > 1.

Since S is a star decomposition of G with center set C,
this completes the proof.

Lemma 2.6. Suppose C is a minimum vertex cover of G
and S is any star decomposition of G with center set C.
Then S is a minimum star decomposition.

Proof. Recall that the center set C(S) of any star de-
composition S of G is a vertex cover of G. Thus, just
as stated in the proof of Lemma 2.5, we know that any
star decomposition of G is at least as large as any mini-
mum vertex cover of G. By the construction in the proof
of Lemma 2.5, we know in fact that this lower bound is
tight. Thus, any star decomposition with center set that is
a minimum vertex cover must have minimum size.

Lemma 2.7. Suppose S is a minimum star decomposi-
tion of G with cardinality vector v(S) ∈ R|E| such that
v(S)T v(S) is maximum over all star decompositions of
G. Then S is induced by some DAG with skeleton G.

Proof. Note first that any star decomposition S =
{S1, . . . , Sk} of G is induced by some directed, but not
necessarily acyclic, graph G(S). Namely, G(S) is the
directed graph whose arrows are given by directing all
edges of Si so that their heads are at the center node of
Si for all i ∈ [k]. Since each edge of G appears in ex-
actly one star in S, this definition yields a unique directed
graph.

For the sake of contradiction, suppose S is a minimum
star decomposition of G for which v(S)T v(S) is max-
imized, but S is not induced by a DAG. Then S is in-
duced by the directed graph G(S) constructed in the pre-
vious paragraph. By assumption, G(S) contains some
directed cycles. Notice that if v is any node contained
in a directed cycle, then v ∈ C(S) since v has nonzero
indegree in G(S).

Let v0 be a node of highest indegree that is contained
in a directed cycle in G(S). Reverse all arrows pointing
outwards from v0 that are in a directed cycle and denote
the resulting directed graph by G(S)1. The center set
of the (reduced) induced star decomposition of G(S)1 is
contained in the center set of S since all nodes on any di-
rected cycle in G(S) are contained in C(S). Therefore,
since S is a minimum star decomposition of G, then so
is S(G(S)1). Moreover, since we only reversed the di-
rection of arrows in cycles with indegree at most that of
v0, it follows that

v(S)T v(S) < v(S(G(S)1))T v(S(G(S)1)).

However, this is a contradiction to the assumption that
v(S)T v(S) is maximum over all star decompositions of
G.

In some special instances, when the minimum star de-
compositions of a graph G are well-understood, we can
use this theory to compute m(G). Recalling Exam-
ple 2.1, notice that the minimum star decompositions of
C4 are all isomorphic to one another as forests, and each
minimum star decomposition ofC4 is induced by a DAG.
With this example in mind, we prove the following theo-
rem.

Theorem 2.8. LetG be a triangle-free, undirected graph
whose minimum star decompositions are all isomorphic
to one another as forests. Then given any minimum star
decomposition S(G) = {S1, . . . , Sk} of G the immoral-
ity number of G is

m(G) =

k∑
i=1

(|Si|
2

)
.

Proof. Since the maximum size of a minimum star de-
composition is |E|, we can simply assume k = |E| by
filling out the set with trivial stars. That is, without loss
of generality we assume that all star decompositions con-
sidered have the same cardinality k = |E|, but may con-
tain trivial stars. A minimum star decomposition is then
simply one with the maximum number of trivial stars.

Recall that for every DAG G on G we can construct
the induced star decomposition S(G) = {S1, . . . , Sk}.
Since G is triangle-free, the number of immoralities in G
is precisely

∑k
i=1

(|Si|
2

)
. Each such induced star decom-

position admits a vector in Rk for each permutation σ ∈
Sk of cardinalities (|Sσ(1)|, |Sσ(2)|, . . . , |Sσ(k)|) ∈ Rk,
and we let v(G) denote any one of these vectors. More
generally, any star decomposition S of G admits such a
vector of cardinalities for each permutation σ ∈ Sk, any
one of which we denote by v(S) ∈ Rk. Let V(G) de-
note the set of all possible choices of vectors v(S) for all
possible star decompositions of G. Then our goal is to
maximize the objective function

∑k
i=1

(
xi

2

)
over the set

V(G) ⊂ Zk≥0. Since the objective function satisfies

k∑
i=1

(
xi
2

)
=

1

2

(
k∑
i=1

x2i −
k∑
i=1

xi

)
,

and for all (x1, . . . , xk) ∈ V(G), we have that∑k
i=1 xi = |E| = k, then we are interested in solving

the integer optimization problem



maximize xTx

subject to
∑k
i=1 xi = k,

x ∈ Zk≥0,
x ∈ V(G).

The presentation of this optimization problem is redun-
dant, but it is to emphasize the fact that any vector in
V(G) lies in the kth dilate of the probability simplex
∆k, which we denote by k∆k. Therefore, we are simply
maximizing the length over all vectors in the probabil-
ity simplex that also lie in the set V(G). Since the value
of xTx strictly increases as we approach the boundary
of k∆k then the star decompositions with the maximum
number of trivial stars will yield the maximum value of
the objective function. These are the minimum star de-
compositions, all of which are isomorphic as trees, and
therefore have the same vectors v(S) up to a permuta-
tion of coordinates. Since we have assumed that at least
one of these star decompositions is induced by a DAG, it
follows that the maximum value of the original objective
function

∑k
i=1

(
xi

2

)
is the immorality number of G.

Collectively, Lemmas 2.5, 2.7, and Theorem 2.8 allow us
to prove Theorem 1.1.

2.2 PROOF OF THEOREM 1.1

Let G be a triangle-free graph, and suppose that we have
a polynomial time algorithm that returns a DAG G∗ with
skeleton G for which G∗ has the maximum number of
immoralities. By Lemma 2.7 and Theorem 2.8, we know
that the maximum value of

∑|E|
i=1

(|Si|
2

)
is achieved by a

minimum star decomposition induced by a DAG. Since
the value of

∑|E|
i=1

(|Si|
2

)
is exactly equal to the number

of immoralities in a DAG with a triangle-free skeleton, it
follows that our DAG G∗ induces a minimum star decom-
position S(G∗) that maximizes

∑|E|
i=1

(|Si|
2

)
. We know

by Lemma 2.5 that the center set C(S(G∗)) is a min-
imum vertex cover of G. Therefore, we have a poly-
nomial time algorithm for computing a minimum vertex
cover of the triangle-free graph G. It is clear that a poly-
nomial time algorithm for MAXIMUM IMMORALI-
TIES for arbitrary graphs trivially yields a polynomial
time algorithm for MAXIMUM IMMORALITIES for
triangle-free graphs. Therefore, since MINIMUM VER-
TEX COVER is NP-complete for triangle-free graphs,
we know that the general instance of MAXIMUM IM-
MORALITIES is NP-hard. This completes the proof of
Theorem 1.1. �

Remark 2.2. Recall that there is trivially a polynomial
time Turing reduction of MINIMUM VERTEX COVER
to VERTEX COVER. Conversely, it is well-known that
VERTEX COVER is self-reducible. That is, given a

polynomial time algorithm for VERTEX COVER one
can find a polynomial time algorithm solving MINI-
MUM VERTEX COVER. Collectively, this says that
solving MINIMUM VERTEX COVER is no more or no
less hard than solving VERTEX COVER. Since the for-
mer direction is trivial, the critical observation made here
is the self-reducibility of VERTEX COVER.

The proof of self-reducibility for VERTEX COVER
is standard across many NP-complete structural search
problems for graphs, and it goes as follows. Given a
graph G = (V,E), the minimum size of a vertex cover
must be between 0 and |V |. Thus, by a binary search, we
can determine in polynomial time the size k∗ of a mini-
mum vertex cover of G. Then, to recover a vertex cover
C with size k∗ of G, we first pick a vertex v and delete it
from G. If the resulting graph has a vertex cover of size
k∗ − 1, then v is in a minimum vertex cover of G, if not
we return the vertex v, and repeat with another vertex. It-
erating this procedure produces a minimum vertex cover
of G in polynomial time.

While the self-reducibility of many other graph struc-
ture search problems are proved using a similar argu-
ment, this proof is unusable for IMMORALITIES. The
analogous argument for IMMORALITIES would require
considering all subsets of neighbors of the node v and
deleting the corresponding star. Since the number of
such queries for a given vertex v is only bounded by(
deg(v)

2

)
, this algorithm is not polynomial in time. How-

ever, this does not prove that IMMORALITIES is not
self-reducible, nor does it prove that IMMORALITIES
is not NP-complete.

2.3 EXAMPLES OF IMMORALITY NUMBERS

As with most NP-hard problems, the problem may be-
come tractable when restricted to special cases. We now
present a few cases in which star decompositions allow
us to compute m(G) via an application of Theorem 2.8.
For some graphs, Theorem 2.8 makes the computation
of m(G) very simple. For instance, the unique mini-
mum star decomposition of a star Sp is itself, and there-
fore m(G) =

(
p
2

)
. Similarly, the graph K2,p can be

decomposed into two stars, both of which are isomor-
phic to K1,p, in precisely one way, and therefore this
is its unique minimum star decomposition. It follows
from Theorem 2.8 that m(K2,p) = 2

(
p
2

)
. On the other

hand, Theorem 2.8 certainly has its limitations. For in-
stance, let S2(p, q) denote the gluing of a p-star and a
q-star; i.e. an edge {i, j} with p leaves attached to i and
q leaves attached to j). Then, Theorem 2.8 implies that
m(G2(p, p)) =

(
p+1
2

)
+
(
p
2

)
. However, if p 6= q, then

the minimum star decompositions ofG2(p, q) are all size
two but need not be isomorphic. Therefore, Theorem 2.8



does not apply.

In general, it can be difficult to determine if the minimum
star decompositions of a graph are all isomorphic. We
end this section by computing m(G) for some slightly
more complicated graphs, thereby illustrating the rapidly
increasing difficulty level of the problem. In subsec-
tion 2.3.1 we compute m(G) for the complete bipartite
graph Kp,p and in subsection 2.3.2 for some special cir-
culant graphs.

2.3.1 The complete bipartite graph Kp,p

Gillespie and Perlman (2001) note that the maximum
number of induced 3-paths over all skeletons on p nodes,
for each p ≤ 10 is given by the complete bipartite graph
Kb p

2 c,d p
2 e. The number of induced 3-paths in the graph

Kb p
2 c,d p

2 e is quickly seen to be ap =
⌊
p
2

⌋ ⌈
p
2

⌉
p−2
2 ,

which is sequence A111384 of the Online Encyclope-
dia of Integer Sequences (OEIS, 2003). Since induced
3-paths in an undirected graph G are exactly the possi-
ble locations of immoralities in a DAG with skeleton G,
it is reasonable to ask for the immorality number of the
complete bipartite graph Kp,p. As one would hope, the
immorality number of Kp,p turns out to be exactly one
half the number of induced 3-paths. We now use Theo-
rem 2.8 to compute the immorality number of Kp,p via
star decompositions. To do so, we make one additional
observation.

Lemma 2.9. The minimum star decompositions of Kp,p

are all isomorphic to

{K1,p,K1,p, . . . ,K1,p︸ ︷︷ ︸
p times

}.

Proof. We prove a slightly stronger statement. Let N [v]
denote the subgraph of a graph G induced by the ver-
tex v and its set of neighbors. Let the vertices of Kp,p

be the partitioned set A t B where A := {a1, . . . , ap}
and B := {b1, . . . , bp}. We claim that the minimum star
decompositions of Kp,p are only {N [ai] : i ∈ [p]} and
{N [bi] : i ∈ [p]}. To see this assume otherwise. Suppose
that {S1, . . . , Sk} is a minimum star decomposition of
Kp,p, and let ci denote the center of star Si for all i ∈ [k].
We also set C := {c1, . . . , ck}.
Suppose first that k = p and that A ∩ C 6= ∅ and B ∩
C 6= ∅. Without loss of generality, assume that A ∩C =
{a1, . . . , a`} for some ` < k. Then for all i > ` it must
be that bi ∈ B ∩ C, since otherwise the edge {ai, bi}
would not appear in any star in {S1, . . . , Sk}. Since k =
p, it follows that B∩C = {b`+1, . . . , bp}. However, this
means that for all i ≤ ` and j ≥ `+ 1, the edges {aj , bi}
are not in any star, which is a contradiction.

Now suppose that k < p. It is quick to see that if C ⊂ A
or C ⊂ B then there exist edges of Kp,p not contained
in stars. So A ∩ C 6= ∅. The proof then follows from
applying the same argument as in the case when k = p
to derive a contradiction.

Theorem 2.10. The immorality number of Kp,p is p
(
p
2

)
.

Proof. Notice that Kp,p is triangle-free. By Lemma 2.9,
the minimum star decompositions of Kp,p are all iso-
morphic as forests. Moreover, any such minimum star
decomposition is induced by a DAG G on Kp,p that has
exactly p sinks located along either the node set A or B.
The result then follows from Theorem 2.8.

2.3.2 Some triangle-free circulants

Circulant graphs are natural generalizations of the cy-
cle graphs, and both their independence polynomials and
independence numbers have been studied extensively
(Brown and Hoshino, 2011; Hoshino, 2008). However,
there is no general formula for the Fibonacci number,
the independence number, nor the independence polyno-
mial of these graphs. Similarly, computing M(G;x) or
S(G;x) is difficult for a general circulant. However, as a
corollary to Theorem 2.8, we can compute the immoral-
ity number of some triangle-free circulants.

Recall that a circulant on p nodes is a graph whose nodes
are identified with the elements of the cyclic group Z/pZ
of order p, and whose edges are given by a specified con-
nection set C ⊂ Z/pZ. In the undirected setting, we as-
sume C is closed under additive inverses. The circulant
on p nodes with connection setC is denotedX(p, C) and
has edges {i, j} for all pairs i and j satisfying i− j ∈ C.
We often abbreviate the connection set C via a subset of[
bp2c
]

by omitting the additive inverse of each element.

Corollary 2.11. Let p be even, and suppose thatX(p, C)
is a triangle-free circulant graph containing a p-cycle for
which the maximum independent subset is of size p

2 . Then

m(X(p, C)) =
p

2

(
2|C|

2

)
.

Proof. Recall that a set of nodes in a graph G is a
minimum vertex cover if and only if its complement is
an independent set in G. Since X(p, C) contains a p-
cycle, then without loss of generality we can assume that
1 ∈ C. Since 1 ∈ C and the maximum independent sub-
set of X(p, C) is equal to the one of Cp of size p/2, then
any minimum independent set is given by selecting pre-
cisely every other vertex of the graph as we walk along
the p-cycle given by 1 ∈ C. Moreover, such a vertex set
is also a minimum vertex cover. Thus, if {c1, . . . , c p

2
}

is a maximum independent set in X(p, C), then there



is only one possible star decomposition with center set
{c1, . . . , c p

2
}, namely

{〈N [c1]〉, . . . , 〈N [c p
2
]〉} ' {K1,2|C|, . . . ,K1,2|C|}.

Since the only two maximum independent sets in
X(p, C) share this property, it follows from Lemma 2.6
that all minimum star decompositions of G are iso-
morphic. Thus, by Theorem 2.8 we conclude that
m(X(p, C)) = p

2

(
2|C|
2

)
.

Notice that Corollary 2.11 applies to any triangle-free
circulant with p even, 1 ∈ C, which has all other ele-
ments of C being odd. On the other hand, we cannot ap-
ply the same techniques to compute the immorality num-
bers for p odd, since such circulants may contain noniso-
morphic minimum star decompositions.

3 COMPUTATIONAL ANALYSIS

In this section, we describe the computer program we
used to test our conjectures and collect relevant statistics.
This program can be found at https://github.
com/aradha/mec_generation_tool, and it ex-
pands on the first computer program written for the enu-
meration of MECs presented (Gillespie and Perlman,
2001). For each skeleton on p ≤ 10 nodes, the Gille-
spie and Perlman algorithm logged the maximum num-
ber of induced 3-paths, the maximum number of MECs,
the total number of MECs, and the size of each class.
Our program expands on this original program in two
ways: for skeletons on p ≤ 10 nodes, our program col-
lects more data about each skeleton, and it produces all
such data for all triangle-free skeletons on p ≤ 12 nodes.
The new program now catalogues the same information
as the original Gillespie and Perlman algorithm for each
skeleton as well as the degree sequence of the skeleton,
the number of triangles, and the number of immoralities
per MEC. This additional data, especially in the triangle-
free setting, allows us to more carefully analyze how the
structure of the skeleton impacts the number and size of
its associated MECs. In the following, we first provide a
brief description of the algorithm and the hashing scheme
used. We then validate Theorem 1.2 and discuss the anal-
ogous result in the case of unconnected graphs.

3.1 THE ALGORITHM

There are three main components in our program’s data
pipeline which we now describe. The first component is
the main class that reads in skeleton data generated using
tools from nauty and Traces (McKay and Piperno,
2014). The second component is a DAG generator that
directly generates all DAGs on a given skeleton. Such

Figure 3: The proportion of MECs on connected graphs
with 10 nodes by log class size and number of edges.

a generator is realized using the algorithm published by
Barbosa and Swarcfiter (1999). It is essential to directly
generate all DAGs rather than generating all directed
graphs and then pruning out the ones containing cycles,
since the number of DAGs dominates the number of di-
rected graphs for a large number of vertices.

The final main component is a DAG enumerator that gen-
erates the frequency vector M(G)freq when given the
DAGs on a given skeleton G. In order to generate the
number of MECs of each size on a given skeleton, this
component creates a bit representation for each MEC by
first creating a bit mask of the possible immoralities that
could occur in the skeleton. Each DAG is then traversed.
If three vertices are found to be in an immorality then the
Cantor pairing function is used to hash the triple of their
integer labels to the location of the bit in the immorality
bit mask. Since the Cantor pairing function is invertible
and since the number of vertices in each graph is small,
we have a valid, non-overflowing hash function. After
comparing the resulting hashes for all DAGs on the given
skeleton, a pair of integers is returned for each MEC: the
number of immoralities in the MEC and the size of the
MEC. It is an important feature of the algorithm that this
component of the pipeline has access to data on the given
skeleton. This allows us to collect data on the skeleton
in relation to each MEC. Using this, for each skeleton
we record the number of induced 3-paths, the degree se-
quence, the number of edges, and the number of trian-
gles. To handle the around 12 million undirected graphs
on 10 nodes, we split these graphs into approximately
500 files across 10 directories, allocating 16 threads to
process each directory. Running this process in parallel
takes 5 days as compared to the 253 CPU hours (approx-
imately 94 days) by Gillispie and Perlman.



Table 1: The 10-node graphs with the same S(G;x)
function. Here, nKp denotes n disjoint copies of Kp.

Class Size(s) Skeleton 1 Skeleton 2
24 K4 t 6K1 K3 t 2K2 t 3K1

48 K4 tK2 t 4K1 K3 t 3K2 tK1

144 K4 tK3 t 3K1 2K3 t 2K2

720 K6 t 4K1 K5 tK3 t 2K1

1440 K6 tK2 t 2K1 K5 tK3 tK2

2880 K6 t 2K2 K5 tK4 tK1

72, 24 K4 t I3 t 3K1 K3 t I3 t 2K2

3.2 CORRECTNESS OF THE ALGORITHM

To verify the correctness of our implementation, we
matched our program’s output with that of the algorithm
in (Gillespie and Perlman, 2001). In Figure 3 for in-
stance, we can use our program to reproduce the same
distribution of the proportion of MECs with respect to
class size and number of edges as in (Figure 4, Gillespie
and Perlman, 2001).

We also compared performance in terms of speed and
memory utilization. Our program runs in nearly the ex-
act time measured by Gillespie and Perlman: we mea-
sured that our algorithm also takes around three minutes
for eight vertices and only a few seconds or milliseconds
for fewer vertices. We do, however, have better memory
utilization than Gillespie and Perlman as the number of
bits we store for hashes is dependent on the number of
possible immoralities in the skeleton rather than on the
number of possible triples of vertices. We also use Java
to do our data processing. Thus, since we only need a
print out of the data collected in subsection 3.1 (3) for
each skeleton processed, the garbage collector clears out
our hash map allocation after each skeleton. This allows
us to not only log the class size and the number of MECs
per skeleton, but also the number of immoralities per
class as well as the number of induced 3-paths, the de-
gree sequence, the number of edges, and the number of
triangles. Thus, despite the fact that our algorithm only
matches the Gillespie and Perlman algorithm in time, it
is collecting significantly more data per skeleton.

3.3 VALIDITY OF THEOREM 1.2

After running the algorithm on all connected graphs with
up to ten nodes, we verified that there was no pair of
skeleta with p ≤ 10 nodes that have the same fre-
quency vector M(G)freq. This indicates that the MEC
frequency vectors M(G)freq (or equivalently the arith-
metic generating functions S(G;x)) bijectively map to
skeletons of connected graphs up to ten nodes. Similarly,

when we ran our algorithm on all graphs with ten nodes
including graphs that were not necessarily connected, we
found that the only collisions occurred on graphs G and
H with the following property: Let G = G1 t · · · tGm
and H = H1 t · · · tHn be the decompositions of G and
H into connected components. Let G∩H denote the set
consisting of the connected components that are shared
between G and H up to isomorphism. Now let G \G ∩
H = Gi1 t· · ·tGim andH \G∩H = Hj1 t· · ·tHjn ,
where i1, . . . , im ∈ [m] and j1, . . . , jn ∈ [n], be the re-
maining subgraphs. Then

∏m
k=1 |Gik | =

∏n
`=1 |Hj` |.

Over all graphs with ten nodes, there are seven such ex-
amples that occurred. These are shown in Table 1.

4 Discussion

Understanding the number and size of MECs is impor-
tant since it tells us about the complexity of DAG model
recovery. Algorithms such as the PC algorithm first learn
a skeleton and then orient its edges. If the number of
MECs with the learned skeleton is small, the orientation
step may be unnecessary. Therefore, it is desirable to
know the size and number of MECs with a given skele-
ton. In this paper, we introduced a pair of generating
functions, M(G;x) and S(G;x), that count the num-
ber of MECs on a skeleton G by their number of im-
moralities and size, respectively. This constitutes a novel
approach to the MEC enumeration problem that yields
connections to classically studied problems in combina-
torial optimization. We observed that computing the de-
gree of M(G;x) for triangle-free graphs relates to the
vertex-cover problem for G and its associated star de-
compositions. These connections allowed us to prove
that computing the degree of M(G;x) is NP-hard, thus
demonstrating that counting the number of MECs on G
must be hard as well. Alternatively, we observed the
complexity of enumerating MECs by size by showing
that S(G;x) is distinct for every connected graph G on
p ≤ 10 nodes. The connections to classical problems re-
vealed here suggest that the number of MECs for sparse
graphs can be better understood by a closer examination
of M(G;x) and S(G;x). In particular, it is natural to
ask how M(G;x) relates to the enumeration of vertex
covers for fixed families of sparse graphs. Future work
is required to address questions of this nature.
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