
12

Stealthy Malware Detection and Monitoring
through VMM-Based “Out-of-the-Box”
Semantic View Reconstruction

XUXIAN JIANG

North Carolina State University

XINYUAN WANG

George Mason University

and

DONGYAN XU

Purdue University

An alarming trend in recent malware incidents is that they are armed with stealthy techniques
to detect, evade, and subvert malware detection facilities of the victim. On the defensive side, a
fundamental limitation of traditional host-based antimalware systems is that they run inside the
very hosts they are protecting (“in-the-box”), making them vulnerable to counter detection and
subversion by malware. To address this limitation, recent solutions based on virtual machine (VM)
technologies advocate placing the malware detection facilities outside of the protected VM (“out-of-
the-box”). However, they gain tamper resistance at the cost of losing the internal semantic view of
the host, which is enjoyed by “in-the-box” approaches. This poses a technical challenge known as
the semantic gap.

In this article, we present the design, implementation, and evaluation of VMwatcher—an “out-
of-the-box” approach that overcomes the semantic gap challenge. A new technique called guest
view casting is developed to reconstruct internal semantic views (e.g., files, processes, and ker-
nel modules) of a VM nonintrusively from the outside. More specifically, the new technique casts
semantic definitions of guest OS data structures and functions on virtual machine monitor (VMM)-
level VM states, so that the semantic view can be reconstructed. Furthermore, we extend guest
view casting to reconstruct details of system call events (e.g., the process that makes the system

This work was supported in part by the US National Science Foundation (NSF) under Grants
CNS-0716376, CNS-0716444 and CNS-0546173. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and do not necessarily reflect the
views of the NSF.
Authors’ addresses: Xuxian Jiang, Department of Computer Science, North Carolina State Uni-
versity, 890 Oval Drive, Raleigh, NC 27695; email: jiang@cs.ncsu.edu. Xinyuan Wang, Depart-
ment of Computer Science, George Mason University, 4400 University Drive, Fairfax, VA 22030;
email: xwangc@gmu.edu. Dongyan Xu, Department of Computer Science and CERIAS, Purdue
University, 305 N. University Street, West Lafayette, IN 47907; email: dxu@cs.purdue.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1094-9224/2010/02-ART12 $10.00
DOI 10.1145/1698750.1698752 http://doi.acm.org/10.1145/1698750.1698752

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

12:2 • X. Jiang et al.

call as well as the system call number, parameters, and return value) in the VM, enriching the
semantic view. With the semantic gap effectively narrowed, we identify three unique malware de-
tection and monitoring capabilities: (i) view comparison-based malware detection and its demon-
stration in rootkit detection; (ii) “out-of-the-box” deployment of off-the-shelf anti malware software
with improved detection accuracy and tamper-resistance; and (iii) nonintrusive system call mon-
itoring for malware and intrusion behavior observation. We have implemented a proof-of-concept
VMwatcher prototype on a number of VMM platforms. Our evaluation experiments with real-
world malware, including elusive kernel-level rootkits, demonstrate VMwatcher’s practicality and
effectiveness.

Categories and Subject Descriptors: D.4.6 [Operating System]: Security and protection—Inva-
sive software; K.6.5 [Management of Computing and Information Systems]: Security and
protection

General Terms: Security

Additional Key Words and Phrases: Malware detection, rootkits, virtual machines

ACM Reference Format:
Jiang, X., Wang, X., and XU, D. 2010. Stealthy malware detection and monitoring through VMM-
based “out-of-the-box” semantic view reconstruction. ACM Trans. Info. Syst. Sec. 13, 2, Article 12
(February 2010), 28 pages.
DOI = 10.1145/1698750.1698752 http://doi.acm.org/10.1145/1698750.1698752

1. INTRODUCTION

Internet malware (e.g., rootkits, worms, and bots) is getting increasingly
stealthy and elusive: They try to hide their presence from detection facilities
and even detect and subvert any existing anti malware software in the compro-
mised system. For example, a detailed analysis of an Agobot variant [Agobot
2004] has revealed that the malware contains malicious logic to detect and
remove more than 105 antivirus processes in the victim machine.

The threat described earlier in the text is partly attributed to a fundamental
limitation on the defensive side: Most host-based antimalware systems are in-
stalled and executed inside the very hosts that they are monitoring and protect-
ing (Figure 1(a)). Although such “in-the-box” deployment provides an antimal-
ware system with a native, semantic-rich view of the host, it in the meantime
makes the antimalware system visible, tangible, and potentially subvertable to
advanced malware residing in the host.

To address this problem, there have recently been a number of solutions
[Dunlap et al. 2002; Garfinkel and Rosenblum 2003; Joshi et al. 2005] that ad-
vocate placing the intrusion detection facilities outside of the (virtual) machine
being monitored. Based on virtual machine technologies [Barham et al. 2003;
Dike 2002], such an “out-of-the-box” approach significantly improves the tam-
per resistance of intrusion detection facilities. A virtual machine (VM) achieves
strong isolation and confines processes running inside the VM such that, even
if they are compromised by malware, it will be hard, if not impossible, to com-
promise systems outside of the VM.

However, a dilemma exists in switching from the in-the-box approach to
the out-of-the-box approach: It is well known that there exists a “semantic
gap” [Chen and Noble 2001] between the view of the VM from the outside and
the view from the inside—the latter being seen by the traditional, in-the-box

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

Stealthy Malware Detection and Monitoring • 12:3

Fig. 1. Malware detection in traditional “in-the-box” approach and in VMwatcher approach.

antimalware systems. For example, instead of seeing semantic-level objects,
such as processes, files, and kernel modules, we only see memory pages, reg-
isters, and disk blocks from outside the VM, making out-of-the-box malware
detection difficult. In other words, the out-of-the-box approach gains tamper
resistance at the cost of losing the internal semantic view of the host enjoyed
by the in-the-box approaches.

The previously described dilemma motivates us to explore the possibility
of gaining the advantages of both camps, namely enabling tamper-resistant
malware detection without losing the semantic view. In this article, we present
the design, implementation, and evaluation of VMwatcher—a VMM-based, out-
of-the-box approach that overcomes the semantic gap challenge. More specifi-
cally, VMwatcher instantiates the general virtual machine introspection (VMI)
[Garfinkel and Rosenblum 2003] methodology in a nonintrusive manner, so
that it can inspect the low-level VM states and events without perturbing the
VM’s execution. A new technique called guest view casting is developed to sys-
tematically reconstruct the VM’s internal semantic view (e.g., files, directories,
processes, and kernel-level modules) for out-of-the-box malware detection. Fur-
thermore, we extend guest view casting to reconstruct details of system call
events in the VM (e.g., the calling process as well as the system call num-
ber, parameters, and return value). The new technique is based on the key
observation that the guest OS of a VM provides all necessary semantic defi-
nitions of guess OS data structures, functions, and system calls to construct
the VM’s semantic view. As such, we can cast these definitions on the VMM-
level observations and externally derive the semantic view of the target VM
(Figure 1(b)).

VMwatcher enables new malware detection and monitoring capabilities that
are previously difficult or impossible to achieve. In this article, we identify and
demonstrate three such capabilities: (i) view comparison-based stealthy mal-
ware detection, which involves comparing a VM’s semantic views obtained from
both inside and outside for possible discrepancy detection; (ii) out-of-the-box ex-
ecution of unmodified, off-the-shelf antimalware software with improved detec-
tion accuracy. This is an extreme test to VMwatcher’s semantic gap-narrowing
technique and, interestingly, it further enables cross-platform malware scan-
ning where antimalware software developed for one platform can be readily
used for another platform; (iii) nonintrusive system call monitoring in a produc-
tion or honeypot VM, which elevates the tamper resistance of malware behavior
observation and experimentation.

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

12:4 • X. Jiang et al.

We have implemented a VMwatcher prototype on a number of VMM plat-
forms and evaluated it with a collection of real-world malware instances (e.g.,
kernel and user level rootkits). Experiments with these elusive rootkits demon-
strate VMwatcher’s unique capability of view comparison-based malware de-
tection. The VMwatcher prototype also supports out-of-the-box deployment of a
variety of off-the-shelf antimalware software such as Symantec AntiVirus and
Microsoft Windows Defender.

The rest of this article is organized as follows: Section 2 presents the design
of VMwatcher, followed by the implementation details in Section 3. We present
evaluation results in Section 4 and discuss possible limitations in Section 5.
Section 6 discusses related work, and Section 7 concludes this article.

2. VMWATCHER OVERVIEW

2.1 Design Goals and Assumption

Figure 1 illustrates the key difference between the traditional in-the-box
approach and the VMwatcher approach for malware detection. VMwatcher
achieves stronger tamper resistance by moving malware monitoring facili-
ties out of the VM being monitored. VMwatcher is based on two key enabling
techniques: (i) nonintrusive VM introspection for the procurement of low-level
(VMM-level) VM states and system call events, without deploying any facility
inside the VM (Section 2.2.1) and (ii) guest view casting for external reconstruc-
tion of VM internal semantic view (Section 2.2.2). VMwatcher has the following
three design goals:

—First, VMwatcher should not perturb the system state of the target VM. This
will prevent VMwatcher from affecting the normal execution of the VM and
causing adverse side effects (e.g., system inconsistency [Joshi et al. 2005]) in
the VM. This goal is realized by our technique for nonintrusive inspection and
analysis of low-level VM observations. Nonintrusiveness also makes it hard
for internal malicious processes to infer (external) VMwatcher activities.

—Second, VMwatcher should significantly narrow the semantic gap such that
the same malware detection system that runs inside the VM can also run
outside of the VM. As to be shown, this goal is critical to the new malware
detection capabilities. The goal is realized by our guest view casting technique
for external reconstruction of VM semantic view. Based on the reconstructed
view, antimalware systems can perform file or memory scanning operations
as if they were inside the VM.1

—Third, VMwatcher should be generic and applicable to a number of exist-
ing VMMs. Currently there exist two mainstream virtualization approaches:
full virtualization and paravirtualization. Full virtualization (as in VMware
[VMware 2008] and QEMU [Bellard 2005]) transparently supports legacy
OSs without modifying the guest OS code; while paravirtualization (as in

1We need to point out that some hooking-based features of antimalware systems are hard to support
by VM introspection. Certain high-level events (e.g., Windows API calls or hooks), which are of
interest to some antivirus software, may not be captured from low-level VMM observations.

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

Stealthy Malware Detection and Monitoring • 12:5

Xen [Barham et al. 2003] and User-Mode Linux [Dike 2002]) is less trans-
parent as it needs to modify the guest OS source code. VMwatcher aims at
supporting VMMs in both categories.

We also note that different VMMs choose to implement VMs at different lev-
els, imposing varying complexity on VMwatcher. More specifically, the lower
the virtualization level, the wider the semantic gap it will create and, conse-
quently, the greater the challenge for VMwatcher to bridge the semantic gap.
For example, because of its system call level virtualization, user-mode linux
(UML) preserves much of the semantic information (e.g., processes) and thus
leads to a much narrower semantic gap than VMware, Xen, and QEMU.

—Assumption on trusted VMM In this article, we assume a trusted VMM that
achieves VM isolation: A malware instance may compromise arbitrary entity
and facility inside the VM—including the guest OS kernel itself. However, it
cannot break out of the VM and corrupt the underlying VMM. This assump-
tion is based on the observation that the code base of a VMM is much smaller
and more stable than the legacy OS code. Furthermore, the VMM provides
a more limited interface (which can be further hardened and validated) to
untrusted VMs in the form of virtualized underlying physical resources. We
note that this assumption is consistent with that of many other VM-based
security research efforts [Dunlap et al. 2002; Garfinkel et al. 2003; Garfinkel
and Rosenblum 2003; Joshi et al. 2005; Koju et al. 2005]. We will discuss
possible attacks (e.g., VM fingerprinting) in Section 5.

2.2 Enabling Techniques

2.2.1 Nonintrusive Virtual Machine Introspection. VMwatcher follows the
VM introspection methodology to capture low-level VM states and events exter-
nally. For open-source VMMs such as Xen, QEMU, and UML, we develop VM
introspection extensions to obtain full VM state, which includes the VM’s reg-
isters, memory, and disk and to capture system calls made by processes in the
VM. To achieve nonintrusiveness, we follow the principle of passive, read-only
observation without inflicting any influence on the VM—this is important, as
such an influence would lead to undesirable consequences such as inconsistency
in the VM’s system state or perturbation in the VM’s execution.

For close-source VMMs, we only have limited access to VMM-level obser-
vations. For example, with Microsoft Virtual PC, we are not able to read VM
registers (e.g., the control register CR3) or monitor virtual interrupts. Without
a VMM’s source code, VMwatcher has to rely on whatever low-level VM state
abstraction exposed by the VMM. Details of our nonintrusive VM introspection
technique will be presented in Section 3.1.

2.2.2 Guest View Casting. Given the VMM-level observations of a running
VM, our second technique, guest view casting, will externally reconstruct the
internal semantic view of the VM. We observe that the guest OS data structure
definitions (e.g., files and directories) and function semantics (e.g., semantics of
file system drivers) can be used as “templates” to interpret low-level VM states.
As such, we can cast the guest data structure and function definitions on the

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

12:6 • X. Jiang et al.

VMM-level VM observations to derive the VM’s semantic view. For example,
given a “live” virtual disk of a running VM, the guest functions, such as guest
device drivers and related file system drivers, allow us to reconstruct semantic
information such as files and directories from the “raw” bits and bytes on the
virtual disk. Similarly, by casting guest memory data structures (e.g., process
control blocks) and functions to the physical memory pages allocated to a VM by
the VMM, we can identify each individual running process with its attributes,
such as process id and name, and derive semantic information about each loaded
kernel module inside the VM.

Guest view casting further performs high-fidelity restoration of seman-
tic objects, so that the restored objects can be presented to an antimalware
system in exactly the same way as inside the VM. For example, Tripwire
[Kim and Spafford 1994] assumes a standard UNIX-like file system layout and
calculates the checksums of files and directories to identify possible changes;
McAfee VirusScan examines file directories and attempts to spot any exist-
ing malware in these directories. As such, guest view casting needs to further
“package” the objects (e.g., files and directories) in the reconstructed semantic
view and seamlessly present these objects to the antimalware system in their
native, manipulable form.

2.2.3 Guest System Call Reconstruction. Guest view casting reconstructs
a VM’s semantic state. For malware monitoring and detection, it is also desir-
able to capture and interpret the system call events that occur inside the VM.
To this end, we extend the guest view casting technique to enable guest system
call reconstruction. More specifically, processes (including the malicious ones)
inside the VM make system calls by executing system call instructions (e.g.,
sysenter/sysexit). Such an instruction will be captured by the VMM. Our VM
introspection technique will then be invoked to further acquire low-level con-
text information relevant to the system call (e.g., register values and memory
contents). This context information will be interpreted by our extended guest
view casting technique, using system call semantics as the casting “templates.”
Guest system call reconstruction generates detailed system call information, in-
cluding the process making the system call and the system call number, param-
eters, and return value. The reconstruction of guest system calls is performed
in real time and from outside the VM, which improves the tamper resistance
of existing system call-based monitoring and detection systems.

2.3 New Malware Detection and Monitoring Capabilities

VMwatcher enables a number of useful malware detection and monitoring ca-
pabilities. The first capability is view comparison-based detection of elusive
malware. We have seen an increasing number of elusive malware instances
that hide themselves (including the related files and processes) by subverting
antimalware processes running inside the system. For view comparison, we cor-
roborate an internal view (generated from inside the VM) with an external view
(generated from outside the VM by VMwatcher) of the same objects of inter-
est and detect the existence of hidden malware based on any view discrepancy
exhibited. We note that view comparison can be performed either on the full

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

Stealthy Malware Detection and Monitoring • 12:7

semantic views of a VM, or on more focused, customized views (e.g., a list of
files/processes satisfying a certain condition) generated by a malware detection
function. As an example, running the ls command inside a Linux VM can pro-
vide an internal view of those files under the current directory. With VMwatcher,
we can run the same ls command outside of the VM and obtain an external view
of the files under the same directory. Any difference between the two ls results
will immediately lead to the detection of hidden files.

View comparison is not limited to a VM’s persistent states, such as disk
files. It can also be performed on the VM’s volatile states such as running pro-
cesses, loaded kernel modules, or even current statistics of a NIC device. We
find this capability highly valuable, especially when detecting advanced kernel-
level rootkits that hide running processes or kernel modules (Section 4.1). We
point out that view comparison would be infeasible without VMwatcher: If sep-
arated by a semantic gap, the internal and external views of a VM would not
be directly comparable.

The second capability is out-of-the-box execution of off-the-shelf antimalware
systems, which improves the detection accuracy as well as tamper resistance
of these systems. Moreover, since the guest OS of a VM may be different from
the host OS, it is possible to perform cross-platform malware detection, where
antimalware software developed for one platform (e.g., Windows) can be readily
used for another platform (e.g., Linux). We will present one such experiment in
Section 4.2.

The third capability is nonintrusive system call monitoring for malware be-
havior observation. With VMwatcher’s guest system call reconstruction tech-
nique, it is possible to monitor system calls made by any process inside a VM,
without installing any logging module in the VM or modifying the guest OS.
This capability has direct applications in a number of scenarios, such as system
call-based anomaly detection [Provos 2003], forensic analysis [King and Chen
2003], and malware experimentation [Jiang and Xu 2004; Jiang et al. 2005].

3. IMPLEMENTATION

We have implemented a proof-of-concept VMwatcher prototype on top of four
existing VMMs: VMware, QEMU, Xen, and UML.2 The prototype is able to
reconstruct semantic views of a variety of VMs, including Windows 2000/XP,
Red Hat Linux 7.2/8.0/9.0, and Fedora Core 1/2/3/4. In the following, we describe
VMwatcher implementation in detail.

3.1 VMM-Level State and Event Procurement

As mentioned in Section 2.1, VMwatcher is designed to be generically applicable
to various VMMs. Table I lists the VMM-level VM state and event observation
offered by the four VMMs. The open-source VMMs—QEMU, Xen, and UML—
allow full access to low-level VM states and events. The close-source VMware
typically exposes only the raw disk blocks and raw memory pages allocated to a

2In our current prototype, guest system call reconstruction is supported by VMware and QEMU
because of their convenient system call instruction interception.

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

12:8 • X. Jiang et al.

Table I. VMM-Level Observation of VM States and Events

Full virtualization Paravirtualization
VMM-level observation VMware QEMU Xen UML

Raw VM disk image
√ √ √ √

Raw VM memory image
√ √ √ √

Other VM hardware states (e.g., registers)
√ √ √ √

VM-related low-level events (e.g., interrupts)
√ √ √ √

VM. We recently obtained the source code of VMware Workstation 6.0 through
the VMware Academic Program. As a result, our current VMwatcher prototype
is able to access full VM states and events.

For the procurement of the VM’s raw disk and memory states, we need to
access a VM’s raw disk and memory while they are being modified. To ensure
state consistency, a VMM usually grants exclusive access (e.g., with a write
lock) to virtualized resources (e.g., memory or disk) to a VM. As a result, it
could prevent any external process from accessing them. More specifically, the
file lock in Windows imposed by VMware is mandatory, which means that any
external process such as VMwatcher is not able to read the locked file. There
are two possible solutions: One is to follow the same approach taken by cur-
rent system back-up software, which utilizes the volume shadow copy service
(more details in [Microsoft 2003]) of Windows to access the locked files. In other
words, we can create a shadow copy of the locked file and instruct VMwatcher
to access the shadow copy for VM state procurement. The other approach is to
develop a device driver that essentially subverts the host Windows kernel and
allows VMwatcher to read the locked file directly through the device driver. Our
prototype takes the first approach, which follows the nonintrusive principle, as
it will not modify the locked file. On UNIX platforms, the file lock is advisory
by default, which means that we can ignore the lock and just read the locked
file.

The previously described strategy resolves the “read–write” conflict between
running VMs and VMwatcher when both are simultaneously accessing the
same disk file in the host domain. Note that for a running VM, a file emu-
lating its virtual disk means a root file system or a hard disk partition; while
for VMwatcher, it is considered the externally observable VM disk state. We also
note that VMware, QEMU with KQEMU [Bellard 2006] support, and UML gen-
erate a temporary memory file to emulate the allocated raw physical memory
for a VM, which allows for external simultaneous access by VMwatcher. How-
ever, Xen and QEMU without KQEMU support do not create such memory file.
As such, we need to extend them to export a VM’s physical memory pages. In our
prototype, VMwatcher takes advantage of the libxc library [Xen 2004] to access
the memory of a Xen-based VM (or DomU) by mapping its physical memory
to its address space with the xc map foreign range() API and then reading the
content through the mapped memory. Similarly, we build our own library for
QEMU, which essentially allows for external VMwatcher access to the allocated
physical memory pages for a QEMU-based VM.

For the capture of a VM’s low-level events, we first leverage a VMM’s capabil-
ity of intercepting system call instructions. Such capability is readily available

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

Stealthy Malware Detection and Monitoring • 12:9

in a number of VMMs, such as VMware and QEMU. Upon the capture of a
system call instruction, VMwatcher will be invoked to collect relevant low-level
context information about this system call, such as the values of registers (CR3,
ESP, EAX, etc.) and certain memory contents in the virtual address space of
the process that makes the system call. In particular, the procurement of the
memory contents is guided by certain register values, which supply the virtual
addresses of the corresponding memory contents. With the low-level register
and memory states, we extend the guest view casting technique by casting sys-
tem call semantics to the low-level context information. The extended technique
will reconstruct detailed semantic information about the system call event
(Section 3.2.3).

3.2 Semantic View Reconstruction

Based on raw VM disk and memory states, VMwatcher uses the guest view
casting technique to extract high-level semantic information (e.g., files and
processes) and then present them seamlessly to antimalware software. In the
following, we describe our casting methods for disk and memory state recon-
struction and for guest system call reconstruction.

3.2.1 Disk State Reconstruction. It is straightforward to reconstruct the
semantic view from the raw virtual disk blocks of a VM if we understand how
files and directories are organized in the virtual disk. Particularly, our method
casts the corresponding device drivers and file system drivers of the guest OS
for disk semantic view reconstruction. For Linux, the casting is convenient as
the device drivers and file system drivers are likely part of the open-source
Linux kernel. However, this is not the case for Windows. The reason is that
the Windows kernel does not have the corresponding file system drivers for the
Linux root file systems. For the VMwatcher prototype, we have written Windows
device drivers to interpret Linux file systems (ext2/ext3 root file systems).

3.2.2 Memory State Reconstruction. It is a more challenging task to re-
construct the semantic view of the volatile VM memory. The challenge is that
it requires accurate casting of guest memory data structures and functions to
understand how the physical memory pages are utilized. Note that the casted
guest memory data structures and functions are specific to a VM kernel.

For ease of presentation, we focus our discussion on Linux for the current
32-bit architecture (which implies an addressable memory range [0, 4G-1]). In
Linux, the 4G memory space of a process is split between user space (the bottom
3GB memory) and kernel space (the top 1GB memory), and the Linux kernel is
mapped into every user-level process starting at virtual address 0xC0000000.
Based on the physical memory layout, the first Linux kernel page (with virtual
address 0xC0000000) is located in the first physical memory page (with phys-
ical address 0x00000000). This provides the starting point for our guest view
casting method: If we can access the memory file containing the raw memory of
a running VM, offset 0 in the memory file will correspond to the current mem-
ory address 0xC0000000 inside the VM. Next, we utilize the exported symbol

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

12:10 • X. Jiang et al.

Fig. 2. Guest view casting for volatile VM memory state (Linux).

information3 and apply guest view casting to identify and reconstruct guest
data structures of interest. Figure 2 shows how guest view casting is applied to
reconstruct the volatile kernel memory state of a Linux VM. More specifically,
every process in Linux is represented by a process control block (defined as
task struct), and all running processes are linked by a doubly linked list. The
head of this list is kept in a structure called init task union, which is exported
and can be identified by querying the System.map file. Following this pointer,
we can further parse the raw memory image and traverse the doubly linked list
to reconstruct detailed semantic information about each running process (e.g.,
its page table and memory layout in the mm struct data structure).

From the same memory image, we can also cast and reconstruct a number of
other important kernel data structures (e.g., the system call table, the interrupt
descriptor table, and the kernel module list) and identify the areas that contain
core kernel instructions or instructions in the loadable kernel modules. It is
worth mentioning that a user-level memory address (<3G) is usually a virtual
memory address of a process running in the VM. Since VMwatcher is running
outside of the VM, it needs to translate the virtual memory address into the
corresponding physical memory address, which can then be used to access the
VMM-level memory state.

We note that existing hardware has the capability of automating the traver-
sal of page table for address translation. However, it implicitly assumes that the

3For some commercial OSs, the locations of these symbols may not be provided. VMwatcher will
perform a full scan of the raw memory and identify the symbols by looking for certain “signatures”
[bugcheck 2006] that are unique to kernel-level data structures of interest. For example, we use
0x03001b0000000000 to identify potential process instances in the Windows XP raw memory file.

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

Stealthy Malware Detection and Monitoring • 12:11

virtual address being translated belongs to the current process whose page table
base is in CR3. For the virtual address of an arbitrary process, VMwatcher will
have to externally identify and walk through the page table of that process to
obtain the corresponding physical address and read its content. The code for this
operation is shown in the following text in function vmwatcher vir mem read32,
where addr is the virtual address to be accessed; task points to the process con-
trol block (assuming the task struct data structure in Figure 2) of the process of
interest; pde and pte refer to a page directory entry and a page table entry as-
sociated with the process, respectively; and vmwatcher phy mem read32 reads
the memory content at the physical address from the VMM-level memory state
procured by VMwatcher.

unsigned int vmwatcher_vir_mem_read32(task, addr) {

/* Step 1: obtain the page directory entry */
pde_addr = task->mm->pgd + (addr >>20) &~3;
pde = vmwatcher_phy_mem_read32(pde_addr);

/* Step 2: obtain the page table entry */
if (!(pde & PG_PRESENT)) return -1;
pte_addr = pde&~0xfff + (addr >> 10) & 0xffc;
pte = vmwatcher_phy_mem_read32(pte_addr);

/* Step 3: obtain the physical address */
if (!(pte & PG_PRESENT)) return -1;
phy_addr = pte&~0xfff + addr&0xfff;
return vmwatcher_phy_mem_read32(phy_addr);

}

Although the earlier description is in the context of Linux, guest view casting
reflects a generic, systematic methodology that can be applied to various VMM
platforms and OSs. During the prototype implementation, we have evaluated
how different OSs, service patches, and system configurations impact the cast-
ing of VM states and events. For example, OSs may have different memory lay-
out (e.g., Windows has a 2G/2G memory split between user and kernel spaces),
affecting the external location of important kernel data structures and symbols.
Moreover, different versions of the same OS may have subtle variations for the
same kernel-level data structure (e.g., Linux 2.4.20 and 2.6.15-1 have different
definitions for task struct). Configuration variation over the same OS (e.g., PAE
or swap partition support in modern OSs, such as Windows and Linux) adds
additional complexity to VM semantic view reconstruction. All such variations
should be reflected in the VMwatcher implementation. However, the guest view
casting methodology remains effective despite these variations, as confirmed by
our evaluation results in Section 4.

3.2.3 Guest System Call Reconstruction. With the low-level system call
context information (Section 3.1), guest system call reconstruction will derive
the detailed semantic information about the system call. The reconstruction

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

12:12 • X. Jiang et al.

leverages the guest view casting technique but uses system call semantics as
the casting template. In the following description, we assume Linux as the
guest OS.

To identify the process that makes the system call, we follow the ESP register
value, captured by VMwatcher upon the execution of the system call instruction,
to the location of OS data structure task struct. More specifically, we follow the
same procedure extensively used in the Linux kernel to identify the current pro-
cess (i.e., current = ESP&(8192-1)). The Linux kernel consolidates two kernel
data structures—the kernel stack and the process control block task struct—for
the current process in two consecutive pages (8,192 bytes). After locating the
content of task struct, the information about the current process can be derived
by guest view casting using the definition of task struct.

To reconstruct the parameters of the system call, we use the system call con-
vention to interpret the low-level system call context information obtained by
VMwatcher: The system call number can be obtained directly from the value of
register EAX, while the first six system call arguments are carried by registers
EBX, ECX, EDX, ESI, EDI, and EBP. However, the register values alone may
not reveal the true semantics of the corresponding arguments—the registers
may contain memory addresses pointing to the “true” semantic information
(e.g., a file name, an array of command line arguments, or an array of envi-
ronment settings). To derive the semantic information, we need to follow the
register values and locate the corresponding memory contents. The need for
such register-guided memory state procurement also arises in another situa-
tion: If the system call involves more than six arguments, they will all be pushed
to the stack and register EBX will point to the starting address in the stack. In
this case, we need to follow EBX to obtain the arguments in the stack.

We note that the previously described register-guided memory state pro-
curement involves accessing the virtual address space of the process making
the system call and hence is more complicated than accessing the OS kernel
data structures. Fortunately, the memory state reconstruction technique in
Section 3.2.2 can be readily applied to perform this task: First, the page ta-
ble of the current process can be located by following the value of register CR3.
For each register that carries a pointer (virtual address) argument of the sys-
tem call, page table look-up will be performed to map the virtual address to the
physical address. Finally, the corresponding memory content can be accessed
by the physical address. The astute reader may notice that these steps are per-
formed exactly by VMwatcher routine vmwatcher vir mem read32 shown in
Section 3.2.2.

To reconstruct the return value of the system call, VMwatcher keeps track
of the system call and captures its completion, on which the return value will
be obtained by a procedure similar to the one described earlier in the text for
system call argument reconstruction. More specifically, the completion of the
system call is indicated by the execution of the instruction right after the system
call instruction in the same process. As such, VMwatcher maintains at least
the following book-keeping information about each system call: (i) semantic
information that has been reconstructed upon the start of the system call (i.e.,
id of the calling process, as well as system call number and parameters), (ii) the

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

Stealthy Malware Detection and Monitoring • 12:13

base address of the calling process’ page table, and (iii) the (virtual) address of
the instruction right after the system call instruction. This way, the completion
of a system call can be captured and unambiguously matched with the start of
the same system call—despite the possibility of context switches during system
call handling.

In the current VMwatcher prototype, guest system call reconstruction has
been implemented in both VMware and QEMU VMM platforms, indicating the
generality of the guest view casting technique. Our prototype supports real-
time capture and reconstruction of 260 Linux system calls.

4. EVALUATION

We evaluate the VMwatcher prototype to demonstrate the three new malware
detection and monitoring capabilities (Section 2.3) enabled by VMwatcher. In
particular, we show: (i) how VM view comparison effectively detects one of the
most stealthy types of malware—rootkits (Section 4.1); (ii) how VMwatcher en-
ables out-of-the-box deployment of legacy anti malware systems (Section 4.2);
and (iii) how VMwatcher supports nonintrusive system call monitoring for mal-
ware/attack behavior observation (Section 4.3). Finally, we present performance
measurement results (Section 4.4).

4.1 View Comparison-Based Malware Detection

View comparison-based malware detection exploits the very nature of rootkits—
hiding attack processes and related files. We have experimented with more than
10 Windows rootkits as well as a dozen Linux rootkits and the view compari-
son capability are able to detect all the rootkits tested and pinpoint the hidden
processes and/or files. Due to space constraints, we only present three repre-
sentative experiments in detail.

Experiment I—view comparison on volatile VM states. The first experiment
involves a Windows kernel-level FU rootkit [FU 2005]. Figure 3 shows the
screenshot of an infected system where the FU rootkit runs and hides a process
with PID 336. The system is based on VMware, while the host OS is Scientific
Linux 4.4 and the guest OS is Windows XP with SP2. In the figure, the back-
ground GUI screen with the Windows command shell window shows the inside
of the VM, while the foreground screen (encapsulated with a dashed box) on the
left shows the VMwatcher-generated external view of the running processes in
the same VM.

From the figure, we can observe that a Window command shell (PID: 1080) is
created, and it is used to invoke the FU rootkit to hide process 336. This hidden
process is a running SSH client program—SSH Secure File Transfer (version
3.2.9). This screenshot also shows a short help message on how to invoke the FU
rootkit, as well as current Windows Task Manager output. The Windows Task
Manager does not list the SSH client process, indicating that this (running)
process has been successfully hidden.

In comparison, the hidden process is exposed by the external view generated
by VMwatcher: The small box with solid lines inside the foreground screen
highlights the SshClient.exe process, which is not shown by the (internal) output

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

12:14 • X. Jiang et al.

Fig. 3. A VMware-based Windows XP VM infected by the FU rootkit.

of Windows Task Manager. Although we manually conduct this rootkit attack,
VMwatcher can be readily adopted by real-world honeypots to detect in-the-
wild rootkit attacks. In fact, recent incidents [Rbot 2006] show that the same
FU rootkit has been actively used to hide the presence of advanced stealthy
bots.

Experiment II—view comparison on persistent VM states. In this experi-
ment, we prepare a VMware-based Windows XP VM that contains the files of
two rootkits, Hacker Defender (or hxdef) [HackDefender 2004] and NTRootkit
[NTRootkit 2005], in the c:\demo directory. Both rootkits, when running, are
able to hide selected attack files and processes. For evaluation purposes, we only
run the hxdef rootkit in the VM. After activating hxdef, we run the Symantec
AntiVirus software inside the VM; the scanning result is shown in Figure 4(a).
The result indicates that the internal view successfully identifies NTRootkit
but it misses hxdef, because the latter has hidden any file, directory, or process
with the string hxdef in its name.

Meanwhile, we run the same version of Symantec AntiVirus outside of the
VM in the host OS and the scanning is based on the VM’s semantic view re-
constructed by VMwatcher. The result is shown in Figure 4(b). Different from
the internal result, the external result catches both NTRootkit and hxdef. The
difference is highlighted by the dashed box in Figure 4(b). More importantly,
by comparing the two views, we can infer that hxdef, not NTRootkit, is the one
that is currently running.

Experiment III—view comparison on both volatile and persistent VM states.
We describe our experiment with the adore-ng [Adoreng 2004] rootkit—an ad-
vanced Linux kernel rootkit that will directly replace certain kernel-level func-
tion pointers to hide files and processes.

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

Stealthy Malware Detection and Monitoring • 12:15

Fig. 4. Comparison of internal and external views of a hxdef-infected VM.

Fig. 5. A Xen-based Fedora Core 4 VM infected by the adore-ng rootkit.

Figure 5 is a screenshot showing an adore-ng rootkit that infects a Xen-
based Fedora Core 4 VM. There are four numbered xterm windows in the
figure. The xterm window with the number 0 on the right shows the inside
of the VM, where the adore-ng kernel-level module (LKM) is first loaded
(insmod/lib/modules/2.6.16-xenU/misc/adore-ng-2.6.ko). A user-level pro-
gram called ava is used to control the LKM’s functionality. Then, a backdoor
daemon is executed (/root/demo/backdoor). After that, adore-ng is instructed
to conceal the existences of any local files named backdoor (ava h backdoor)

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

12:16 • X. Jiang et al.

and the backdoor daemon with PID 1490 (ava i 1490). As revealed in the same
xterm window, the outputs of commands ls and ps are already manipulated to
conceal the existence of any file with the name backdoor and any process with
PID 1490.

The external view of the VM is shown on the left side of Figure 5. In par-
ticular, xterm window 2 lists the files under the directory /root/demo/ in
the VM; while xterm window 3 enumerates current running processes inside
the VM. From xterm window 2, the internally-concealed backdoor file is visi-
ble to VMwatcher. Similarly, xterm window 3 highlights the internally hidden
backdoor process with PID 1490. This experiment further demonstrates that
the semantic view reconstructed by VMwatcher cannot be manipulated by the
rootkit running inside the VM. As such, view comparison effectively exposes
the rootkit’s existence (even if the exposed file and process have unsuspected
names).

4.2 Out-of-the-Box Deployment of Legacy Antimalware Software

VMwatcher also supports out-of-the-box deployment and execution of a number
of off-the-shelf antimalware systems and naturally enables the new capability
of cross-platform malware detection. We have successfully experimented with
11 real-world antivirus software systems shown in Table II. For each antivirus
system, Table II also summarizes the corresponding evaluation environment,
that is, the VMM, the host OS, and the guest OS.

In the following, we describe an experiment that deploys the Symantec
AntiVirus software (Windows version) out of the box to detect malware in-
stances inside a Linux honeypot VM.

Experiment IV—cross-platform malware detection. The Linux honeypot is
a VMware-based Red Hat 7.2 VM that contains a number of remotely ex-
ploitable vulnerabilities. We run Symantec AntiVirus (version 10.1.0.396) in
the Windows host domain to detect possible infections inside the honeypot.
Figure 6 shows two screenshots of the same Symantec AntiVirus software (ver-
sion 10.1.0.396): one before its scanning and one after the scanning. More
specifically, Figure 6(a) shows that the corresponding virtual disk of the hon-
eypot VM is externally interpreted and transparently represented as a local
“Z:” drive, while Figure 6(b) reports 21 infected files in the VM. Among the
infected files, there is a rootkit named SHv4 [Miller 2003], which replaces a
number of system-wide utility commands (e.g., ps, ls, ifconfig, netstat, and sys-
logd) with its own. We also notice that there is a Lion worm [Lion 2001] infection
in the report (highlighted in the dashed box of Figure 6(b)), which we believe
is misclassified. The two Lion-infected files identified are tksb and tkp under
directory /lib/ldd.so. It turns out that tksb is a shell script that functions as
a log cleaner, while tkp is a Perl script essentially looking for user names and
passwords in collected network traffic. Later forensic analysis reveals that an
attacker first exploited the Apache web server vulnerability [Apache 2003] to
gain system access. After that, he exploited the local ptrace kernel vulnerability
[Secunia 2003] to escalate his privilege to system root before installing the SHv4
rootkit.

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

Stealthy Malware Detection and Monitoring • 12:17

Table II. A List of Off-the-Shelf Antivirus Software Systems Deployed on
VMwatcher

Software VMM Guest OS Host OS
Symantec VMware Windows XP (SP2) Windows
AntiVirus Server 1.0.1 Red Hat 7.2, 8.0, 9.0 XP (SP2)
10.1.0396 build-29996 FC1, 2, 3, 4, RHEL4

Windows Defender VMware Windows XP (SP2) Windows
(1.1.1592.0) Server 1.0.1 XP (SP2)

Malicious Software build-29996 Red Hat 7.2, 8.0, 9.0
Removal Tool 1.2 FC1, 2, 3, 4, RHEL4

Trend Micro Xen 3.0.2-2 Red Hat FC4 Scientific
ServerProtect VMware Windows XP (SP2) Linux 4.4
for Linux 2.5 Server 1.0.1 Red Hat 7.2, 8.0, 9.0

build-29996 FC1, 2, 3, 4, RHEL4
Kaspersky Xen 3.0.2-2 Red Hat FC4 Scientific

Anti-Virus 5.5 VMware Windows XP (SP2) Linux 4.4
(trial version) Server 1.0.1 Red Hat 7.2, 8.0, 9.0

build-29996 FC1, 2, 3, 4, RHEL4
F-Secure Xen 3.0.2-2 Red Hat FC4 Scientific

Anti-Virus 5.20 VMware Windows XP (SP2) Linux 4.4
Build 5050 Server 1.0.1 Red Hat 7.2, 8.0, 9.0

build-29996 FC1, 2, 3, 4, RHEL4
Frisk F-PROT Xen 3.0.2-2 Debian 3.1 Scientific
AntiVirus For QEMU Red Hat 7.2, 8.0, 9.0 Linux 4.4

Linux 4.6.6 0.8.2
McAfee UML Red Hat 7.2, 8.0, 9.0 Red Hat

VirusScan 4.24.0 2.4.24 (RHEL4)
Sophos QEMU Red Hat 7.2, 8.0, 9.0 Red Hat

Anti-Virus 4.05.0 0.8.2 (RHEL4)
Tripwire 4.05.0 UML Red Hat 7.2, 8.0, 9.0 Red Hat
(Open Source) 2.4.24 (RHEL4)
ClamAV 0.88.5 UML Red Hat 7.2, 8.0, 9.0 Red Hat
(Open Source) 2.4.24 (RHEL4)

For comparison, we also run Microsoft Windows Defender (version
1.1.1592.0) in the host domain of the same compromised VM; the result is
shown in Figure 7. Interestingly, the scanning result shows no malware infec-
tion. It seems that this specific version of antivirus software targets malware
on Windows platforms thus missing the Linux malware.

4.3 Nonintrusive Malware/Attack Monitoring

To demonstrate the nonintrusive system call monitoring capability of
VMwatcher, we deploy VMwatcher in an integrated, VM-based malware exper-
imentation platform we developed earlier. The platform consists of a front end
and a back end: The front end is a honeyfarm [Jiang and Xu 2004] that captures
real-world malware and intrusion incidents from production networks, while
the back end is a confined and high-fidelity “playground” [Jiang et al. 2005]
where real-world malware can be unleashed and closely observed. Previously,
we installed Sebek [Sebek 2006]—a widely used honeypot monitoring and log-
ging tool—inside the front-end and back-end VMs. Unfortunately, Sebek can
be detected, disabled, or bypassed by counter-monitoring techniques, such as

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

12:18 • X. Jiang et al.

Fig. 6. External inspection of a honeypot using Symantec AntiVirus (version 10.1.0.396).

Fig. 7. External inspection of a honeypot using Microsoft Windows Defender (version 1.1.1592.0).

unsebek [Corey 2004] and NoSEBrEaK [Dornseif et al. 2004], which can be
easily adopted by stealthy malware in the wild. In comparison, VMwatcher is
less susceptible to counter monitoring as it runs outside without any in-the-box
entity and thus is entirely passive. With VMwatcher, we can now remove Sebek
from the VMs.

In the following, we describe two experiments to demonstrate the effective-
ness of VMwatcher in monitoring and logging malware and attack behavior in
a nonintrusive, tamper-resistant way.

Experiment V—nonintrusive monitoring of attack behavior. This attack inci-
dent, captured by the VMwatcher-enabled front-end honeyfarm, is against the
vulnerable Samba server (version 2.2.1a-4). The honeypot VM was deployed
at 21:00PM, October 7th, 2007, and compromised 2 hours later. VMwatcher
captured and logged all system call events during and after the attacker’s ex-
ploitation. The system call log contains sufficient details to understand the

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

Stealthy Malware Detection and Monitoring • 12:19

Fig. 8. VMwatcher log excerpt showing attacker behavior after breaking into Samba server.

attacker’s exploitation steps and post exploitation behavior. Figure 8 shows an
excerpt of the log that records the commands executed by the attacher via the
shell (bash) spawned from the exploitation.

From Figure 8, we observe that, after the successful exploitation, the at-
tacker gained root privilege directly from the vulnerable Samba server and
then downloaded and installed a set of prepackaged tools (mihai.tgz and
malice.tgz). Later, forensic analysis shows that the tools include an infamous
rootkit named SucKit [SucKit 2001] and a trojaned sshd daemon. Interest-
ingly, the attacker used the trojaned sshd daemon (which spawned another
shell with PID 7991) to upgrade and patch the vulnerable Samba server so
that no other malware or attackers can infiltrate the server through the same
vulnerability.

Experiment VI—nonintrusive monitoring of Lion worm behavior. This ex-
periment with the Lion worm [Lion 2001] is performed in the backend mal-
ware playground enabled by VMwatcher. Figure 9 shows a log excerpt from a
VMwatcher-enabled VM in the playground. The Lion worm exploits a vulner-
able version of the DNS server and the VMwatcher log reveals details of the
worm’s behavior after compromising the DNS server.

More specifically, the Lion worm first redirects standard input, output, and
error to an open file descriptor 6—a network socket (by making sys dup2 sys-
tem call) and creates a shell (sys execve). After the redirection, the compromised
named process will get the attacker’s instructions directly from the established
network connection and put all output to the same network connection. The
Lion worm then reads local password files /etc/passwd and /etc/shadow, re-
moves the system-wide log data (through the three bin/rm commands), repli-
cates itself in the compromised VM (/usr/bin/lynx), and executes (./lion). From
the VMwatcher log, we also observe that the Lion worm attempts to replace all
index.html files in the compromised VM with its own copy, defacing the corre-
sponding Web page.

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

12:20 • X. Jiang et al.

Fig. 9. VMwatcher log excerpt showing Lion worm behavior after compromising a vulnerable DNS
server.

4.4 Performance

In this section, we present three sets of performance measurement results.
The first set of experiments is to compare the time to perform internal scan-

ning and external scanning (enabled by VMwatcher) on a VM. In particular,
we choose seven different antimalware software systems and each system per-
forms an external scan and an internal scan on a particular VM: (i) Syman-
tec AntiVirus, Microsoft Windows Defender and Microsoft Malicious Software
Removal Tool each scan a Windows XP VM (256MB memory and 6GB disk)
with the host OS being Windows XP Professional (2GB memory and 120GB
disk); (ii) Kaspersky Anti-Virus inspects a Red Hat 8.0 VM (1GB memory and
4GB disk) with Scientific Linux 4.4 as the host OS (2GB memory and 180GB
disk); (iii) F-PROT AntiVirus examines a Debian 3.1 Linux VM based on the
Xen VMM while domain 0 is running Scientific Linux 4.4 (4GB memory and
330GB disk); (iv) McAfee VirusScan and Sophos Anti-Virus each look into a
Red Hat 7.0 VM (128MB memory and 512MB disk) that is running inside a
UML VMM. The host OS is RedHat Enterprise Linux 4 with 2GB memory and
135GB disk. The results and the total number of scanned files are shown in
Figure 10. It is interesting to notice that the internal scanning session always
takes longer time than its external counterpart, a result that sounds counter-
intuitive. However, considering the potential disk I/O slowdown introduced by
virtualization as well as the availability of larger memory space in the host
domain, the shorter external scanning time is actually reasonable. Another
reason is that any software-based VM implementation (on the ×86 platform)
needs to faithfully emulate “privileged” instructions (e.g., STI/CLI) and “sensi-
tive” instructions (e.g., PUSHF/POPF). Such emulation may also have slowed
down the internal scanning.

The second set of experiments measures the time to analyze a live raw VM
memory image by VMwatcher. Note that in the current VMwatcher prototype,

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

Stealthy Malware Detection and Monitoring • 12:21

Fig. 10. Comparison of internal scanning and external scanning time (external scanning is enabled
by VMwatcher).

Windows Memory Analysis Time

10
16

32

50

80

0

20

40

60

80

100

128M 256M 512M 768M 1,024M

Memory Size (M)

M
em

o
ry

 A
n

al
ys

is
 T

im
e

(s
ec

)

Fig. 11. Time to analyze live raw VM Memory image.

we assume that the Windows kernel-level symbols are not available due to its
close-source nature, while the Linux symbols are available and can be used
to speed up the memory semantic view reconstruction. Figure 11 shows the
time needed to examine a raw Windows memory image when we vary the
memory size from 128MB to 1GB. As expected, the analysis time grows with
the size of available memory allocated to the VM. Our results also show that
with the availability of Linux symbols, a raw memory analysis session can
be finished within 0.5 second, regardless of the size of memory allocated to
the VM.

The third set of experiments measures the overhead introduced by real-time
interception and reconstruction of guest system call events. Our physical test
machine is a Dell PowerEdge 2685 server with a 3.73GHz Intel Xeon proces-
sor and 4GB of RAM. The host OS is RedHat Fedora Core 5 with the default
2.6.15-1.2054 FC5 Linux kernel. We evaluate the VMware-based implemen-
tation of VMwatcher using two benchmarks: One is the standard UnixBench
[UnixBench 2007] microbenchmark while the another one is an application
benchmark using ApacheBench [Apache 2007]. To measure the overhead, we
run each benchmark program twice: Once with VMwatcher disabled and once
with VMwatcher enabled for guest system call reconstruction. Each recorded
result is the average of 10 runs.

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

12:22 • X. Jiang et al.

Table III. VMwatcher Overhead Measurement Using UnixBench
(For the First Two Data Columns, Higher is Better)

Benchmark w/o VMwatcher w/VMwatcher Overhead
Dhrystone 654.0 654.4 0%
Whetstone 311.2 279.9 10.1%
Execl 334.0 297.3 11.0%
File copy 256B 387.8 350.9 9.3%
File copy 1kB 600.9 588.0 2.1%
File copy 4kB 1,055.0 1,000.14 5.2%
Pipe throughput 269.1 260.8 3.3%
Process creation 245.3 225.2 8.2%
Shell scripts (8) 558.3 537.8 3.7%
System call 198.8 189.5 4.7%

The UnixBench benchmark measures the fine-grained performance impact
of VMwatcher; the results are shown in Table III: The worst-case overhead is
11.0%, while the overheads in most other cases are below 10%. For the Apache
experiment, we run the Apache Web server in the default Worker MPM mode
and run the standard ApacheBench program in another machine connected to
the Web server via a dedicated switch. The ApacheBench program stresses the
Web server with requests for a Web page of 32KB and reports the Web server
throughput. Our experiments show that VMwatcher incurs a 3.8% degradation
of Web server throughput.

5. DISCUSSION

VMwatcher assumes a trusted VMM layer to isolate untrusted processes inside
a monitored VM from affecting VMwatcher. This assumption is needed and
there exist parallel efforts in building such trusted VMMs (Section 6). The
VMM essentially establishes the root of trust of the entire system and secures
the lowest-level system access. In the following, we examine possible attacks
against VMwatcher.

Guest view subversion. Such an attack could be launched from inside the VM
by distorting the guest function or state of the VM. The distorted view will then
be observed by VMwatcher through VM introspection, resulting in erroneous
guest view reconstruction. We further classify the guest view subversion attacks
into two types—both will lead to distorted VMM-level observations:

The first type of guest view subversion attacks involve introducing a sub-
verted guest kernel function, which is different from the one used by VMwatcher
for semantic view reconstruction. For example, guest system call reconstruction
requires the semantics and convention of system calls. Hence, it is possible that
an attacker remap the system calls or system call convention in a nonstandard
way to mislead or escape VMwatcher. As another example, instead of using
the original Linux kernel scheduler with the default all-tasks list to dispatch
processes, an advanced malware could implement its own scheduler, which
maintains a shadow list of hidden processes without linking them to the all-
tasks list. Without knowledge about the subverted scheduler, VMwatcher is
not able to accurately identify all running processes. Although it is challenging

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

Stealthy Malware Detection and Monitoring • 12:23

to understand the details of a subverted guest function, we point out that the
subversion behavior itself could be detected. In the previous example, the sub-
version of the original scheduler code will essentially modify the text segment of
the guest kernel and a simple hash calculation (e.g., MD5) will immediately de-
tect that. To counter this type of attack, VMwatcher can be extended to validate
the integrity of guest functions and critical kernel objects (e.g., sys call table
and IDT). Some existing systems such as Livewire [Garfinkel and Rosenblum
2003], Copilot [Petroni et al. 2004], SecVisor [Seshadri et al. 2007], and NICKLE
[Riley et al. 2008] can be leveraged for that purpose.

The second type of guest view subversion attacks involve contaminating the
guest internal states presented to VMwatcher for semantic view reconstruction.
For example, an attacker may choose to manipulate certain guest kernel data
structures (e.g., the global process list) to mislead the guest view casting func-
tion. The current VMwatcher prototype does require that the guest kernel data
structures used by VMwatcher be trusted. Fortunately, there exist solutions
that can be leveraged to either ensure the semantic integrity of kernel data
structures [Petroni et al. 2006] or prevent the injection of malicious kernel code
that manipulates kernel data structures [Riley et al. 2008].

Guest caching exploitation. This attack may occur if a modified file is not re-
flected in time in the disk that is being examined by VMwatcher. One potential
result from this attack is that a malware may avoid any file scanning-based
detection, as it can deliberately hide itself inside the cache without actually
committing to the disk. There are two possible countermeasures: One is to
make sure that those related guest kernel threads, such as bdflush and kup-
date, dutifully look for dirty pages and flush them to the disk in time. The second
countermeasure is to directly examine the cached contents through VM intro-
spection since the cached contents are still in the volatile memory. However,
one challenge here is to seamlessly integrate the memory content with related
disk files and present them to the external antimalware functions.

VM fingerprinting. Finally, we note that VM environments can potentially
be fingerprinted and detected [Klein 2003; Rutkowska 2004] by attackers. In
fact, a number of recent malware instances are able to check whether they
are running inside a VM and if so, choose to exhibit different behavior [Agobot
2004]. As a counte measure, we can improve the fidelity of VM implementa-
tion (e.g., as proposed in Kortchinsky [2004] and Liston and Skoudis [2006]) to
thwart some of the VM detection schemes. Still, there exist more fundamental
attacks (e.g., VM detection based on timing and performance overhead char-
acterization) that are difficult to mitigate. However, from another perspective,
as virtualization continues to gain popularity, the concern over VM detection
may become less significant as more malware becomes VMM agnostic with VMs
becoming increasingly attractive targets to attackers.

6. RELATED WORK

Enhancing security with virtualization. The first area of related work is the
use of virtualization technologies to enhance system security. More specifically,

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

12:24 • X. Jiang et al.

leveraging recent advances in virtualization, researchers have adopted VMs
to detect intrusions [Garfinkel and Rosenblum 2003; Joshi et al. 2005; Kourai
and Chiba 2005], analyze intrusions [Dunlap et al. 2002; Koju et al. 2005],
diagnose system problems [King et al. 2005; Whitaker et al. 2004], iso-
late services [Bryant et al. 2003; Meushaw and Simard 2000], and imple-
ment honeypots/honeyfarms [Honeynet 2008; Anagnostakis et al. 2005; Jiang
and Xu 2004]. These applications leverage the desirable properties of VMs
(e.g., isolation and dynamic configurability) to improve security and account-
ability of systems without having to trust the guest OS and application
programs.

Our work complements or enhances these efforts by elevating the usability
of the VM introspection methodology [Garfinkel and Rosenblum 2003], which
is pioneered by the Livewire system [Garfinkel and Rosenblum 2003]. VM in-
trospection in Livewire is capable of examining low-level VM states (e.g., disk
blocks and memory pages) from outside the VM. However, for the reconstruc-
tion of high-level semantic views (e.g., files, processes, and kernel modules), it
still needs a new technique, similar to the guest view casting technique in our
system, to effectively bridge the semantic gap. While VMwatcher aims at sup-
porting legacy antimalware software, Livewire mainly supports a specialized
IDS built from scratch to detect a more targeted set of intrusions. Further-
more, we propose and demonstrate the opportunity of view comparison for self-
hiding malware detection, which is not addressed in Garfinkel and Rosenblum
[2003].

IntroVirt [Joshi et al. 2005] is another closely related work that applies
VM introspection to execute vulnerability-specific predicates in a VM for in-
trusion reproduction. There exist two major differences between IntroVirt and
VMwatcher. First, IntroVirt develops a specialized predicate engine that does
not aim at accommodating legacy antimalware systems—a goal achieved by
VMwatcher. Second, IntroVirt needs to overwrite a portion of the vulnerable
program code with its own predicates or invoke existing code in either guest
applications or the guest kernel. Such an approach is considered intrusive and
will introduce undesirable perturbation in the VM. Consequently, it needs to
resort to taking a checkpoint of the whole VM before making any changes to the
VM state and rolling back to the saved checkpoint if perturbance is detected
[Joshi et al. 2005]. In contrast, VMwatcher takes a nonintrusive approach and
aims at externally reconstructing VM semantic views.

Implementing malware with virtualization. Leveraging virtualization tech-
nologies, researchers have also demonstrated the potential of implementing
virtualization-based malware [King et al. 2006; Rutkowska 2006; Zovi 2006].
King et al. [2006] proposes the notion of VM-based rootkit (VMBR) which can be
dynamically inserted underneath an existing OS. Rutkowska et al. [2006] fur-
ther implements a hardware virtualization-based rootkit prototype called “Blue
Pill,” claiming the creation of 100% undetectable malware. Another hardware
virtualization-based rootkit—the Vitriol [Zovi 2006] rootkit—independently
confirms this significant threat. We point out that these emerging threats can be
mitigated or even defeated by recent research efforts in secure booting [Arbaugh

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

Stealthy Malware Detection and Monitoring • 12:25

et al. 1997] and secure VMMs, such as sHype [Sailer et al. 2005] and TRANGO
[Trango 2008]. With secure booting, VMMs, will maintain the lowest-level ac-
cess to the system thus preventing them from being subverted. Paralleling these
efforts, VMwatcher assumes the nonsubvertability of VMMs in anticipation of
future deployment of these anti subversion solutions.

Detecting integrity violations with secure monitors. VMwatcher is also re-
lated to projects that use secure monitors to detect system integrity violations
[Garfinkel et al. 2003; Pennington et al. 2003, Petroni et al. 2004, 2006]. Copi-
lot [Petroni et al. 2004] detects possible kernel integrity violations by running
the monitoring software on a separate PCI card. The monitoring software pe-
riodically grabs a copy of the system memory and examines possible integrity
violations. A specification-based integrity checker is later proposed [Petroni
et al. 2006] to examine the integrity of dynamic kernel data. Note that these
two systems only take snapshots of volatile memory states. The storage-based
intrusion monitor [Pennington et al. 2003] leverages the isolation provided by
a file server (e.g., an NFS server) and independently identifies possible symp-
toms of malware infections in disk states. Note that it only captures a sys-
tem’s persistent states. As a result, it is not able to detect elusive malware that
may be hiding entirely in the memory (e.g., kernel-level rootkits). In contrast,
VMwatcher examines both volatile and persistent states, as well as system call
events for malware detection and monitoring.

Detecting malware with cross-view comparison. The notion of view
comparison-based analysis is initially proposed by Wang et al. [2005] in their
Strider GhostBuster system. Their system performs two scans—an internal
scan and an external clean scan—and the two scanning results are then com-
pared for malware detection. However, the external clean scan is done by reboot-
ing the machine being examined with a clean OS (i.e., a WinPE CD). This will,
unfortunately, destroy all nonpersistent states. On the other hand, VMwatcher
performs live VM state and system call event procurement and semantic view
reconstruction without losing any malware information. A number of recent
rootkit detection systems such as RootkitRevealer [2007] and BlackLight [2007]
also adopt the same methodology to detect stealthy malware. However, there
is a lack of a trustworthy view for comparison as all the views (though from
different perspectives) are generated from inside the system being monitored.

General intrusion detection techniques. Finally, we discuss the gen-
eral intrusion detection systems (IDS), including the host-based IDS
[Kim and Spafford 1994] and the network-based IDS [Snort 2008; Paxson 1999;
Weaver et al. 2007]. We note that a network-based IDS is deployed outside of
an endsystem, achieving high attack resistance at the cost of lower visibility
on the internal system states. A traditional host-based IDS runs inside the
endsystem and is able to directly inspect the states and events of the system,
achieving better visibility. However, it sacrifices tamper resistance as it could
be compromised during an attack. In contrast, VMwatcher achieves stronger
tamper resistance while maintaining high visibility on the system’s internal
semantic states and system call events.

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

12:26 • X. Jiang et al.

7. CONCLUSION

We have presented VMwatcher, a VMM-based approach that enables out-of-
the-box malware detection and monitoring by addressing the semantic gap
challenge. More specifically, VMwatcher achieves stronger tamper resistance
by moving antimalware facilities out of the monitored VM while maintaining
the native semantic view of the VM via external semantic view reconstruction.
Our evaluation of the VMwatcher prototype demonstrates its practicality and
effectiveness. In particular, our experiments with real-world stealthy rootkits
and worms further demonstrate the power of the new malware detection and
monitoring capabilities enabled by VMwatcher.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous ACM Transactions on Infor-
mation and System Security (TISSEC) reviewers whose comments have greatly
helped to improve the presentation of this article. The anonymous reviewers
of a preliminary conference version of this article [Jiang et al. 2007] are also
acknowledged.

REFERENCES

ADORE-NG ROOTKIT. 2004. Homepage. http://stealth.openwall.net/rootkits/.
AGOBOT. 2004. Description. http://www.f-secure.com/v-descs/agobot.shtml.
ANAGNOSTAKIS, K. G., SIDIROGLOU, S., AKRITIDIS, P., XINIDIS, K., MARKATOS, E., AND KEROMYTIS, A. D.

2005. Detecting targeted attacks using shadow honey-pots. In Proceedings of the 14th USENIX
Security Symposium. USENIX, Berkeley, CA.

APACHE. 2007. The Apache HTTP Server Project. http://httpd.apache.org.
ARBAUGH, W. A., FARBERT, D. J., AND SMITH, J. M. 1997. A secure and reliable bootstrap architecture.

In Proceedings of the 1997 IEEE Symposium on Security and Privacy. IEEE, Los Alamitos, CA.
BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T., A. HO, R. N., PRATT, I., AND WARFIELD,

A. 2003. Xen and the art of virtualization. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles. ACM, New York.

BELLARD, F. 2005. QEMU, a fast and portable dynamic translator. In Proceedings of USENIX
Annual Technical Conference 2005 (FREENIX Track). USENIX, Berkeley, CA.

BELLARD, F. 2006. QEMU accelerator user documentation. http://fabrice.bellard.free.fr/qemu/
kqemudoc.html.

BLACKLIGHT. 2007. Homepage. http://www.f-secure.com/blacklight/.
BRYANT, E., EARLY, J., GOPALAKRISHNA, R., ROTH, G., SPAFFORD, E. H., WATSON, K., WILLIAMS, P., AND

YOST, S. 2003. Poly2 Paradigm: A secure network service architecture. In Proceedings of the
19th Annual Computer Security Applications Conference. IEEE, Los Alamitos, CA.

BUGCHECK. 2006. GREPEXEC: Grepping executive objects from pool memory. http://www. unin-
formed.org/?v=4&a=2&t=sumry.

CHEN, P. M. AND NOBLE, B. D. 2001. When virtual is better than real. HotOS VIII, Schoss Elmau,
Germany.

COREY, J. 2004. Local honey-pot identification. Phrack 62, 7.
DIKE, J. 2002. User mode Linux. http://user-mode-linux.sourceforge.net.
DORNSEIF, M., HOLZ, T., AND KLEIN, C. 2004. NoSEBrEaK - Attacking honey-nets. In Proceedings

of the 5th Annual IEEE Information Assurance Workshop. IEEE, Los Alamitos, CA.
DUNLAP, G. W., KING, S. T., CINAR, S., BASRAI, M. A., AND CHEN, P. M. 2002. ReVirt: Enabling intru-

sion analysis through virtual-machine logging and replay. In Proceedings of the 5th Symposium
on Operating Systems Design and Implementation (OSDI). USENIX, Berkeley, CA.

FU. 2005. Rootkit. http://www.rootkit.com/board project fused.php?did=proj12.

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

Stealthy Malware Detection and Monitoring • 12:27

GARFINKEL, T., PFAFF, B., CHOW, J., ROSENBLUM, M., AND BONEH, D. 2003. Terra: A virtual machine-
based platform for trusted computing. In Proceedings of the 2003 Symposium on Operating Sys-
tems Principles (SOSP’03). ACM, New York.

GARFINKEL, T. AND ROSENBLUM, M. 2003. A virtual machine introspection-based architecture for
intrusion detection. In Proceedings of the 2003 Network and Distributed System Security Sym-
posium. IEEE, Los Alamitos, CA.

HONEYNET. 2008. Homepage. http://www.honeynet.org.
HXDEF. http://hxdef.czweb.org.
JIANG, X., WANG, X., AND XU, D. 2007. Stealthy malware detection through VMM-based “out-of-

the-box” semantic view reconstruction. In Proceedings of the 14th ACM Conference on Computer
and Communications Security (CCS’07). ACM, New York.

JIANG, X. AND XU, D. 2004. Collapsar: A VM-based architecture for network attack detention
center. In Proceedings of the 13th USENIX Security Symposium. USENIX, Berkeley, CA.

JIANG, X., XU, D., WANG, H. J., AND SPAFFORD, E. H. 2005. Virtual playgrounds for worm behavior
investigation. In Proceedings of 8th International Symposium on Recent Advances in Intrusion
Detection (RAID’05). Springer, Berlin.

JOSHI, A., KING, S. T., DUNLAP, G. W., AND CHEN, P. M. 2005. Detecting past and present intrusions
through vulnerability-specific predicates. In Proceedings of the 2005 Symposium on Operating
Systems Principles (SOSP’05). ACM, New York.

KIM, G. H. AND SPAFFORD, E. H. 1994. Experiences with tripwire: Using integrity checkers for
intrusion detection. In Proceedings of the Systems Administration, Networking and Security
Conference III. USENIX, Berkeley, CA.

KING, S. T. AND CHEN, P. M. 2003. Backtracking intrusions. In Proceedings of the 2003 Symposium
on Operating Systems Principles (SOSP’03). ACM, New York.

KING, S. T., CHEN, P. M., WANG, Y.-M., VERBOWSKI, C., WANG, H. J., AND LORCH, J. R. 2006. SubVirt:
Implementing malware with virtual machines. In Proceedings of the 2006 IEEE Symposium on
Security and Privacy. IEEE, Los Alamitos, CA.

KING, S. T., DUNLAP, G. W., AND CHEN, P. M. 2005. Debugging operating systems with time-traveling
virtual machines. In Proceedings of the 2005 Annual USENIX Technical Conference. USENIX,
Berkeley, CA.

KLEIN, T. 2003. Scooby Doo-VMware Fingerprint Suite. http://www.trapkit.de/research/
vmm/scoopydoo/.

KOJU, T., TAKADA, S., AND DOI, N. 2005. An efficient and generic reversible debugger using the vir-
tual machine based approach. In Proceedings of the 1st ACM/USENIX International Conference
on Virtual Execution Environments. ACM, New York.

KORTCHINSKY, K. 2004. Honey-pots: Counter measures to VMware fingerprinting. http://seclists.
org/lists/honeypots/2004/Jan-Mar/0015.html.

KOURAI, K. AND CHIBA, S. 2005. HyperSpector: Virtual distributed monitoring environments for
secure intrusion detection. In Proceedings of the 1st ACM/USENIX International Conference on
Virtual Execution Environments. ACM, New York.

LION. 2001. Lion worm. http://www.sans.com/y2k/lion.htm.
LISTON, T. AND SKOUDIS, E. 2006. On the cutting edge: Thwarting virtual machine detection.

http://handlers.sans.org/tliston/ThwartingVMDetection Liston Skoudis.pdf.
MEUSHAW, R. AND SIMARD, D. 2000. NetTop: Commercial technology in high assurance applications.

Tech Trend Notes.
MICROSOFT. 2003. Volume shadow copy service. http://technet2.microsoft.com/WindowsServer/en/

library/2b0d2457-b7d8-42c3-b6c9-59c145b7765f1033.mspx?mfr=true.
MILLER, J. V. 2003. SHV4 root-kit analysis. https://tms.symantec.com/members/AnalystReports/

030929-Analysis-SHV4Rootkit.pdf.
NTROOTKIT. http://www.megasecurity.org/Tools/Nt rootkit all.html.
PAXSON, V. 1999. Bro: A system for detecting network intruders in real-time. Comput. Networks

31, 23-24, 2345–2463.
PENNINGTON, A. G., STRUNK, J. D., GRIFFIN, J. L., SOULES, C. A. N., GOODSON, G. R., AND GANGER., G. R.

2003. Storage-based intrusion detection: Watching storage activity for suspicious behavior. In
Proceedings of the 12th USENIX Security Symposium. USENIX, Berkeley, CA.

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

12:28 • X. Jiang et al.

PETRONI, N., FRASER, T., WALTERS, A., AND ARBAUGH, W. 2006. An architecture for specification-
based detection of semantic integrity violations in kernel dynamic data. In Proceedings of the
15th USENIX Security Symposium. USENIX, Berkeley, CA.

PETRONI, N. L., FRASER, T., MOLINA, J., AND ARBAUGH, W. A. 2004. Copilot - A coprocessor-based ker-
nel runtime integrity monitor. In Proceedings of the 13th USENIX Security Symposium. USENIX,
Berkeley, CA.

PROVOS, N. 2003. Improving host security with system call policies. In Proceedings of the 12th
USENIX Security Symposium. USENIX, Berkeley, CA.

RBOT. http://research.sunbelt-software.com/threatdisplay.aspx?name=Rbot&threatid=14953.
RILEY, R., JIANG, X., AND XU, D. 2008. Guest-transparent prevention of kernel rootkits with VMM-

based memory shadowing. In Proceedings of 11th International Symposium on Recent Advances
in Intrusion Detection (RAID’08). Springer, Berlin.

ROOTKITREVEALER. 2007. RootkitRevealer.
http://www.microsoft.com/technet/sysinternals/utilities/RootkitRevealer.mspx.

RUTKOWSKA, J. 2004. Red pill: Detect VMM using (almost) one CPU instruction. http://
invisiblethings.org/papers/redpill.html.

RUTKOWSKA, J. 2006. Subverting vista kernel for fun and profit. http://www.blackhat.com/
presentations/bh-usa-06/BH-US-06-Rutkowska.pdf.

SAILER, R., VALDEZ, E., JAEGER, T., PEREZ, R., VAN DOORN, L., GRIFFIN, J. L., AND BERGER, S. 2005.
sHype: Secure hypervisor approach to trusted virtualized systems. IBM Research Report
RC23511.

SEBEK. 2008. http://www.honeynet.org/tools/sebek/.
SECUNIA. 2003. Linux kernel Ptrace privilege escalation vulnerability. http://www.secunia.com/

advisories/8337/.
SESHADRI, A., LUK, M., QU, N., AND PERRIG, A. 2007. SecVisor: A tiny hypervisor to guarantee

lifetime kernel code integrity for commodity OSes. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP’07). ACM, New York.

SNORT. 2008. Homepage. http://www.snort.org.
SUCKIT ROOTKIT. 2001. Linux on-the-fly kernel patching without LKM. http://www.phrack.com/

issues.html?issue=58&id=7#article
TRANGO. 2008. The Real-Time Embedded Hypervisor. http://www.trango-systems.com/.
UNIXBENCH. 2007. UnixBench. http://www.tux.org/pub/tux/benchmarks/System/unixbench.
VMWARE. 2008. Homepage. http://www.vmware.com/.
WANG, Y.-M., BECK, D., VO, B., ROUSSEV, R., AND VERBOWSKI, C. 2005. Detecting stealth software

with Strider GhostBuster. In Proceedings of the 2005 International Conference on Dependable
Systems and Networks. IEEE, Los Alamitos, CA.

WEAVER, N., PAXSON, V., AND GONZALEZ, J. 2007. The Shunt: An FPGA-based accelerator for network
intrusion prevention. In Proceedings of the International Symposium on Field Programmable
Gate Arrays (FPGA’07). ACM, New York.

WHITAKER, A., COX, R. S., AND GRIBBLE, S. D. 2004. Configuration debugging as search: Finding
the needle in the haystack. In Proceedings of USENIX OSDI 2004. USENIX, Berkeley, CA.

XEN. 2004. Interface manual. http://www.xensource.com/files/xen interface.pdf, 2004.
ZOVI, D. D. 2006. Hardware virtualization based rootkits. http://www.blackhat.com/presentations/

bh-usa-06/BH-US-06-Zovi.pdf.

Received February 2008; revised June 2008; accepted November 2008

ACM Transactions on Information and System Security, Vol. 13, No. 2, Article 12, Publication date: February 2010.

