2K9*: An Integrated Approach of QoS
Compilation and Reconfigurable,
Component-Based Run-Time Middleware for
the Unified QoS Management Framework*

Duangdao Wichadakul, Klara Nahrstedt, Xiaohui Gu, Dongyan Xu

Department of Computer Science
University of Illinois at Urbana-Champaign
{wichadak, klara, xgu, d-xu}@Qcs.uiuc.edu

Abstract. Different distributed component-based applications (e.g., dis-
tributed multimedia, library information retrieval, secure stock trading
applications), running in heterogeneous execution environments, need
different quality of service (QoS). The semantics of QoS requirements
and their provisions are application-specific, and they vary among dif-
ferent application domains. Furthermore, QoS provisions vary per ap-
plications in heterogeneous execution environments due to the varying
distributed resource availability. Making these applications QoS-aware
during the development phase, and ensuring their QoS guarantees dur-
ing the execution phase is complex and hard.

In this paper, we present a unified QoS management framework, called
2K9% . This framework extends our existing run-time 2K middleware
system [1] by including our uniform QoS programming environment and
our automated QoS compilation system (@-Compiler). The uniform QoS
programming and its corresponding QoS compilation allow and assist
the application developer to build different component-based domain
applications in QoS-aware fashion. Furthermore, this novel programming
and compilation environment enables the applications to be instantiated,
managed, and controlled by the same reconfigurable, component-based
run-time middleware, such as 2K©, in heterogeneous environments.
Our experimental results show that different QoS-aware applications,
using the 2K?* framework, get configured and setup fast and efficiently.

1 Introduction

The rapid growth of distributed component-based environments and coexistence
of different application domains, such as multimedia and electronic commerce,
present significant challenges to the provision of different applications’ Quality

* This work was supported by the National Science Foundation under contract num-
bers NSF EIA 9870736, NSF CCR-9988199, the Air Force Grant under contract
number F30602-97-2-0121, NSF CISE Infrastructure grant under contract number
NSF ETA 99-72884, and NASA grant under contract number NASA NAG 2-1250.

of Service (QoS). First, different domain applications have specific semantics for
QoS requirements and provisions. For example, multimedia and library infor-
mation retrieval applications are concerned about the service qualities of audio,
video streaming (e.g., frame rate, frame size, sampling rate, end-to-end delay)
and messaging (e.g., priority, response time, reliability), respectively. Develop-
ing an application to be QoS-aware during the application development cycle,
and ensuring its QoS provisions during the application’s run-time are non-trivial
tasks for a specific application and even harder for different applications. Second,
with the pervasive computing, these applications are expected to be executed
in heterogeneous computing and communication environments with different ca-
pacities of processing power (e.g., high performance PC, PDAs), battery power,
and network bandwidth (e.g., wired, wireless networks). The big challenging
problem, as shown in Fig. 1, is:

”How should a unified QoS management framework look like to allow different
distributed component-based applications to use it and achieve required guaran-
tees in heterogeneous, dynamic computing and communication environments 27

Messaging applications

ibrary information retrieva

- Real-time messaging applications
ey
GSecure stock tradin®

/

L Need QoS]

!

?? Unified QoS management framework ??

Multimedia applications

)

Fig. 1. Challenging Problem

Several QoS architectures and approaches [2, 3, 4, 5, 6, 7] already exist.
However, all of them are designed only for one domain of applications, partic-
ularly for multimedia applications, or designed to handle particular aspect of
QoS provisions such as the QoS-aware resource management [8]. If one wants to
implement and run a different domain of applications, the existing tailored ar-
chitectures won’t be applicable or reusable. In the distributed object computing
(DOC) middleware such as CORBA, some QoS support [9, 10, 11, 12] has been
proposed. In the CORBA case, an application will be QoS-aware if the applica-

tion developer deploys QoS-related interfaces of requested QoS services. Hence,
an application developer has to learn (a) different IDL interfaces for different
types of QoS, (b) the semantics of these interfaces, and (c) how to translate
his/her application QoS requirements into these interfaces and their parameters
appropriately. TAO project [13] developed the optimized CORBA ORB which
supports the real-time messaging. QuO project [14] allows an application devel-
oper to develop distributed applications that can adapt to the changing quality
of service in CORBA environment. The QuO considers the quality of service in
the broader domain including (1) quality of object interaction such as reliabil-
ity, (2) real-time method invocation, and (3) security. QoS in distributed object
computing middleware is also tailored towards specific domain of applications
or particular aspect of QoS provisions. Hence, no work fully solves the above
challenging problem.

In this paper, we present the 2K 9+ framework, shown in Fig. 2), a unified
QoS management framework, which allows and assists the application developer
to develop different component-based domain applications in QoS-aware fash-
ions. There different domain applications are able to be developed in the same
programming and compilation environment, and to be instantiated, managed
and controlled uniformly by the same reconfigurable, run-time middleware. This
means that the unification of the QoS management framework happens at two
levels: (1) the application developer can develop different domain applications
via the same set of QoS specifications, and (2) different domain applications can
run via the same run-time middleware in heterogeneous environments.

The key components in the 2K %+ framework are (1) the uniform QoS pro-
gramming environment; (2) the Q-Compiler; and (3) a reconfigurable, component-
based run-time middleware such as the run-time 2K% middleware.

The uniform QoS programming environment provides a uniform set of cus-
tomizable QoS specifications that can be used to develop different domains of
QoS-aware applications. These QoS specifications are considered as the input
”source code” of the Q-Compiler.

The Q-Compiler, the automated QoS compilation system, is the core of the
unified QoS management. It compiles the corresponding QoS specifications into a
well-defined set of QoS-enabled meta information, called QoS-aware Component-
based Application Specification (QoSCASpec), considered as the Q-Compiler’s
”object code”, and used uniformly during the application execution phase.

QoSCASpec includes (1) possible delivery forms (configurations) of the QoS-
aware application for running in heterogeneous execution environment with dif-
ferent resource availability; and (2) the association of reusable middleware service
components and system resources for each configuration with specific semantics
of QoS requirements.

The run-time 2K% middleware is the component-based, and dynamically
reconfigurable run-time system. It is running in the distributed machines and
it is the core of application execution. It assists the Q-Compiler to perform
the distributed system resource translation during the application development
phase. Furthermore, it instantiates, manages and controls a QoS-aware applica-

tion during the application execution phase, based on the (1) Q-Compiler result,
the application’s QoSCASpec, (2) incoming user QoS request, and (3) dynamic
run-time constraints such as resource availability, execution environment, and
mobility.

. QoS-aware application developer

Uniform QoS programming environment

VoD ‘Information retrieval| -

Application QoS specifications
"source code"

Application description
End-to-end functional dependency
graph(s) for application service components|
Service component descriptions
Translation template

]

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
Symbolic configuration |
I

User
User QoS request
-~

QoS-aware application development phase QoS-aware application execution phase

5 translation N
é-‘ QoSdASpec
5 [Pre-requisite system component . R»epoé‘itory B
T transation object code
=4
T
]
Resource translation
T
I
I
I
I
I
I
|
I
Application Application 1 Application Application
execution execution ! execution execution
A plane [4] plane L AN plane plane ,
,,,,,,,,, I
! [[N i [
Middleware | Middleware Middleware | Middleware | Middleware | Middleware Middleware | Middleware
execution | T ™ ! cuti ! execution | -~ ! execution
plane | plane plane ' plane ! plane ' plane plane ' plane
! L 1 Il L
OS/system resources OS/system resources | OS/system resources OS/system resources
I
Run-time Run-time : Run-time Run-time
2Kmiddleware 2K%middleware | 2Kmiddleware 2K%middleware
(per machine) (per machine) 1 (per machine) (per machine)
I
I
I
I
I
I
I

Fig. 2. 2K9%: A Unified QoS Management Framework

The rest of the paper is organized as follows. In Sect. 2, we describe the uni-
form QoS programming environment, and how to develop a QoS-aware applica-
tion via the uniform set of QoS specifications. In Sect. 3, we give the overview of
the Q-Compiler architecture, and its core, the multi-aspect QoS translations. In
Sect. 4, we describe the detailed architecture of the run-time 2K% middleware,
how it assists the Q-Compiler to perform the distributed system resource trans-
lation, and how it instantiates, manages and controls a QoS-aware application
during the application execution phase. In Sect. 5, we describe the implemen-

tations and our experimental results. In Sect. 6, we discuss the related work.
Finally, we draw conclusions in Sect. 7.

2 Uniform QoS Programming Environment: Application
Developer’s View

The goal of our uniform QoS programming environment is to allow the applica-
tion developer develop QoS-aware applications in different domains easily and
uniformly via the same set of QoS specifications. To achieve this goal, it provides
the following set of QoS specifications: (a) the application description, (b) the
end-to-end functional dependency graph(s) of application service components,
(c) the service component descriptions, and (d) the user-to-application-specific
translation template.

The application description allows an application developer to specify
the general information about the application, such as name, category, and ac-
cessibility. The Q-Compiler associates this information with the compiled results
of the application. The run-time 2K® middleware uses this information as an
index to the appropriate application’s configuration(s). Figure 3 shows the ap-
plication description for two applications: (a) the library information retrieval
application, and (b) the video on demand application.

Attributes Values Attributes Values
Application name | QLibAccess Application name MonetVOD
Application category Information retrieval Application category| Video on Demand
Accessibility Public Accessibility Public

(a) Library Information Retrieval Application (b) Video on Demand Application

Fig. 3. Application Description for Two Different Applications (Example)

The end-to-end functional dependency graph of application service
components allows the application developer to implement an application via
the composition of service components flexibly!. In a functional graph, we dif-
ferentiate among service components as follows: each node represents a service
component which can be a specific service component® (e.g., QLibServer, MPEG-
1T renderer, MPEG-II decoder), a composite service component (e.g., VoD Client
consisting of MPEG-II decoder, and MPEG-II renderer), or a generic service

! We assume that the interfaces between two connected components are clearly de-
fined, and the programming environment can check the compatibility between two
connected components in the functional dependency graph.

2 A specific service component represents a specific implementation of a functional
unit. We assume that specific service components have been already built, and there
exists service component repository storing these components implemented for dif-
ferent devices, resource demands, and with different quality levels in mind.

component® (e.g., Information Retrieval Service (IRS), Encoder Service (ES),
Decoder Service (DS)). The dotted-rounded rectangle in Fig. 4 represents a
machine, and a solid line from service component A to service component B
represents a data flow from component A to component B. A functional graph is
fully-defined if all service components are substituted with specific service com-
ponents or sets of specific service components (in case of composite service com-
ponent), and it is partially-defined if a service component is specified with a
generic service component or a composite service component with some generic
service components. Figure 4 shows the application functional graph for two ap-
plications: (a) the library information retrieval application, and (b) the video on
demand application.

OO

RS QLibServer - ESS Decryption1

Disk rea’der, __ES -DS--RS

(a) Library Information Retrieval Application (b) Video on Demand Application
O Generic service component o Specific service component

IRS: Information Retrieval Service ~ ES: Encoder Service ~ESS: Encryption Security Service DS: Decoder Service =~ RS: Renderer Service

Fig. 4. Application Functional Graph for Two Different Applications (Example)

The service component description allows an application developer to
specify individual service component’s information which is required by the Q-
Compiler. Figure 5 shows the service component descriptions for two applica-
tions: (a) the library information retrieval application, and (b) the video on
demand application. The ”*” represents undefined value which will be deter-
mined by the Q-Compiler. The ”**” represents the undefined value which will
be determined by the run-time 2K® during the application execution time.

The user-to-application-specific translation template (UtoA tem-
plate) (as shown in Fig. 6) allows an application developer to define the mapping
between different user QoS levels (e.g., UserIrQoS:High, UserPVQoS:High) and
corresponding application-specific QoS categories (e.g., Information retrieval,
Performance:Video) and QoS dimensions (e.g., request priority, format, resolu-
tion)*. User QoS levels are determined by the application developer as available

3 A generic service component represents the requirement of specific service without
specific implementation. The application developer can develop an application via
the functional dependency graph even though he/she doesn’t have all built specific
service components. A generic service component will be substituted with possible
specific service component(s) during the QoS compilation time.

4 Qo8 category and QoS dimension are part of QoS specifications to characterize non-
functional properties of a specific application [15, 16]. A QoS dimension defines a
qualitative or quantitative attribute for a QoS category, and it is used to characterize

Attributes Values Attributes Values
Service component type Generic
Service component name *
Service component category | RS
Service component repository|

Service component type Specific

Service component name QLibServer

Service component category 1SS

Service component repository| ComponentRepository

Target node) o Target node boston.cs.uiuc.edu
Hardware requirements * . . Hardware requirements <(CPU:SUN Ultra 60), (MEM:5MB)>
Supporting QoS categories Information retrieval: Supporting QoS categories Information retrieval:

request priority ~ *
request reliability —*

valid response time *

request priority {Low, Medium, High}
request reliability {Low, Medium, High}|
valid response time [5,20]

(I) Information Retrieval Service's description (IT) QLibServer's description

(a) Library Information Retrieval Application

Attributes Values Attributes Values

Service component type Specific Service component type Generic

Service component name Disk reader Service component name *

Service component category | DRS Scrvi.cc component category RS

Service component repository | ComponentRepository "?acrf"e‘fcngg;“poncm repository |

Target node paris.cs.uiuc.edu g > *k

Hardware requirements <(CPU:SUN Ultra 60), (MEM:20MB)> Hardwa_re requirements *)

Supporting QoS categories Performance: Video: Supporting QoS categories Performance:Video:

PP s 8 format
format any i *
resolution {740x480, 480x360,360x240 resolution .
frame-rate [10,30] frame-rate
color depth {8} color depth *
(I) Disk reader's description (VI) Renderer Service's description

(b) Video on Demand Application

Fig. 5. Service Component Descriptions for Two Different Applications (Example)

application-category-specific QoS levels for the user during the application re-
quest time. Application-specific QoS categories and dimensions are determined
by the application developer as the input QoS parameters to the Q-Compiler,
corresponding to different user QoS levels. QoS levels can be generated by the
Q-Compiler, based on all combinations of user QoS levels in different application-
specific QoS categories. However, without loss of generality, we assume in this
paper that the Q-Compiler will generate QoS levels for an application, based on
combinations of only the same user QoS levels in all different application-specific
QoS categories. Figure 6 shows the UtoA template for two different applications:
(a) the library information retrieval application, and (b) the video on demand
application.

The uniform QoS programming environment enables the first level of uni-
fication, mentioned in the Introduction. Once the above QoS specifications are
in place, the Q-Compiler starts to compile the QoS specifications into the QoS-
enabled meta information as described in the following section.

3 Q-Compiler: Automated QoS Compilation System

The primary goal of the Q-Compiler®, which is the key part of the 2K 9+ unified
QoS management, is to compile QoS specifications of different domain appli-
cations into QoS-enabled meta information that can be used uniformly by the

a particular category [16]. For example, QoS dimension ”resolution” is an attribute
of QoS category ”Performance:Video”. QoS dimension can be interchangably used
with QoS parameter.

® The details of the Q-Compiler framework can be found in [17].

QoS levels
: High ! Medium] Low |
| UseerQos:HigtUseerQus:Mediu\‘rh UserPVQoS: Lot

Performance:Video I
1
1

I
format {mjpeg, mpeg-11} {mjpeg, mpeg-11}

! |
|{mjpeg, mpeg-1t
I
I

I
resolusion (pixelxpixel) 740x430 || 480x360 1] 360x240 |
frame-rate (fps) | 25 l 20 | 10 |

T " : T
;UserPAQoS:Higl‘lbserPAQoS:Mediur. UserPAQoS:Low

Performance: Audio ; I | |

format | {wav, mp3} \: {wav, mp3} 1} {wav, mp3}

delay (sec) i 50 h 75 : 100 !

QoS levels sampling rate (kHz) : 24 \: 16 | 8 :

,,,,,,,,,,,,,,,,,,,,,,,,, o 1 |

: Hiah :‘ Mediam : | Tow : ample bit (bit) : 24 : 16 o 8 :
| UserIrQoS:Highi| UserlrQ ium UserIrQoS:Low pserSecQos:HigﬁuserSecQuS:Mediu‘ﬁUserSechS;Lm‘y

Information retrieval : : : : :) | ! " !

request priority i\ High | Medium 1} Low | | Security ! ! | !

request reliability | High . Medium |} Low | | format | des | des N des ,

valid response time (nin) 15 | 10 1] 5 || | key length encryption|(bit) 128 : 80 : : 64 :

. _ L — I — L Ll Sy Sy
UserlrQoS: User’s QoS Information retrieval category UserPVQoS: User’s QoS Performance (video data type) category

UserPAQoS: User's QoS Performance (audio data type) category
UserSecQoS: User's QoS Security category

(a) Library Information Retrieval Application (b) Video on Demand Application

Fig. 6. User to Application Specific Translation Template for Two Different Applica-
tions (Example)

distributed run-time middleware during the application execution in heteroge-
neous environments.

In the Q-Compiler, we consider the following resulting output information
as QoS-relevant to ensure the QoS provisions for different domain applications
during their execution:

— Possible delivery forms of an application, associated with different quality
levels, for heterogeneous computing and communication environments, and
for adaptations;

— Association of each delivery form with suitable set of middleware service
components and their appropriate QoS parameters;

— System resource requirements of each delivery form with its associated mid-
dleware service components to be used (1) for resource reservation in case it
exists, (2) for selection of the most suitable delivery form, and (3) for global
resource optimization.

To achieve the primary goal, the Q-Compiler (as shown in Fig. 7) consists
of three aspects of translations: (1) symbolic configuration translation, (2) pre-
requisite system component translation, and (3) resource translation.

The Symbolic Configuration Translation compiles the input QoS spec-
ifications of an application into possible delivery forms (configurations). This
aspect of translation is based on the generic service component’s substitution
and application functional graph transformation with the consistency check of
QoS requirements and QoS provisions between two consecutive specific service
components in the graph. The pre-defined possible configurations for different
domain applications are provided as an internal information for the translation.

. . / Pre-defined possible configurations for different domains
QoS specifications K

Information retrieval
)/ VoD domain domain Other application doamins

// () O () O

/ VoDServer VoDClient IRs 1SS

/ OO0

Symbolic configuration DRS ES DS RS
translation
N DRS ES ESS DSS DS RS

\

S |
N ‘ Generic service component's substitution function, Application functional graph transformation,
N

Inter-component QoS consistency check

Symbolic QoS configurations /|

' Translation graph

/ Performanc: Video — T luggable protocol stacks o)
~*Control and management of audio/video streams in CORBA
,

) Information retrieval —=CORBA messaging
/
,
I’ o Middleware service component 1
- — = Specific application QoS category<_" ! P
(Pre-req sy Ste"} Y N Middleware service component 2
N translation

\ Translation schemes

\ I [
\ I I

\ Information retrieval: CORBA messagin;

Mapping of specific application QoS
\ struct PriorityRange priority_range; category's dimensions and specific
! priority_range.min=10; middleware component's interface(s)
\] - s
\ priority_range.max=15; and parameters

Symbolic QoS configuration +

Pre-requisite system configuration files + Mapping result files
Symbolic QoS configuration +

Pre-requisite system configuration files + Mapping result files

[
P . . T
. ‘ Analytical translation Mapping of specific application QoS
—Y - il and middleware service
—— Resource translation ‘ Distributed probing protocol ‘ components' parameters into system
S resource requi
Run-time Run-time Run-time ‘
. o . .
2K middleware | | 2K middleware | | 2. ddleware|
machine machine machine
(target node) (target node) (target node)

Symbolic QoS configuration + Resource requirements + Pre-requisite system configuration files + Mapping result files
Symbolic QoS configuration + Resource requirements + Pre-requisite system configuration files + Mapping result files

!

L »QoSCASpec generator
QoSCASpec

Application
information

Symbolic QoS configuration + Resource requirements + Pre-requisite system configuration files + Mapping result files | Service component
Symbolic QoS configuration + Resource requirements + Pre-requisite system configuration files + Mapping result files information

Fig. 7. Multi-aspect QoS Translations

The symbolic configuration translation can be considered as the horizontal end-
to-end configuration translation in the application layer. The results of the sym-
bolic configuration translation are the symbolic QoS configurations, represented
by fully-defined functional graphs with associated QoS levels. Note that the num-
ber of possible configurations for an application is limited by some factors such
as the failure of consistency check, the number of generated QoS levels which
is usually small, and the limited number of application’s possible configurations
pre-defined as a part of the service component substitution and graph transfor-
mation. Hence, the considered number of feasible configurations is bounded.

The Pre-requisite System Component Translation determines the ap-
propriate set of middleware service components, including their interfaces and
QoS parameters. For each symbolic QoS configuration, the included middle-
ware service components can be classified into two groups: (1) QoS-specific com-
ponents, such as CORBA messaging, control and management of audio/video
streams in CORBA, which provide service quality for specific QoS requirements,
and (2) QoS-generic components, such as observer and resource adaptor in Agi-
los [18], DSRT [19], which perform generic functionality as adaptations, system
resource management and monitoring.

This aspect of translation is based on an extensible translation graph which
represents the association between specific application QoS categories and their
suitable middleware service components, and translation schemes which repre-
sent the mappings between specific QoS categories’ dimensions and middleware
service components’ interfaces and parameters. The input application QoS cat-
egories and their dimensions are retrieved from the specific service components
in each symbolic QoS configuration. The pre-requisite system component trans-
lation can be considered as the refinement of each symbolic QoS configuration
with the vertical end-system configuration translation from specific service com-
ponents’ QoS requirements in application layer into service components in mid-
dleware layer, and the horizontal end-to-end configuration translation among the
determined middleware service components. The results of the pre-requisite sys-
tem component translation are (1) the pre-requisite system configuration files,
containing the associated middleware service component(s) for the symbolic QoS
configuration per target node, and (2) the mapping result files, associated with
individual pre-requisite system configuration files, containing the mapping result
between specific service components’ QoS category’s dimensions and middleware
service components’ interfaces and parameters.

Note that how these two results will be used by whom depends on the involv-
ing middleware service components. In this paper, we consider two types of the
middleware service components: (type I) components (e.g., CORBA messaging,
DSRT) which need the instrumentation of application specific service compo-
nents’ source codes to include their pre-defined APIs, and (type II) components
(e.g., pluggable protocol) which do not need any modification of the application
specific service components’ source codes. For type I, the compiled results will
be interactively returned as hints to the application developer. There hints will
indicate modification places in the specific service components’ source codes to

include the middleware service components’ APIs, corresponding to the mapping
information in the mapping result files. For type II, the compiled results will be
used directly by the run-time middleware to dynamically link the required mid-
dleware service component(s) with their suitable parameters into the application
execution environment.

This phase of compilation enables that different QoS-aware applications are
executed uniformly in the same reconfigurable, component-based run-time mid-
dleware. It means that this phase represents the second level of QoS management
unification as discussed in the Introduction.

The Resource Translation translates each symbolic QoS configuration and
its associated middleware service component(s) into distributed system resource
requirements. It is dealing with coordination among distributed resource bro-
kers, resource negotiation, and resource translation. This aspect of translation
is based on the analytical translations, and the distributed probing and profil-
ing techniques. The analytical translation consists of the mapping or translation
functions from specific QoS dimensions in the application layer and/or middle-
ware layer into system resource requirements. The analytical translation will
be used if there exists a suitable function. The distributed probing protocol,
assisted by the run-time middleware, (1) instantiates the specific application
service components and their associated middleware service components into
the distributed target nodes, (2) coordinates with distributed resource brokers
to perform the system resource probing, (3) collects the probing results, and (4)
associates them with the previously compiled results. The resource translation
can be considered as the vertical resource translation from QoS requirements in
the associated upper layers into the system resource requirements at the end-
system, and the horizontal end-to-end resource translation among the distributed
resource brokers. The results of the resource translation are the minimum end-
to-end system multi-resource requirements for each symbolic QoS configuration,
associated with specific middleware service components, and specific QoS re-
quirements.

The application’s compiled results are represented as the QoS-aware Compo-
nent-based Application Specification (QoSCASpec), which is the Q-Compiler’s
Yobject code”. QoSCASpec includes (1) application description; (2) set of QoS
configurations; and (3) service component description for all specific service
components in the symbolic QoS configurations. Q0SCASpec is installed in the
QoSCASpec repository as a ”ready-to-use” configuration information for end-
to-end QoS setup and adaptation of an application.

Figure 8 demonstrates the Q-Compiler’s multi-aspect QoS translations and
the QoSCASpecs for two different applications: (a) the library information re-
trieval application, and (b) the video on demand application. Note that in our
implementation, the QoSCASpecs are represented by the XML-based descrip-
tion. When the applications’ QoSCASpecs are available, the applications are
ready for execution by the distributed run-time middleware.

Information retrieval Information retrieval

QoS Specifications :*
+ service component descriptions

Security ecu
Disk reader. - -BS,

Performance:Video Performance: Video
rity

BS-PS.

QoS Specifications orl
+ service component descriptions
+ Service component repository

'S

+ Service component repository
(configuration 1) |

{UserIrQoS:High} !

! QLibClient_PC

QLibSeryer

(configuration 2) |

(configuration 1)
{UserPVQoS:High,
UserPAQoS:High,
UserSecurityQoS:High}

Disk reader -~ = MIPEG Player

MIRES engoder MIPEG e

L5

*-Encryption1 Deeryption

(configuration2) by renger- .

v - =~ ~MPEG-II Pl:
: ' {UserPVQoS:High,] i ! poe
{UserlrQoS:High} | g ! QLibSerter UserPAQoS:High, ! " EncodeMPEGHL Decoder
e UserSecurityQoS:High} ~ ‘Encfyptionl __ Deeryption!
Pre-requisite system component translation
(configuration 1) =73 [(configuration 1) Disk reader -~ - 7~ MIPEG Player
{UserlrQoS:High) | . j : {UserPVQoS:High, MIPES engoder MIPEG (%ae? |
1 QLibCllent PC 1 QLibSedver UserPAQoS:High, i ! ! :
Pre-requisite system configuration file Pre-requisite system configuration file UserSecurityQoS:High} ~ “Breryption! Decryptiont
0S messaging
Local Router Prerequisite system file e e system file
boston
Pluggabl I stacks ‘ ‘
r— i resal e ‘ luggable protocol stac >‘ Pluggable protocol stacks
struct PriorityRange plr'lJmi(y range ; struct PriorityRange plr'lJmi(y range ; Mapping result file Mapping result file
priority_range.min = 10 ; priority_range.min = 10 ; - -
priority_range max — 15 priority_range.max - 15 <bandwidth, 8.8Mbps> <bandwidth, 8.8Mbps>
interface RequestPriorityPolicy : CORBA::Policy { interface RequestPriorityPolicy : CORBA::Policy!
readonly attribute PriorityRange ~priority_range : readonly attribute PriorityRange priority_rangle
: k
struct RoutingTypeRange routing_range
routing_range.min = SYNC_WITH_SERVER
routing_range.max = SYNC_WITH_TARGET
interface RoutingPolicy : CORBA::Policy {
readonly attribute RoutingTypeRange routing_range
interface QueueOrderPolicy : CORBA::Policy {
readonly attribute Ordering allowed_orders = ORDER_PRIQRITY/|
b3
interface SyncScopePolicy : CORBA::Policy {
readonly attribute SyncScope synchronization = SYNC_WITH_TARGET
¥
interface 'y : CORBA: {
readonly attribute TimeBase::TimeT relative_expiry =
(configuration 2) Disk reader 51 Player
(configuration 2, s < Hi | | ' i :
ifig) (UserPVQoS:High,) ncodeoy e Betoder
{UserlrQoS:High) UserPAQoS:High, - i
UserSecurityQoS:High} retyption Decryption!

Resource translation

L

(configuration 1) : |+ Pre-requisite system configuration files

{UserIrQoS:High} L

QLibSedver + Mapping result files

. . boston
End-to-end minimum resource requirements(CPU, 10%), (Bandwidth, 44Kbps), (CPU

boston
. 18%), (Bandwidth , 44Kbps)>!

(configuration 1)
UserPVQoS:High,

Disk reades - - - 7~ MIPEG Player

wgr%@d MIPEG de g™ | Pre-requisite system configuration files

(configuration 2)
{UserlrQoS:High}

QoSCASpec generation

UserPAQoS:High, L + Mapping result files
UserSecurityQoS:High} Enéry aris s . .
+ End-to-end minimum resource H,’qlllr‘errll’ﬂh<(CFU‘ 15%), (Bandwidth, 8.8Mbps), (CPU, 20%), (Bandwidth, 8. 8Mbps)>

(configuration 2)
{UserPVQoS:High,
UserPAQoS:High,
UserSecurityQoS: High}

Disk I‘Padfl‘ -\ 727 MPEG-II Player
IMPEGAT Encoder MPEGa] Décoder

‘Encryption] Deeryption1

oS Configurations . QoS Configurations Service
Applcaion Q08 Cong Component | | Application Compont
Information {Configuratiors QoS Levels Resource Requiements rerequisite Systen Mapping | nformation Information ~|Configuration} QoS Levels Resource Requiements [Prerequisie Systen o
figuration Fileq Result Files onfiguration Files| R Information
- - o Teron I y - .)
QibAccess | Configuration {{UserirQos Hight <(CPU. 10%), Bandide, 4achps). (CBU T, (Bandnlisaiops)> | Byogion B | Mbosion MQLibClient PG| | Monet VOD | Configuation 1 (UseliQos:High) - <(CPU. 15%), Bandih, 8 8MBpss (CPU, 20%), @andwidi , 88Mbpss> | Byoiion B | Mposion M| MIPEG encod
Information Video on Demaj
retrieval (UserlrQoS:Low) LibClient CE | | Public {UserliQoS Low) Encyptiont
Public] . . o sion s & . |
Configuraton 4 (UseliQoS:High) <(CPU, 6%), (andvidih, 41Kps). F0 5%, Bandhiiih"44K0p9> | Fooston - | M poston M. Configuration 2| (UselrQoStigh) <(CPU. 20%), (Bandidih. 6.5MBps), (CPU,25%), (Bandwid65Mbpsl> | Fooston Mposton M,
(GerQosion) o (UserQoS L) MPEGI playe

(a) Library Information retrieval application

(b) Video on Demand application

Fig. 8. Multi-aspect QoS Translations of Two Different Applications (Example)

4 Run-Time 2K° Middleware

In this section, we present the component-based and reconfigurable run-time
2K? middleware, which plays major role during application execution.

4.1 Architecture

The run-time 2K middleware (shown in Fig. 9) consists of three planes: the
application execution plane, the middleware execution plane, and the middleware
management plane.

‘Application run-tim
container

_~Application

Middleware management plane

. : i D (Proﬁler) (Component registration service)
I &&=
3 ulti-resource reservation
ompgnent container : QoS configuration selection service and coordination service
I
@ (; ;) | @ location discovery servi@ Multi-resource monitoring service

I
! @os configuration i iati servi@ Q ion policy serv@
i

Middleware
execution plane , execution pla;

OS/system resources

© Specific service component @ Compiled time middleware service component @ Application-neutral middleware service component

Fig. 9. Run-time 2K9 Middleware Architecture

In the application execution plane, the application run-time container is
the place where the application service components, compiled with required mid-
dleware service components’ APIs and their necessary libraries, are instantiated
and running. There exists one application run-time container per application.

In the middleware execution plane, the middleware service component
container is the place where the application-neutral middleware service compo-
nents (e.g., resource brokers [19], observer and resource adaptor [18]), are instan-
tiated and running. There exists one middleware service component container
per machine and is shared among different applications. Both containers are
dynamically created, managed and controlled by the middleware management
plane.

The middleware management plane provides a set of middleware man-
agement services which help to instantiate, manage, and control an application
with the quality of service provision. Specifically, it needs to provide support for
(1) QoS setup of the application corresponding to user QoS request®, and (2)

5 For example, an end-user provides a user request as follows: [<application name
= "MONETVoD” >, <application category = ”Video on Demand” >, <QoS level

QoS adaptations of the application in case of changes in user preference, and
dynamic constraints such as resource availability, execution environment and
mobility. The goal is to maintain the QoS provision or gracefully degrade QoS
during the application run-time if changes occur.

The profiler and ezecutor are the front-end agents of the run-time 2K% mid-
dleware waiting for probing service requests from the Q-Compiler’s resource
translation, and for user QoS requests from end-users for the application execu-
tion, respectively. They handle the requests using the provided services in the
middleware management plane.

The middleware management plane composes of the following services: (1
QoS configuration selection service; (2) component location discovery service; (3
QoS configuration instantiation service; (4) component registration service ;(
multi-resource reservation service, (6) multi-resource monitoring service, and (
adaptation policy management service.

The QoS configuration selection service consults the QoSCASpec repository
to get all possible QoS configurations corresponding to the user QoS request
for an application. The selection service chooses the best configuration among
the returned QoS configurations based on the current available resources, and
execution environment (e.g., it performs the match between the current available
resources and the configurations’ system resource requirements). If the chosen
configuration consists of a component with undefined location (target node), the
component location discovery service will be activated to discover (i.e., contacting
the public domain of running components) the component’s best location.

The QoS configuration instantiation service is responsible to instantiate spe-
cific service components and their associated middleware service components
defined in the pre-requisite system configuration files” into the distributed lo-
cations (target nodes). The instantiation services in the distributed locations
coordinate among themselves to (1) dynamically create the application run-time
containers and the middleware service component containers in the distributed
locations,(2) dynamically download the service component(s) from a service com-
ponent repository if the required specific or middleware service component(s) are
not located in the specified locations, and (3) instantiate the service components
in these containers. These steps will be performed only if no instance of the re-
quired service component is running on a particular target node. Note that when
a service component is instantiated, it may advertise itself to a public domain
of running components via the component registration service.

The multi-resource reservation and coordination service, based on the end-to-
end run-time multi-resource negotiation, is activated after the QoS configuration
instantiation service if the involving distributed locations support the reserva-

)
)
5)
7)

= [High:UserPVQoSHigh, UserPAQoS:High, UserSecQoS:High|>, <accessibility =
”Public” >].

" The configuration files are accompanied with corresponding mapping result files (sec
Sect. 3) and the mapping result files will be used by the run-time middleware only
if the associated middleware service components do not need any instrumentation
of the specific service components’ source codes.

tion of resources. The end-to-end resource negotiation is based on the minimum
resource requirement information compiled during the application development
phase.

The multi-resource monitoring service is responsible to measure and gather,
via the resource brokers, current available resources and service components’
resource requirements, at the end-system and in the distributed locations. The
returned result from the resource monitoring service can be used as hint for
selecting the most suitable configuration during the QoS configuration selection
service, and the most suitable QoS adaptation during the application run-time.
During the application development phase, the Q-Compiler’s resource transla-
tion uses this service via the profiler to measure the minimum end-to-end multi-
resource requirements for each specific configuration.

The adaptation policy management service performs the setup of adaptation
policies which include the possible QoS configurations and their transitions, cor-
responding to user preferences encoded in the user QoS request, and application
developer’s choices specified during application development phase. The setup of
the adaptation policies can be considered as part of the QoS setup. It helps the
run-time middleware to manage the adaptations of an application appropriately
during the application run-time.

While we present the middleware management plane as the composition of
seven necessary middleware management services to manage and control the
application execution plane, the middleware management plane is configurable
and extensible by additional services. Moreover, the middleware management
plane on different machines with varied capacities (e.g., high performance PCs,
handheld PDAs) and environments (e.g., reservation-enabled, or best-effort) can
be dynamically customized. For example, the middleware management plane on
the handheld PDAs can be configured to include only partial services or even no
services, and to rely on a gateway with fully-support middleware management
plane.

In the following subsections, we describe how the run-time 2K % middleware
assists the Q-Compiler’s resource translation during the application development
phase, and how it manages and controls the execution of an application during
the application execution phase.

4.2 Run-Time 2K? Middleware and Q-Compiler’s Resource
Translation

The run-time 2K? middleware performs the following steps (see Fig. 10) to
assist the Q-Compiler’s resource translation measuring the distributed multi-
resource requirements for a specific configuration®. Step 1: the profiler gets the
resource translation’s distributed probing request. Step 2: the profiler activates
the QoS configuration instantiation service to collaboratively create the appli-
cation run-time containers and the middleware service component containers

8 Note that the individual steps in this paragraph correspond to the steps in Fig. 10.

in the distributed locations, corresponding to the specific configuration associ-
ated with the distributed probing request. Step 3: the instantiation services in
the distributed locations, then, dynamically download the required service com-
ponents from the service component repository, and instantiate them into the
created containers. Step 4: the profiler activates the resource monitoring service
to collaboratively gather the distributed multi-resource requirements for the con-
figuration. Step 5: the profiler returns the minimum end-to-end multi-resource
requirements of the configuration to the Q-Compiler’s resource translation.

‘ Q-Compiler's resource translation ‘

Q-Compiler's distributed probing requesi End-to-end resource requirements
N\ Service component
a .
Ss 1
= R — - . S
E s Appllcat:op run-tim ! 5 pplication run-time g;
ag container container SE
E] 59
& 22
* . . B,
N © Middlewjare management plance Middleware r 1ent plance 4
®oy-----" - - — i -
55 23 g az_'
Ze are service Profiler | [Middleware| service $>=° j=x
L] . <—$— . 5
=85 nent container 2y 4 2 213 component dontainer |- =
EE 0S configuration i iation servic 0S ion i iation servic £
5 5 ©
: >
S| > monitoring servi 4 servic 3
5
I
I I
OS/system resources OS/system resources
machine machine

Fig. 10. Run-time 2K“ Middleware Assisting Q-Compiler’s Resource Translation

4.3 Run-Time 2K? Middleware and QoS-Aware Application
Execution

In this section, we describe how the run-time 2K% middleware instantiates,
manages, and controls an application execution corresponding to a user QoS
request, the application’s QoSCASpec, and the dynamic run-time constraints
such as current resource availability, and execution environment.

The run-time 2K 9 middleware performs the following steps® (see Fig. 11).
Step 1: the executor gets a user QoS request. Step 2: the executor activates
the QoS configuration selection service to find the most suitable configuration,
which will be determined based on (1) the application’s compiled result getting
from the QoSCASpec repository (see Step 2.1 in Fig. 11), and (2) the current
available resources getting from the multi-resource monitoring service (see Step
2.2 in Fig. 11). The adaptation policy management service performs the setup
of the adaptation policies among different possible configurations getting from
the QoSCASpec repository (see Step 2.3 in Fig. 11). The component location

9 Note that the individual steps in this paragraph correspond to the steps in Fig. 11.

discovery service will be activated in Step 3 if there exists an undefined location
in the selected configuration from Step 2. Step 4: the QoS configuration selec-
tion service returns the most suitable configuration to the executor. Step 5: the
executor activates the QoS configuration instantiation service to collaboratively
create the application run-time containers in the distributed locations, according
to the specified information in the returned configuration. Step 6: the instan-
tiation services in the distributed locations dynamically download the required
service components from the service component repository, and instantiate them
into the created containers. Note that in Step 6, when a service component is in-
stantiated, it may also register itself to a public domain of running components
via the component registration service. In Fig. 11, we assume that the mid-
dleware service component containers are already available in the distributed
locations. Step 7: the executor activates the multi-resource reservation and co-
ordination service to coordinate the reservation of resources in the distributed
locations for the end-to-end configuration. The resource reservation service will
be activated only if the involving distributed locations support the reservation
model. Step 8: the executor returns the execution result to the end-user.

End-user

User QoS request

Sucess/Fail

machine

machine

Sv—\ 1 8 /7%
S =
5] =
S sl - (———— &8
=55) S - =8
e (App! lcatlofl Tun-tim Application run-time|| S'g,
<€ o container . =4
9 container =,
% 5
v a
W@ Midat §
\ iddleware 5 ,
o |Middley Middleward service
i .
o 5 [compon | |component gc o
84 | a g
- ' ca
23 C- I C- Ea
=g=1 | Ik
B2 I I 5=
=) ' - - ' o8
5 I Tulti-resource reservation and Tulti-resource reservation and I =6
! coordination service coordination service ! 2
I I
7 2.2 I |
. 2 7
2. !
i)
i
i i
i
I I
M I
OS/system resources OS/system resources

Fig. 11. Run-time 2K° Middleware Managing QoS-aware Application Execution

Because the run-time 2K® middleware is component-based and reconfig-
urable, and allows for dynamic downloading and linking of service components
into distributed target nodes securely, it can execute and ensure the QoS pro-
visions for different types of QoS-aware applications uniformly, based on the
compiled meta information in applications’ QoSCASpecs.

5 Implementation and Experiments

The implementation is divided into two parts: (1) the uniform QoS programming
environment and the @Q-Compiler’s multi-aspects QoS translations are imple-
mented in Java, and integrated with the visual programming environment [20];
(2) the distributed run-time 2K < middleware is implemented as a set of CORBA
components, based on the dynamic reconfigurable middleware ”dynamicTAQO”
[21], and the resource reservation model in the QualMan system [22].

The run-time 2K nodes are connected via a 100 Mbps Ethernet'®. The
nodes are: (1) two Sun Ultra-60 workstations, each with two 360 MHz processors
and 768 MB memory, (2) one Sun Ultra-60 workstation with two 450 MHz
processors and 1024 MB memory. All machines are running SunOS 5.7. The
file system is NFS. The Q-Compiler runs on Pentium-II PC with one 366 MHz
processor and 128 MB memory, and connects to the run-time 2K© nodes via
the 100 Mbps Ethernet.

We show our first results of the unified QoS management framework’s perfor-
mance via the overhead of the resource translation’s distributed probing protocol
(see Fig. 12(a)), and the overhead of the QoS setup (see Fig. 12(b)) for different
applications.

1810 1600

1400 40
1560 P

1200

1560 ; Fio

1570 £
g 800
1560
v F g
1550
1540 1
1530 o

1520 T T 0
void vod? vodd ot votk2 distributed-audio vidzo-bro adeasting
m00SCASpec Lookup
Conﬁgurations BDynamic Downloading Time
DOlnstantiation Time

Distributed Probing Protocol
Overhead (ms)

Applications

(a) (b)

Fig. 12. (a) Resource Translation Times for Different Configurations During
the Application Development Phase, (b) QoS Setup Times for Different Appli-
cations During the Application Execution Phase

In Fig. 12(a), vod-1, vod-2 and vod-3 are three different configurations of a
video on demand application: (1) a single server with a single client, (2) a single
server with two clients, and (3) a single server with three clients. The graph is
an average of fifteen runs for the three configurations. The results show that

10 We are working towards heterogeneous networks with different devices’ capabilities.

the average resource translation times, based on the distributed probing proto-
col, are 1555.1, 1596.1, and 1606.4 ms, respectively. Times vary corresponding
to the number of associated service components needed to be instantiated in
the configurations, service components’ sizes and target locations. Note that the
measurements do not include the duration of individual service components’
local resource probing.

In Fig. 12(b), we measure the QoS Setup time of four applications: vod-1,
vod-2, distributed audio (distributed-audio) with three audio players, and video
broadcasting (video-broadcasting) with a server, a gateway, and two receivers.
The QoS setup time includes QoSCASpec lookup, dynamic downloading of ser-
vice components and component instantiation. The graph is an average of fifteen
runs for the four applications. The results show that the QoS setup times for
the four applications vary mainly according to their dynamic downloading times,
which are 723.0, 945.5, 964.5, and 1458.7 ms, respectively. Dynamic downloading
times vary corresponding to the number of associated service components in the
configurations, the service components’ sizes and the target locations. The aver-
age QoSCASpec lookup times for the four applications are 53.3, 54.7, 48.9, and
72.3 ms, respectively. The QoSCASpec lookup is stable and very small because
the current QoSCASpec repository is running on the same machine as the ex-
ecutor getting the user QoS request. Also, in these experiments, the QoSCASpec
lookup performs only the configuration matching without considering additional
constraints. The average component instantiation times for the four applications
are 55.3, 59.3, 66.1, and 82.1 ms respectively. The component instantiation time
is the time used in CORBA method invocations to start the distributed ser-
vice components forming the application. If we assume that service components
(some or all) in a configuration are already in places, the QoS setup time for the
configuration will be very small.

6 Related Work

Extensive related work exists in different areas of the QoS:

— QoS specifications and QoS translations

QoS specifications, proposed as part of QoS architectures or QoS middleware
architectures, depend on the design and objectives of the architectures. For
example, in QuO project [14], QoS is specified via a suite of description
languages based on aspect-oriented programming [23]. In QoSME [7], QoS is
described via a Quality of Service Assurance Language (QuAL). In CORBA,
QoS is specified via pre-defined interfaces of different QoS extensions such
as control and management of audio/video streams in CORBA [9], CORBA
messaging [10], fault tolerant CORBA [11], and real-time CORBA [12]. In
Agilos middleware [18], QoS is defined via rules and membership functions.
In Q-RAM project [6], QoS is represented via utility functions.

In the area of QoS Translation, QoS translations, based on analytical func-
tions, are proposed. For example, in [2] Nahrstedt et al. propose a translation

from a multimedia application’s QoS parameters into transport subsystem’s
QoS parameters, and in [24] Kim et al. propose a translation from MPEG
video parameters into CPU requirements. The proposed analytical transla-
tions are application-specific and applied to multimedia domain. Moreover,
they deal only with the translation between the application QoS parameters
and the system resource requirements.

QoS Architectures

Several reservation-based QoS architectures and approaches already exist.
For example, in [2, 3, 4, 5] researchers propose end-to-end QoS management
frameworks for multimedia applications. In the best-effort environment, the
adaptation-based QoS architectures exist. For example, Agilos [18] proposes
a framework assisting in QoS enforcement for a distributed visual track-
ing application. Q-RAM project [6] proposes a QoS management framework
based on the multi-resource allocation model mainly focusing on the global
resource optimization. QoSME [7] with the Quality of Service Assurance
Language (QuAL) provides the abstractions for QoS management to the
underlying network management. These QoS architectures and approaches
are designed only for one type of applications, or to handle particular aspect
of QoS provisions such as the resource management. If one wants to run a
different type of applications, the existing QoS architectures do not scale,
i.e., might not be applicable, or reusable.

QoS in Distributed Object Computing (DOC) Middleware

In distributed object computing (DOC) middleware such as CORBA, control
and management of audio/video streams in CORBA, CORBA messaging,
fault tolerant CORBA and real-time CORBA [9, 10, 11, 12] are proposed
to provide quality of service for different types of applications. In this case,
an application will be QoS-aware if the application developer deploys these
QoS-related interfaces. Hence, an application developer has to learn different
IDL interfaces for different types of provisions. In addition, the application
developer has to know the semantics of these interfaces, and how to translate
his/her application QoS requirements into these interfaces and their param-
eters appropriately. For example, in real-time CORBA, an interface allows
the application developer to specify the protocol configuration such as pro-
tocol type, ORB protocol property, and transport protocol property. What
is not clear is how an application’s QoS specifications should be translated
appropriately into these IDL interfaces and parameters. Other QoS efforts in
DOC middleware are the optimizations of ORBs, such as TAO project [13]
at Washington university to support the real-time messaging. BBN’s Qual-
ity Object (QuO) project [14] allows an application developer to develop
distributed applications that can adapt to the changing quality of service in
CORBA environment. Lancaster’s multimedia component architecture [25]
is extended beyond CORBA or DCOM and takes application QoS param-
eters into account. Adapt project [26] allows explicit bindings in CORBA
via open bindings. Qualities of services in DOC middleware are also tailored
toward specific type of applications or particular aspect of QoS provisions.

7 Conclusions

Different domains of distributed component-based applications, running in het-
erogeneous execution environments, need different quality of service semantics. It
is hard to provide quality of service for individual applications, and even harder
to handle them uniformly in a QoS management framework. The difficulty is in
both the development phase, and the execution phase to integrate the QoS as
part of the application.

In this paper, we describe the architecture and the philosophy of a unified QoS
management framework, 2K%*, based on the integrated approach of the QoS
compilation and the component-based and reconfigurable run-time middleware.
The framework provides uniform and systematic mechanisms for developing a
QoS-aware application during the application development phase, and for en-
suring QoS provisions based on the compiled information and dynamic run-time
constraints, during the application execution time.

While the component-based middleware concept by itself is not novel, (1) the
introduction of an automated QoS compilation concept, which helps the appli-
cation developer to decide the possible configurations and the appropriate set of
middleware components running in heterogeneous execution environments, and
(2) the integration of these two concepts, forming the unified QoS management
framework, are novel.

We believe that 2K 9+ is a practical solution for a unified QoS management
framework, which includes not only QoS setup and QoS provision during the
application run-time, but also QoS programming and compilation for different
applications during the application development.

References

[1] K. Nahrstedt, D. Wichadakul, and D. Xu. Distributed qos compilation and run-
time instantiation. In Proceedings of the Eighth IEEE/IFIP International Work-
shop on Quality of Service, pages 198-207, June 2000.

[2] K. Nahrstedt and J. Smith. Design, implementation and experiences with the
omega end-point architecture. IEEE Journal on Selected Areas in Communication,
14(7):1263-1279, September 1996.

[3] A. Campbell, G. Coulson, and D. Hutchison. A quality of service architecture.
Computer Communication Review, 24(2):6-27, April 1994.

[4] L. C. Wolf. Resource Management for Distributed Multimedia Systems. Kluwer,
Boston, Dordrecht, London, 1996.

[6] A. Hafid and G. Bochmann. An approach to qos management in distributed
multimedia applications: Design and an implementation. Multimedia Tools and
Applications, 9(2), 1999.

[6] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A resource allocation model
for qos management. In Proceedings of the IEEE Real-Time Systems Symposium,
pages 298-307, December 1997.

[7] P. G. S. Florissi. QoSME: QoS Management Environment. PhD thesis, Columbia
University, Department of Computer Science, 1996.

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

21]

K. Nahrstedt, H. Chu, and S. Narayan. Qos-aware resource management for
distributed multimedia applications. Journal on High-Speed Networking, Special
Issue on Multimedia Networking, I0S Press, 8(3-4):227-255, 1998.

IONA Technologies Plc., Lucent Technologies Inc., and AG Siemens-Nixdorf. Con-
trol and management of audio/video streams omg rfp submission. online docu-
mentation at http://www.omg.org/docs/telecom/98-10-5.doc, May 1998.

BEA Systems Inc., Expersoft Corporation, Imprise Corporation, International
Business Machine Corporation, International Computers Ltd., IONA Technolo-
gies Plc., Northern Telecom Corpoaration, Novell Inc., Oracle Corporation,
Peerlogic Inc., and TIBCO Inc. Corba messaging. online documentation at
http://www.omg.org/cgi-bin/doc2orbos/98-05-05., May 1998.

Ericsson, Eternal Systems Inc., HighComm, Inprise Corporation, IONA Tech-
nologies Plc., Lockheed Martin Corporation, Lucent Technologies, Objective
Interface Systems Inc., Oracle Corporation, and Sun Microsystems Inc.
Fault tolerant corba, joint revised submission. online documentation at
http://www.omg.org/techprocess /meetings/schedule/Fault_ Tolerance_RFP.html,
December 1999.

Alcatel, Hewlett-Packard Company, Highlander Communications L.C., Inprise
Corporation, IONA Technologies, Lockheed Martin Federal systems Inc., Lu-
cent Technologies Inc., Nortel Networks, Objective Interface Systems Inc.,
Object-Oriented Concepts Inc., Sun Microsystems Inc., and Tri-Pacific Soft-
ware Inc. Real-time corba, joint revised submission. online documentation at
http://www.omg.org/cgi-bin/docforbos/99-02-12, March 1999.

D. Schmidt, D.Levine, and C. Cleeland. Advances in Computers, Marvin Zelkowitz
(editor), chapter Architectures and Patterns for High-performance, Real-time
ORB Endsystems. Academic Press, 1999.

J. Zinky, D. Bakken, and R. Schantz. Architecture support for quality of service
for corba objects. Theory and Practice of Object Systems, 3(1):556—-73, January
1997.

G. Bochmann, B. Kerherve, and M. Mohamed-Salem. Quality of service manage-
ment issues in electronic commerce applications. to be published as a chapter in a
book.

S. Frolund and J. Koistinen. Quality of service specification in distributed object
systems design. In Proceedings of the Fourth USENIX Conference on Object-
Oriented Technologies and Systems, pages 1-18, 1998.

D. Wichadakul and K. Nahrstedt. Distributed qos compiler. Technical Report
UIUCDCS-R-2001-2201 UILU-ENG-2001-1705, Department of Computer Sci-
ence, University of Illinois at Urbana-Champaign, (submitted for journal publi-
cation), February 2001.

B. Li and K. Nahrstedt. A control-based middleware framework for quality of
service adaptations. IEEE Journal of Selected Areas in Communications, Special
Issue on Service Enabling Platforms, 17(9):1632-1650, September 1999.

H. Chu and K. Nahrstedt. Cpu service classes for multimedia applications. In Pro-
ceedings IEEE International Conference on Multimedia Computing and Systems,
pages 296-301, June 1999.

X. Gu, D. Wichadakul, and K. Nahrstedt. Visual qos programming environment
for ubiquitous multimedia services. to appear in Proceedings of IEEE International
Conference on Multimedia and Ezpo, August 2001.

M. Roman, F. Kon, and R.H. Campbell. Design and implementation of runtime
reflection in communication middleware: the dynamictao case. In Proceedings.

22]

23]

[24]

25]

[26]

19th IEEE International Conference on Distributed Computing Systems. Work-
shops on Electronic Commerce and Web-based Applications. Middleware, pages
122-127, June 1999.

K. Nahrstedt, H. Chu, and S. Narayan. Qos-aware resource management for dis-
tributed multimedia applications. Journal of High-Speed Networks, Special Issue
on Multimedia Networking, 7(3-4):229-257, 1998.

J. Loyall, D. Bakken, R. Schantz, J. Zinky, D. Karr, R. Vanegas, and K. An-
derson. Qos aspect languages and their runtime integration. In Lecture Notes in
Computer Science, Springer-Verlag of the Fourth International Workshop on Lan-
guages, Compilers, and Run-time Systems for Scalable Computers, 1511:303-318,
May 1998.

K. Kim and K. Nahrstedt. Building QoS into Distributed Systems, Andrew Camp-
bell, Klara Nahrstedt (editors), chapter QoS Translation and Admission Control
for MPEG Video, pages 359-362. Chapman and Hall, 1997.

D. G. Waddington and G. Coulson. A distributed multimedia component archi-
tecture. In Proceedings of the First International Enterprise Distributed Object
Computing Workshop, pages 337-345, October 1997.

T. Fitzpatrick, G. Blair, G. Coulson, N. Davies, and P. Robin. Supporting adaptive
multimedia applications through open bindings. In Proceedings of the Fourth In-
ternational Conference on Configurable Distributed Systems, pages 128-135, May
1998.

