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Abstract

Using the flexibility of recently developed
methods for causal discovery based on
Boolean satisfiability (SAT) solvers, we en-
code a variety of assumptions that weaken the
Faithfulness assumption. The encoding results
in a number of SAT-based algorithms whose
asymptotic correctness relies on weaker condi-
tions than are standardly assumed. This imple-
mentation of a whole set of assumptions in the
same platform enables us to systematically ex-
plore the effect of weakening the Faithfulness
assumption on causal discovery. An important
effect, suggested by simulation results, is that
adopting weaker assumptions greatly allevi-
ates the problem of conflicting constraints and
substantially shortens solving time. As a re-
sult, SAT-based causal discovery is potentially
more scalable under weaker assumptions.

1 INTRODUCTION

In the framework of causal graphical models [Spirtes
et al., 2000, Pearl, 2000], the task of causal discovery
can be framed as the inference from a statistical dataset
of measurements of a set of variables to the underlying
causal structure that gave rise to the data. The inference
is enabled by a set of assumptions or “bridge principles”
that link statistical features of the data to features of the
underlying causal structure. Two of the best known as-
sumptions of this kind are the Causal Markov and Faith-
fulness assumptions. These two assumptions, defined
and discussed below, together entail an exact correspon-
dence between conditional independence relations that
hold in the distribution (from which the data are drawn)
and certain separation features in the underlying causal
structure. This correspondence enabled the development

of so-called constraint-based causal discovery algorithms
— such as PC and FCI [Spirtes et al., 2000] — that ex-
ploit the independence structure found in the data, to re-
cover as much as possible about the causal structure.

Although the causal Markov assumption is usually re-
garded as an ontological principle grounded in the na-
ture of causation, the Faithfulness assumption is often
viewed as a methodological assumption in the spirit of
Occam’s razor [Zhang, 2013]. Moreover, even if Faith-
fulness holds in the true distribution, there are often “al-
most violations” of Faithfulness in finite-sample settings
that affect causal discovery [Meek, 1996, Robins et al.,
2003, Uhler et al., 2013]. These considerations sparked
investigations into the possibility of relaxing the Faith-
fulness assumption in constraint-based causal discovery
[Ramsey et al., 2006, Zhang and Spirtes, 2008, Zhang,
2013, Spirtes and Zhang, 2014, Raskutti and Uhler, 2014,
Forster et al., 2017], which generated a number of pro-
posals for weakening Faithfulness. However, the impact
of these weaker assumptions on causal discovery has not
been systematically investigated on a common platform,
since constraint-based algorithms have until recently al-
ways been custom-built for a specific set of assump-
tions. In this paper we leverage the recent development
of causal discovery algorithms based on general-purpose
Boolean satisfiability solvers [Triantafilou et al., 2010,
Hyttinen et al., 2013, 2014, Triantafillou and Tsamardi-
nos, 2015, Borboudakis and Tsamardinos, 2016, Magli-
acane et al., 2016], and show how to implement various
weaker assumptions in this flexible approach. We com-
pare the resulting algorithms on synthetic data. Among
other things, the results suggest that the weaker assump-
tions significantly reduce the need for conflict resolution,
which translates into substantial gains in solving time.

We will proceed as follows. After introducing the basic
terminology in Section 2, we review the Boolean satisi-
fiability and optimization approach to causal discovery
in Section 3, focusing on the framework proposed by
Hyttinen et al. [2013, 2014]. Then, in Section 4, we go



through a number of weakenings of the Faithfulness as-
sumption and show, for all except one, how to encode
constraints that correspond to the weaker assumptions.
In addition, we “weaken” the causal Markov assumption
by implementing constraints associated with the local
Markov assumption as opposed to those with the global
Markov assumption. Despite their equivalence given a
perfect oracle of conditional independence, the former is
in general weaker than the latter when the oracle is re-
placed by finite sample tests. These various constraints
in different combinations yield a multitude of algorithms
for causal discovery of acyclic, causally sufficient struc-
tures, and we report some findings on their empirical per-
formance in Section 5. We conclude in Section 6.

2 PRELIMINARIES

Throughout this paper we consider the setting of a set of
observed variables V that is causally sufficient (there are
no unmeasured common causes) and that does not fea-
ture causal feedback.1 The (unknown) causal structure
over V can then be properly represented by a directed
acyclic graph (DAG) over V, in which an arrow X → Y
means that X is a direct cause of Y relative to V.2

Some basic graph terminology: Given a DAG G over
V, for any X,Y ∈ V, if there is an edge between X
and Y , then X and Y are said to be adjacent. If the
edge is directed from X to Y , i.e., X → Y , then X is
called a parent of Y and Y a child of X . A path in G is
a sequence of distinct vertices (V1, ..., Vn) such that for
1 ≤ i ≤ n − 1, Vi and Vi+1 are adjacent in G. A path
between V1 and Vn is called a directed path from V1 to
Vn if Vi is a parent of Vi+1 for 1 ≤ i ≤ n − 1. X is
called an ancestor of Y and Y a descendant of X in G if
X = Y or there is a directed path from X to Y in G.

An (ordered) triple of distinct vertices (X,Y, Z) in G is
called a collider if X,Y are adjacent, Y,Z are adjacent,
and the edge between X and Y and the edge between
Z and Y are both directed at Y , i.e., X → Y ← Z.
It is called a non-collider if X,Y are adjacent, Y,Z are
adjacent, and the triple is not a collider. Given a path
(V1, ..., Vn), Vi (1 < i < n) is said to be a collider (non-
collider) on the path if the triple (Vi−1, Vi, Vi+1) is a col-
lider (non-collider).

We are concerned with the constraint-based approach to
causal discovery that seeks to recover causal structure

1We focus on the relatively simple task of inferring acyclic,
causally sufficient structures, because the literature on weaken-
ing the Faithfulness assumption has been so focused. However,
at least some aspects of this work are readily generalizable to a
much more general setting, as we indicate in Section 6.

2As usual, we use ”variable” and ”vertex” interchangeably.

from statistically inferred conditional independence (CI)
and conditional dependence (CD) statements. A fun-
damental principle that is almost always assumed (for
causally sufficient systems) is the following condition:

(Causal) Markov Assumption: The joint distribution p
of V is Markov to the causal DAG G over V in the sense
that every variable is independent of its non-descendants
conditional on its parents in G.

This is a formulation in terms of the local Markov prop-
erty of DAGs. It specifies some CI statements that must
be true of p according to G. These CI statements en-
tail others by the laws of probability, all of which are
captured by the notion of d-separation [Pearl, 1988].
Given Z ⊆ V, a path in G is blocked by Z (or not d-
connecting given Z) if some non-collider on the path is
in Z or some collider on the path has no descendant in
Z. For any distinct X,Y /∈ Z, X and Y are d-separated
by Z in G (we write X ⊥G Y | Z) if every path be-
tween X and Y is blocked by Z. For any X,Y,Z ⊆ V
that are pairwise disjoint, X and Y are d-separated by
Z in G if every vertex in X and every vertex in Y are
d-separated by Z. The Markov assumption can then
be reformulated as: for every disjoint X,Y,Z ⊆ V,
X ⊥G Y | Z ⇒ X ⊥⊥ pY | Z. We will refer to this for-
mulation as the global Markov assumption, and we call a
CI statement X ⊥⊥ Y | Z entailed by G if X ⊥G Y | Z.

Standard constraint-based methods also assume the con-
verse of the Markov assumption:

(Causal) Faithfulness Assumption: The joint distri-
bution p over V is faithful to the causal DAG G over
V in the sense that for every disjoint X,Y,Z ⊆ V,
X ⊥⊥ pY | Z⇒ X ⊥G Y | Z.

Under these two assumptions, the true causal DAG G is
determined by the CI and CD statements that are true of
p up to the Markov equivalence class of G. Two DAGs
over V are Markov equivalent just in case they entail the
exact same CI statements.

3 BOOLEAN SATISFIABILITY AND
CONSTRAINED OPTIMIZATION

(Independence-)constraint-based methods that adopt the
Markov and Faithfulness assumptions seek to infer
the Markov equivalence class of the underlying causal
DAG based on CI and CD constraints obtained from
data. Standard methods use a graphical representation
of the Markov equivalence classes — known as pat-
terns (or essential graphs) — to perform causal discov-
ery. In contrast, recent approaches to constraint-based
causal discovery have attempted to directly encode the
d-separation/connection constraints implied by CI/CD



statements in terms of Boolean constraints over the set
of possible causal graphs [Hyttinen et al., 2013, 2014,
Triantafillou and Tsamardinos, 2015]. Such encodings
enable the use of general purpose Boolean constraint
solvers and, importantly for our aims here, make the
inference from the CI constraints to the graphical con-
straints flexible: e.g., whether an observed CI only im-
plies that the two independent variables are non-adjacent
in the causal graph or whether it implies that there is no
d-connecting path of any kind between them, can simply
be written into the rules that the solver must respect.

While the specific encodings and the modeling languages
vary among extant approaches of this type, the under-
lying strategy is the same: Define Boolean atoms of
the form A = “X → Y ∈ G” that specify the pres-
ence of a particular edge in the true graph, encode (in a
schema) what it means for two variables to be (condition-
ally) d-connected/separated, and define predicates for the
CI/CD-statements that then imply constraints on the d-
connections present or absent in the underlying graph.
Observed CI/CDs are then encoded as their correspond-
ing predicates and off-the-shelf solvers are used to find
truth value assignments to the Boolean atoms that sat-
isfy all the constraints. Any satisfying truth value as-
signment then describes a causal graph G that is con-
sistent with the input CI/CDs. However, given that the
CI/CDs result from a statistical process, the set of ob-
served CI/CDs may contain errors, which may result in a
set of constraints that are unsatisfiable. That is, for such
a “conflicted” set of constraints, there is no causal graph
that satisfies the encoded assumptions. In that case, some
method for conflict resolution is required.

Hyttinen et al. [2014], whose encoding forms the ba-
sis for our approach here, encoded the standard cor-
respondence between conditional independence and d-
separation licensed by the combination of the (global)
Markov assumption and the Faithfulness assumption:

X ⊥⊥ p Y | Z ⇔ X ⊥G Y | Z (1)

In the case of a conflicted set of constraints K, they used
the following optimization to determine their output G∗:

G∗ ∈ argmin
G∈G

∑
k∈K s.t. G 6|=k

w(k) (2)

That is, G∗ minimizes the weighted sum of unsatisfied
constraints, where the weights w(.) can be set in a va-
riety of ways. Specifically, Hyttinen et al. [2014] con-
sider three weighting schemes: (1) “constant weights”
just assigns a weight of 1 to each constraint. (2) “hard de-
pendencies” assigns infinite weight to any observed CD
and weight of 1 to any CI. Finally, (3) “log weights” is a
pseudo-Bayesian weighting scheme, where the weights

depend on the log posterior probability of the CI/CDs
being true (see their Sec. 4). Other weighting schemes
based on p-values have been developed by Triantafillou
and Tsamardinos [2015] and Magliacane et al. [2016].

4 WEAKENING THE ASSUMPTIONS

The Faithfulness assumption has been subject to force-
ful criticism [Cartwright, 2001, Hoover, 2001]. Exam-
ples of violations of Faithfulness are easily constructed
by, for example, two causal pathways that cancel each
other’s effect exactly, resulting in an independence be-
tween variables that are (doubly) causally connected. We
may find such violations in cases of back-up mechanisms
or control systems, where cancellations of causal path-
ways are part of the design. More problematically, in
finite sample inference violations of faithfulness will oc-
cur when a (weak) statistical dependence is not detected
due to low sample size. Uhler et al. [2013] have shown
that such “almost-violations” of Faithfulness are in a
measure-theoretic sense fairly common. These consider-
ations together with the recognition that some violations
of Faithfulness are in fact testable, have led to a whole
set of weaker versions of Faithfulness.

Below we describe a number of weaker assumptions that
have been studied in the literature. Let G denote the true
causal DAG over V and p the true joint distribution.

Adjacency-faithfulness: For every distinct X,Y ∈ V
and C ⊆ V \ {X,Y }, if X and Y are adjacent in G,
then X 6⊥⊥ p Y | C.

Adjacency-faithfulness is a consequence of Faithfulness
and is used to justify the step of inferring adjacencies in
algorithms like PC [Spirtes et al., 2000]. The Conser-
vative PC algorithm [Ramsey et al., 2006], for example,
assumes Adjacency-faithfulness instead of Faithfulness.

Triangle-faithfulness: For every distinct X,Y, Z ∈ V
such that (X,Z, Y ) is a triangle (i.e., they are pairwise
adjacent) in G: (i) If (X,Z, Y ) is a collider in G, then for
every C ⊆ V \ {X,Y } that includes Z, X 6⊥⊥ p Y | C;
and (ii) If (X,Z, Y ) is a non-collider, then for every C ⊆
V \ {X,Y } that excludes Z, X 6⊥⊥ p Y | C.

Triangle-faithfulness is much weaker than even
Adjacency-faithfulness [Zhang and Spirtes, 2008,
Spirtes and Zhang, 2014] and is of particular interest in
conjunction with the following, very weak assumption.

SGS-minimality: G is SGS-minimal in the sense that no
proper subgraph3 of G satisfies the Markov assumption
with p.

3A proper subgraph of G is a DAG over V whose set of
edges is a proper subset of that of G.



SGS-minimality is so weak that given a standard, inter-
ventional interpretation of causal DAGs, it is guaranteed
to be true if p is positive [Zhang and Spirtes, 2011].
Zhang and Spirtes (2008) showed that under the as-
sumptions of Triangle-faithfulness and SGS-minimality,
Faithfulness (and so Adjacency-faithfulness) are in prin-
ciple testable without knowing the causal structure.

There are also a few minimality assumptions that are
stronger than SGS-minimality but nonetheless weaker
than Faithfulness. For example, Pearl [2000] discussed
the following minimality condition:

P-minimality: G is P-minimal in the sense that
no proper independence-submodel of G satisfies the
Markov assumption with p.4

The GES algorithm [Chickering, 2002] can be viewed
as aiming to find a P-minimal pattern [Zhalama et al.,
2017]. Finally, there are count-based minimalities that
are somewhat stronger. One of them says that the true
causal DAG is sparest among all that are Markov to p.

Number-of-Edges(NoE)-minimality: G is NoE-
minimal in the sense that no DAG with a smaller number
of edges than G satisfies the Markov assumption with p.

Note the contrast to SGS-minimality: Both SGS-
minimality and NoE-minimality are concerned with
edges, but NoE-minimality is a minimality with respect
to the order defined over the number of edges, whereas
SGS-minimality is a minimality with respect to the (par-
tial) order defined by the inclusion relation between
sets of edges. NoE-minimality is called “Frugality” by
Forster et al. [2017], who showed that it is stronger than
P-minimality but weaker than Faithfulness. Raskutti and
Uhler (2014) proposed a Sparsest Permutation Algorithm
based on NoE-minimality. Sonntag et al. (2015) applied
the same idea in the context of learning chain graphs.

The other minimality condition we will consider states
that the true causal DAG entails the greatest number of
CI statements among all DAGs that are Markov to p.

Number-of-Independencies(NoI)-minimality: G is
NoI-minimal in the sense that no DAG that entails a
greater number of conditional independence statements
than G does, satisfies the Markov assumption with p.

NoI-minimality is to P-minimality as NoE-minimality is
to SGS-minimality: NoI-minimality is a minimality with
respect to the order defined over numbers of entailed CI
statements, whereas P-minimality is a minimality with

4A proper independence-submodel of G is a DAG over
V such that the set of CIs it entails is a proper super-
set of that entailed by G. We borrow the names ”SGS-
minimality” (Spirtes, Glymour, and Scheines’s minimality) and
”P-minimality” (Pearl’s minimality) from [Zhang, 2013].

respect to the (partial) order defined by the inclusion re-
lation between sets of entailed CI statements. To our
knowledge, NoI-minimality has not been explicitly stud-
ied in the literature. However, as we will see in Section
4.1, one of the weighting schemes considered by Hytti-
nen et al. [2014], namely “hard dependencies”, can be
interpreted as implementing precisely this assumption.

NoI-minimality is obviously stronger than P-minimality,
in the same way that NoE-minimality is stronger than
SGS-minimality. On the other hand, it is weaker than
Faithfulness. It is easy to see that Faithfulness entails
NoI-minimality: if p is faithful to G, then any DAG that
entails more CIs than G does, must entail some CI that
is not satisfied by p and so does not satisfy the Markov
assumption with p. Conversely, NoI-minimality does not
entail Faithfulness. To show this, it suffices to note that
there are distributions over V that are not both Markov
and Faithful to any DAG over V [Zhang and Spirtes,
2008], but every distribution over V is Markov to some
DAG over V that is NoI-minimal.

To summarize, we shall consider the following weak-
enings of the Faithfuless assumption: (i) Adjacency-
faithfulness; (ii) the conjunction of SGS-minimality
and Triangle-faithfulness; (iii) NoE-minimality; and (iv)
NoI-minimality. (We do not consider P-minimality as
we have not yet developed a concise encoding of this
assumption.) It is worth noting that although these
are weaker assumptions than Faithfulness, they become
equivalent to Faithfulness for distributions that admit a
DAG representation that is both Markov and Faithful. In
other words, given the Markov assumption, (i)-(iv) are
weaker than Faithfulness only because they are consis-
tent with bigger sets of distributions than Faithfulness is
[Zhang and Spirtes, 2016]. That is, assuming Faithful-
ness for distributions from those bigger sets, can result
in “conflicted” or unsatisfiable sets of constraints even
without statistical errors. Adopting (i) or (ii) significantly
reduces but does not completely eliminate conflicts (with
or without statistical errors), while adopting (iii) or (iv)
completely eliminates conflicts. Indeed, an implementa-
tion of (iv) in the SAT approach is precisely a conflict
resolution scheme considered by Hyttinen et al. [2014].

4.1 IMPLEMENTATIONS IN ASP

We now show how to implement constraints correspond-
ing to these weaker assumptions in Answer Set Pro-
gramming (ASP), the framework used in Hyttinen et al.
[2014], which we take as basis. ASP is a Prolog-style
modeling language expressed in terms of first-order log-
ical rules [Baral, 2010]. None of the details of ASP, the
corresponding solvers or even the details of Hyttinen et
al.’s encoding are needed to understand what follows.



One could similarly express the weakened assumptions
in propositional logic and use a standard SAT-solver (or
Boolean constraint optimizer) for the inference task.

As mentioned in Section 3, the Markov assumption is
encoded as constraints that CD statements impose on the
underlying causal structure: X 6⊥⊥ Y | C implies that
there is a d-connecting path between X and Y given
C; the Faithfulness assumption is encoded as constraints
that CI statements impose on the underlying causal struc-
ture: X ⊥⊥ Y | C implies that there is no d-connecting
path between X and Y given C . Thus, the weakenings
of the Faithfulness assumption will be encoded by mod-
ifying the constraints imposed by CI statements.

This is most straightforward for Adjacency-faithfulness
and Triangle-faithfulness. To encode the former, we sim-
ply take a CI statement X ⊥⊥ Y | C to imply the con-
straint that there is no edge between X and Y . To encode
the latter, we take a CI statement X ⊥⊥ Y | C to imply
the constraint that there is no triangle (X,Z, Y ) such that
either (X,Z, Y ) is a collider and Z ∈ C, or (X,Z, Y ) is
a non-collider and Z /∈ C.

The minimality assumptions are a little less straightfor-
ward. For SGS-minimality, a reformulation will help.
Given the Markov assumption, SGS-minimality can be
equivalently formulated as: for every X ∈ V and every
non-empty P ⊆ PAG(X) (where PAG(X) denotes the
set of parents of X in G), X 6⊥⊥ pP | PAG(X) \P. Ac-
cording to this reformulated SGS-minimality, a CI state-
ment X ⊥⊥ Y | C implies the constraint that PAG(X) 6=
C ∪ {Y } and PAG(Y ) 6= C ∪ {X}.

For NoI-minimality and NoE-minimality we employ
an optimization of (weak) constraint satisfication, since
both essentially assume that the true causal DAG is
“optimal” in some sense among all DAGs that satisfy
the Markov assumption (that is, satisfy the constraints
imposed by CD statements.) The difference is that
NoI-minimality aims at maximizing the number of d-
separation relations, whereas NoE-minimality aims at
maximizing the number of non-adjacencies.

For NoI-minimality, we can keep the original encoding
of the constraint associated with a CI statement. We as-
sign each such CI constraint weight 1, while taking every
constraint associated with a CD statement as a hard con-
straint that must be satisfied (or assigning them weight
∞). Then, given a perfect oracle of CI statements, the
DAGs that minimize the total weight of unsatisfied con-
straints, as expressed in equation (2), are precisely those
that are Markov and NoI-minimal. As we said, this im-
plementation of NoI-minimality is exactly one of the
conflict resolution schemes considered by Hyttinen et al.
[2014]. Thus, this way of conflict resolution can be mo-

tivated from the perspective of weakening Faithfulness.

For NoE-minimality, we can ignore CI statements, and
take each possible non-adjacency as a constraint with
weight 1 (while taking every constraint associated with
a CD statement as a hard constraint). Then, given a per-
fect oracle of CI statements, the DAGs that minimize the
total weight of unsatisfied constraints are precisely those
that are Markov and NoE-minimal.

In addition to encoding weaker variations on Faithful-
ness, we also encode the local Markov assumption in ad-
dition to the global Markov assumption. For the local
Markov assumption, instead of taking a CD statement
X 6⊥⊥ Y | C to imply the constraint that X and Y are
not d-separated by C (as stated by the global Markov as-
sumption), we take it to imply the constraint that it is not
the case that X’s parent set is C and Y is not a descen-
dant of X , or that Y ’s parent set is C and X is not a
descendant of Y . Although these constraints are equiv-
alent given a perfect oracle of CI statements, the local
version is in general weaker given an imperfect one.

Figure 1 summarizes the ASP-encoding of these various
assumptions, where, to improve readability, we use the
following predicates that are defined in terms of more
basic predicates used in Hyttinen et al’s encoding.

• indep(X,Y,C, w): X and Y are independent con-
ditional on C, given as input fact, with weight w.

• dep(X,Y,C, w): X and Y are independent condi-
tional on C, given as input fact, with weight w.

• dsep(X,Y,C): X and Y are d-separated given C.

• pa(X,C): C is X’s (exact) parent set.

• ismember(C, X): X is a member of C.

• desc(X,Y ): Y is X’s descendant.

The constraints are coded in ASP as violation conditions.
The ones that begin with :- are hard violations that are
not allowed in the output, whereas the ones that use the
predicate fail are treated as weak violations, which are
allowed but penalized according to the given weights. In
Figure 1, only NoE-minimality and NoI-minimality are
encoded with this device (and minimization of the total
weight of the violations). In general, any constraint can
be treated as a weak constraint with a certain weight for
the sake of conflict resolution [Hyttinen et al., 2014].

The encoding in Figure 1 delivers a multitude of SAT-
based algorithms that are asymptotically correct un-
der different assumptions. For example, combining
the encoding of (global or local) Markov and that of
Adjacency-faithfulness in Hyttinen et al.’s general setup



(Variables are arbitrarily ordered so that
indep(X,Y,C, w) and dep(X,Y,C, w) are con-
sidered only if Y > X .)

Faithfulness (violations):
∀X∀Y > X , ∀C ⊆ V \ {X,Y },

:- not dsep(X,Y,C), indep(X,Y,C, w)

Adjacency-faithfulness (violations):
∀X∀Y > X , ∀C ⊆ V \ {X,Y },

:- edge(X,Y ),indep(X,Y,C, w).
:- edge(Y,X),indep(X,Y,C, w).

Triangle-faithfulness (violations):
∀X∀Y > X , ∀Z ∈ V \ {X,Y }, ∀C ⊆ V \ {X,Y },

:- edge(X,Y ), edge(X,Z), edge(Y,Z),
ismember(C, Z), indep(X,Y,C, w).

:- edge(Y,X), edge(X,Z), edge(Y,Z),
ismember(C, Z), indep(X,Y,C, w).

:- edge(X,Y ), edge(X,Z), edge(Z, Y ),
not ismember(C, Z), indep(X,Y,C, w).

:- edge(X,Y ), edge(Z,X), edge(Z, Y ),
not ismember(C, Z), indep(X,Y,C, w).

:- edge(Y,X), edge(Z,X), edge(Y,Z),
not ismember(C, Z), indep(X,Y,C, w).

:- edge(Y,X), edge(Z,X), edge(Z, Y ),
not ismember(C, Z), indep(X,Y,C, w).

SGS-minimality (violations):
∀X∀Y > X , ∀C ⊆ V \ {X,Y },

:- pa(X, {Y } ∪C),indep(X,Y,C, w).
:- pa(Y, {X} ∪C),indep(X,Y,C, w).

NoE-minimality (optimization of weak constraints):
∀X∀Y > X ,

fail(X,Y,C, w = 1) :- edge(X,Y ).
fail(X,Y,C, w = 1) :- edge(Y,X).

:∼ fail(X,Y,C, w). [w]

NoI-minimality (optimization of weak constraints):
∀X∀Y > X , ∀C ⊆ V \ {X,Y },

fail(X,Y,C, w = 1) :- not dsep(X,Y,C),
indep(X,Y,C, w).

:∼ fail(X,Y,C, w). [w]

Global Markov (violations):
∀X∀Y > X , ∀C ⊆ V \ {X,Y },

:- dsep(X,Y,C), dep(X,Y,C, w).

Local Markov (violations):
∀X∀Y > X , ∀C ⊆ V \ {X,Y },

:- pa(X,C),not desc(X,Y ),dep(X,Y,C, w).
:- pa(Y,C), not desc(Y,X),dep(X,Y,C, w).

Figure 1: ASP Encoding of Various Assumptions

yields a SAT-based algorithm that is correct under the
Markov and Adjacency-faithfulness assumptions (to-
gether with the assumptions of causal sufficiency and
no feedback). Similarly, combining the encoding of
Markov and those of SGS-minimality and Triangle-
faithfulness yields a SAT-based algorithm that is cor-
rect under the Markov, SGS-minimality, and Triangle-
faithfulness assumptions. Moreover, it is easy to see
that these algorithms are “query-complete” in Hyttinen
et al. [2013]’s sense, for the output implicitly contains
all DAGs that are compatible with the inputted CI/CD
statements given the corresponding assumptions. Conse-
quently, any query about whether certain edge configu-
rations are shared by all those DAGs can be easily com-
puted. By contrast, although the Conservative PC algo-
rithm [Ramsey et al., 2006] is asymptotically correct un-
der the Markov and Adjacency-faithfulness assumptions,
it is unknown whether its output entails answers to all
such queries. For Triangle-faithfulness (plus Markov and
SGS-minimality), Spirtes and Zhang [2014] proposed a
Very Conservative SGS algorithm that is asymptotically
correct, but it is clear that neither that algorithm nor the
variations investigated by Havrilla [2015] are complete
in this sense.5

So we have the following algorithms:

• Adj: Adjacency-faithfulness + Global Markov

• Tri: Triangle-faithfulness + SGS-minimality +
Global Markov

• NoE: NoE-minimality + Global Markov

• NoI: NoI-minimality + Global Markov (which is
essentially identifical to one of Hyttinen et al.’s con-
flict resolution algorithms6, and will also be called
Faith+HW.)

In each of them, Global Markov can be replaced by Local
Markov and we get AdjLM,TriLM,NoELM, and
NoILM, respectively.

5 SIMULATIONS

In this section, we report some findings from two types of
simulations, following the setup of Hyttinen et al. [2013]

5For example, in the large sample limit these algorithms
will never output any adjacency that violates Adjacency-
faithfulness — though if there is any, they will return “don’t
know” and so do not err — but there are cases in which an
edge that violates Adjacency-faithfulness is identifiable under
Markov, SGS-minimality, and Triangle-faithfulness, which will
be picked up by our algorithm.

6Except that NoI outputs all DAGs with the same, optimal
weight, whereas Hyttinen et al.’s original, “hard dependencies”
algorithm outputs one of them.



and that of Hyttinen et al. [2014], respectively. The for-
mer takes a perfect oracle of CI and CD statements as
input, whereas the latter uses conditional independence
tests on (Gaussian) data of a moderate sample size in
place of an oracle.7 In the experiments reported below,
all conditional independence/dependence constraints are
taken into account, and the output of an algorithm is the
set of all DAGs that satisfy all the relevant constraints
(with no conflict resolution) or optimize the constraint
satisfaction (with conflict resolution).

5.1 SIMULATIONS WITH PERFECT ORACLES

We randomly generate 100 DAGs over 6, 8, and 10 vari-
ables, respectively; for each DAG, the average degree of
a vertex is set to be 2. We use (the d-separation fea-
tures of) each DAG as an oracle for CI and CD state-
ments. That is, the input oracle satisfies both Markov
and Faithfulness assumptions. We run this simulation (1)
to demonstrate the claim that when the input happens to
be consistent with Faithfulness (and Markov), all those
algorithms based on weaker assumptions will return the
exact same result as the algorithm based on Markov and
Faithfulness (that is, the extent of underdetermination
does not increase even though the Faithfulness assump-
tion is weakened), and (2) to check the effect of adopting
weaker assumptions on solving time when there are no
conflicts, which provides an interesting contrast to the
situation with conflicts.

As expected, in every case all four algorithms —
Adj,Tri,NoE, and NoI — return the exact same re-
sult (i.e., the Markov equivalence class of the true DAG)
as the algorithm Faith, which combines global Markov
and Faithfulness. A comparison of the median solving
times is given in Table 1.

Table 1: Median Solving Times (in seconds) given Per-
fect Oracles
|V| Faith Adj Tri NoI NoE

6 0.14 0.15 0.22 0.16 0.19
8 1.89 1.91 3.03 4.12 17.22

10 27.97 28.03 51.61 75.04 234.47

Apparently, when there is no conflict, solving times in-
crease as the assumption is weakened. This seems to
echo Zhang and Spirtes [2016]’s observation that the

7All experiments are done on a virtual machine running
RedHat Enterprise Linux 6, with 12 virtual CPUs (Intel(R)
Xeon(R) E5-2690 v4 CPU@2.60GHz). We use Clingo 4.5.4
as the ASP solver [Gebser et al., 2011].

Faithfulness assumption may boost computational effi-
ciency over its weaker variants. However, the situation
changes dramatically when conflicts are present.

5.2 SIMULATIONS WITH FINITE SAMPLES

Following Hyttinen et al. [2014], we randomly generate
200 DAGs over 6 variables (with expected degree of 2
for each vertex) and parameterize each as a linear Gaus-
sian model, in which every edge coefficient is uniformly
drawn from [−0.8,−0.2] ∪ [0.2, 0.8], and the variance
of each error term is |1 + 0.1Z| where Z is drawn from
a standard Gaussian distribution. From each model, we
draw 20 i.i.d. samples of size 500, and use the CI tests
employed in Hyttinen et al. [2014] to obtain, for each
sample, an input of (weighted) CI and CD “facts”.

For each algorithm that uses classical CI tests, we try 3
threshold values for rejecting the null hypothesis (0.005,
0.01 and 0.05). In these 200 × 20 × 3 runs, Faith pro-
duces results (i.e., returns a non-empty set of DAGs)
in about 5% (604/12000) of the cases, whereas Adj
produces results in 44% (5306/12000) of the cases and
Tri produces results in 66% (7917/12000) of the cases.
All remaining cases are unsatisfiable under the given as-
sumptions. So weaker assumptions significantly reduce
the need of conflict resolution.

To measure the accuracy of inferred adjacencies, we cal-
culate the true positive rate (TPR) and false positive rate
(FPR) of definite adjacencies in the output, where a defi-
nite adjacency is an adjacency that is shared by all DAGs
in the output; to measure the accuracy of inferred edge
directions, we compare the definite arrows in the out-
put to the definite arrows in the true Markov equivalence
class, and calculate arrow precision (AP) and arrow re-
call (AR) accordingly.

Figure 2 plots the ROC curves for inferred adjacencies
(with 3 points on each curve corresponding to the 3 test
thresholds), counting only those cases where Adj pro-
duces results. Figure 3 plots the precision-recall curves
for inferred arrows.8 In addition to the four afore-
mentioned algorithms, Hyttinen et al.’s conflict resolu-
tion algorithms Faith+CW (constant weights) and
Faith+ LW (log weights) are included.9 For these
“no-conflict-for-Adj” cases, Adj’s (or Tri’s) perfor-
mance is quite comparable even to that of the pseudo-
Bayesian algorithm Faith+ LW. For adjacencies, its

8It is not hard to prove that when Adj returns a non-empty
set of DAGs, the output of NoE must be identical to that of
Adj. So in Figures 2 and 3, NoE and Adj share the same
curve. In addition, in Figure 2, Tri also shares the same curve,
for it returns the same definite adjacencies as Adj does.

9Faith+ LW uses Bayesian tests and we tried 3 values
for the prior: 0.05, 0.1, and 0.2.



accuracy seems to be among the best; for orientations, its
recall is lower than Faith+ LW but precision is higher.
Since it does not involve constraint optimization, Adj
also runs significantly faster.

In order to resolve conflicts in the remaining cases,
we try Adj+CW and Adj+HW (“hard depen-
dencies” weights).10 Figure 4 and Figure 5 show the
comparative performance of a number of algorithms.
Adj+HW and Faith+HW (i.e., NoI) have very
similar performances, with slightly different balances
between TPR and FPR, and between AP and AR.
Adj+CW and Faith+CW are also fairly compa-
rable: Adj+CW seems to output more accurate adja-
cencies than Faith+CW, but Faith+CW is more
accurate on arrows when test threshold is 0.05. Overall,
Faith+ LW seems to have the best performance, and
NoELM acheives the best arrow precision at the cost
of arrow recall (in general, using LM instead of global
Markov tends to increase precision at a significant cost
of decreasing recall.)

Remarkably, however, Adj+CW/HW turns
out to require much shorter solving times than
Faith+CW/HW/LW. The differences be-
come dramatic with only 8 variables. We generate
100 linear Gaussian models on 8 variables and from
each model draw a sample of size 500. Figure 6
shows the sorted solving times for these 100 cases.
The time saving of Adj+CW/HW is huge. It is
also interesting to note that Tri+CW is substan-
tially faster than Faith+CW, and Tri+HW than
Faith+HW, even though when there is no conflict,
Tri is significantly slower than Faith.

In addition, we generated 100 datasets on 10 variables,
with a 1-hour time-out for each dataset. It turns out that
Faith+CW/HW/LW fails to finish any case within
the time limit, whereas Adj+HW finishes 95/100 and
Adj+CW finishes 63/100.

6 CONCLUSION

We have shown how to encode a variety of weakenings
of the Faithfulness assumption on top of the framework
presented in Hyttinen et al. [2014]. The encoding re-
sults in a number of variations on their algorithm that
are asymptotically correct and query-complete under as-
sumptions that are weaker than Faithfulness. For some
of the weaker assumptions, such as Triangle-faithfulness
plus SGS-minimality, no other algorithm that is asymp-
totically correct and query-complete under them is cur-
rently known.

10Somehow Adj+ LW does not work nearly as well as
Faith+ LW, and we are still investigating the reason.
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These weakenings of Faithfulness are theoretically inter-
esting not only because Faithfulness is a controversial as-
sumption, but more importantly, also because the weaker
assumptions are in a sense as inferentially powerful as
Faithfulness. For any distribution that is consistent with
the Markov and Faithfulness assumptions, adopting any
of the weaker assumptions considered in this paper as
opposed to Faithfulness does not increase the extent to
which the distribution underdetermines the causal struc-
ture. This important fact is empirically illustrated by our
simulations that take perfect, faithful oracles as inputs.

In this connection, an open problem is how to encode the
P-minimality assumption briefly mentioned in Section
4, which is theoretically important for at least two rea-
sons. First, it is even weaker than any of the four weak-
enings of Faithfulness we encoded. Second, it remains
true that when Faithfulness happens to be true, adopting
P-minimality does not increase the extent of underdeter-
mination [Zhang, 2013].

The practical value of SAT-based causal discovery algo-
rithms is currently limited by the fact that they do not
yet scale well. Our algorithms are no exception. How-
ever, the finite-sample simulation results suggest that us-
ing a weaker faithfulness such as Adjacency-faithfulness
not only reduces the need of conflict resolution, but also
leads to substantial savings of solving time when com-
bined with a conflict resolution scheme, compared to us-
ing Faithfulness together with the same scheme. It is thus
reasonable to expect that our work here will contribute to
improving the scalability of SAT-based causal discovery.

On the other hand, we also observed that some con-
flict resolution strategies, especially the one using
“log weights”, are less accurate when combined with
Adjacency-faithfulness than they are when combined
with Faithfulness. It is thus worth exploring whether
there are alternative conflict resolution strategies that
work better with the weaker constraints.

We have focused in this paper on the task of inferring
acyclic, causally sufficient structures, from a single, ob-
servational distribution or dataset, because the studies
on weakening Faithfulness have been so focused. How-
ever, a distinctive power of the SAT-based approach is
that it can handle a very general search space, including
cyclic structures with latent confounders, as well as mul-
tiple, overlapping datasets obtained from observational
and/or experimental regimes [Hyttinen et al., 2013]. If
the causal structure over V is possibly cyclic and/or
causally insufficient, then in general the causal structure
can be represented by a mixed graph over V that (1) can
contain two types of edges, directed and bi-directed (↔),
where a bi-directed edge between X and Y means that
they are confounded by a latent variable, (2) allows mul-
tiple edges between any two variables, and (3) allows di-
rected cycles. The notion of d-separation is readily gen-
eralized to such a graph, and so are the global Markov11

and Faithfulness assumptions. We intend to further in-
vestigate to what extent the various results on weaken-
ing Faithfulness can be generalized to this setting. It is
at least clear that Adjacency-faithfulness remains a con-
sequence of Faithfulness, and using the simple, weaker
constraint imposed by Adjacency-faithfulness may also
speed things up substantially in the general setting.
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