
Profiling Self-Propagating Worms via Behavioral
Footprinting

Xuxian Jiang Dongyan Xu
Dept. of Information and Software Engineering CERIAS and Dept. of Computer Science

George Mason University Purdue University
Fairfax, VA 22030, USA West Lafayette, IN 47907, USA

xjiang@ise.gmu.edu dxu@cs.purdue.edu

ABSTRACT
This paper proposes behavioral footprinting, a new dimen-
sion of worm profiling based on worm infection sessions. A
worm’s infection session contains a number of steps (e.g.,
for probing, exploitation, and replication) that are exhib-
ited in certain order in every successful worm infection. Be-
havioral footprinting complements content-based signature
by enriching a worm’s profile, which will be used in worm
identification, an important task in post worm attack inves-
tigation and recovery. We propose an algorithm to extract a
worm’s behavioral footprint from the worm’s traffic traces.
Our evaluation with a number of real worms and their vari-
ants confirms the existence of worms’ behavioral footprints
and demonstrates their effectiveness in worm identification.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General
– Security and protection (e.g., firewalls)

General Terms
Security

Keywords
Worms, Worm Profiling, Content Signature, Behavioral Foot-
printing

1. INTRODUCTION
In Internet worm defense, it is useful to create a complete,

multi-facet profile for each worm. Such worm profiles can
be used for worm identification, which is important to hold
specific worms (and possibly worm authors) accountable for
detected worm attacks and to recover from the damages in-
flicted by a specific worm. Worm identification is different
from worm detection, in that the latter answers the ques-
tion “is there a worm attack?” while the former answers
the question “which worm is it?”. A well established di-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WORM’06, November 3, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-551-7/06/0011 ...$5.00.

mension of worm profiling is content-based fingerprinting
[16, 17, 19, 22], which characterizes a worm by extracting
the most representative content sequence(s). Though effec-
tive, the content-based dimension alone does not create a
complete worm profile.

In this paper, we propose a new dimension of worm pro-
filing called behavioral footprinting, which profiles worms
based on their infection sessions. A worm’s infection session
contains a number of steps that are performed in certain or-
der in every successful infection. Our approach is based on
the key observation that the logic in a worm’s implementa-
tion is different from that of the service or software being ex-
ploited by the worm. Moreover, it differs from other worms
by exhibiting its “personalities” in terms of the target vul-
nerability, exploitation means, replication scheme, and pay-
load features. For example, in its infection session, the MS-
Blaster worm [3] first exploits an RPC-DCOM vulnerability
(MS03-026) with one TCP connection. Once successful, it
creates a new port-binding shell service (4444/TCP) in the
victim. It then replicates itself by using the tftp protocol.
Unlike the MSBlaster worm, the Lion worm [2] first creates
two TCP connections to exploit a BIND vulnerability (CA-
2001-02). Once successful, the victim connects back to the
infecter and replicates itself by using a new encapsulated
HTTP connection. It does not create port-binding shell in
the victim. As such, each worm has a unique behavioral
footprint that differs from the normal service behavior as
well as from that of other worms.

We have experimented with more than 10 real worms and
their variants and extracted unique behavioral footprint for
each of them1. Our experiments also show the effectiveness
of behavioral footprints for worm identification from real-
world traffic traces. Being orthogonal to the content-based
dimension of worm profiling, behavioral footprint is by na-
ture unaffected by attacks against content-based signatures
such as content mutation [25]. The rest of this paper is or-
ganized as follows: Section 2 makes a case for worm behav-
ioral footprinting. Section 3 describes behavioral footprint
representation and extraction. Experimental results are pre-
sented in Section 4. Possible attacks and suggested solutions
are described in Section 5. Section 6 discusses related work
and Section 7 concludes this paper.

1We in this work focus on worms that exploit vulnerable
servers without any human intervention. We are currently
evaluating other types of worms, such as mass-mailing, P2P,
and IM worms.

2. A CASE FOR BEHAVIORAL FOOTPRINT-
ING

2.1 Worm Infection Sessions
The infection session of a self-propagating worm (between

the infecter and the victim) spans the following three phases:
(1) Target selection and probing Using an address scan-

ning strategy (e.g. random or biased scanning), a worm at-
tempts to pick a victim for infection. For example, an ICMP
echo request packet or a TCP SYN probe can be used to in-
fer the reachability of a victim. Additional packets may be
used to obtain the version of a vulnerable service. Note that
this phase may not exist for non-scanning worms (e.g. those
that carry a pre-computed target list).

(2) Exploitation Once the worm receives a positive re-
sponse from the victim, a number of malicious packets 2

may be sent to exploit the specific vulnerability. Successful
exploitation will result in the execution of crafted code by
the victim. This code is usually implemented differently in
different worms.

(3) Replication If the exploitation is successful, the repli-
cation phase follows to transmit a worm replica to the vic-
tim. Once the replica is installed in the victim, the infection
session is completed.

As an example, the MSBlaster worm [3] exploits an RPC-
DCOM vulnerability (MS03-026). Figure 1 shows the steps
in one infection session of the MSBlaster worm:

 69/UDP */UDP

4444/TCP */TCP

TCP 3−way handshake

TCP 3−way handshake

UDP * −> 69

UDP 69 −> *

RST

135/TCP */TCP

RST

Figure 1: An Infection Session of the MSBlaster

Worm

• A three-way TCP handshake on port 135 is used to
check the reachability of the victim.

• Upon the establishment of the TCP connection, the
worm sends a number of malicious packets to exploit
the RPC-DCOM vulnerability using specially crafted

2There are some worms such as Slammer that might blindly
send exploiting packets to any probed hosts.

attack code. If successful, the attack code will be ex-
ecuted by the victim. As a result, a new shell service
will be started on TCP port 4444.

• The new shell service on 4444/TCP is immediately
contacted by the worm to send instructions on how to
download the worm replica, i.e., msblast.exe. The tftp
protocol is used for the downloading.

The same infection session is repeated during the propa-
gation of the MSBlaster worm. Other worms have their own
infection sessions.

2.2 Behavioral Footprints for Worm Profiling
We are motivated to use the steps and their ordering dur-

ing an infection session to profile the behavior of a worm.
First, there are intrinsic differences between a worm in-

fection session and a normal access session to the vulnerable
service. During the exploitation phase of a worm infection
session, a worm will attempt to misuse a vulnerable ser-
vice in a way that deviates from the normal access. In
fact, several recent works such as Shield [26] rely on such
difference to derive vulnerability-specific models. The repli-
cation phase of a worm infection session should not happen
during a normal service access. Moreover, the temporal or-
der of infection steps taken by a worm reflects the intrinsic
dependencies that must be followed to ensure a successful
infection.

Second, worm infection sessions reflect their respective im-
plementations. Even for worms exploiting the same vulner-
able service, their sequences of infection steps are different.
This is because of the fact that the worms’ implementa-
tions tend to have different exploitation means, replication
idiosyncrasies, and carried-on payloads.

As a result, a worm’s infection steps and their order-
ing during each infection session become valuable identity-
revealing information. We are motivated to extract such
information, which we call behavioral footprint, to profile
the worm and use it for worm identification in post-attack
analysis. This new dimension of worm profiling enriches the
worm profile by complementing the existing content-based
fingerprinting dimension. These two dimensions combined
are expected to generate more complete worm profiles.

3. BEHAVIORAL FOOTPRINT REPRESEN-
TATION AND EXTRACTION

In this section, we first define the representation of a
worm’s behavioral footprint. We then present an algorithm
to extract a worm’s behavioral footprint based on collected
network traces that contain worm infection sessions.

3.1 Representation
We first break one infection session into different infection

phases, each of which contains a number of flows (e.g. TCP,
UDP, or ICMP connections). We identify each flow and
present a sequence of flow-level actions as elements in the
worm’s behavioral footprint. For example, the behavioral
footprint of the MSBlaster worm, based on its infection ses-

sion in Figure 1, can be represented as S1

←−

SA
1

A1 · · ·R1S2

←−

SA
2

A2

· · ·

←−

U1U1 · · ·R2, where

S1 : < TCP, 4581/infecter, 135/victim, SY N >
←−
SA

1 : < TCP, 135/victim, 4581/infecter, SY N, ACK >

A1 : < TCP, 4581/infecter, 135/victim, ACK >

R1 : < TCP, 4581/infecter, 135/victim, RST >

S2 : < TCP, 4599/infecter, 4444/victim, SY N >
←−
SA

2 : < TCP, 4444/victim, 4599/infecter, SY N, ACK >

A2 : < TCP, 4599/infecter, 4444/victim, ACK >
←−
U1 : < UDP, 1552/victim, 69/infecter >

U1 : < UDP, 69/infecter, 1552/victim >

R2 : < TCP, 4599/infecter, 4444/victim, RST >

Each letter in the above behavioral footprint denotes ei-
ther a TCP flow with different control bits (SYN, ACK,
RST), an UDP flow (U), or an ICMP flow (I). The sub-

scripts denote different flows. For example,
←−
SA

1 represents
the second step (SYN and ACK bits set) in a normal three-
way TCP handshaking procedure. The arrow sign is used
to mark the traffic flow direction and can be omitted when
there is no ambiguity. For convenience, a well-known sub-
sequence can be denoted by a single letter. For example,

a standard TCP 3-way handshake sequence (e.g., Si

←−
SA

i Ai,
i = 1, 2, in previous sequence) can simply be denoted as Ci.

Each letter in the behavioral footprint is further speci-
fied as a tuple with varying number of fields. In this ex-
ample, the letter representing a TCP flow has four fields
< TCP, source port, dest port, TCP control bits > ; while the
letter representing a UDP flow has three fields < UDP,

source port, dest port > . We note that additional fields can
be added to carry other “context” information such as the
packet length, content signature, or timing information rel-
ative to the previous step. The design goal of such an ex-
tensible representation is to make it easier to integrate other
worm profiling dimensions. Particularly, the content-based
signature of a worm can be added, indicating the occurrence
of a specific content signature during that corresponding in-
fection step.

In addition, as a worm infection step might involve a non-
deterministic port, a special wildcard field is introduced. Us-
ing the MSBlaster worm as an example, the source ports

(e.g., the port 4581, 4599, 1552 in S1, S2,
←−
U1, respectively)

vary in different infection sessions while the destination ports

are the same (e.g., the port 135, 4444, 69 in S1, S2,
←−
U1, re-

spectively). The special wildcard can be used for the source
port field. As another example, the Witty worm has a fixed
UDP source port 4000 and a random destination port. In
this case, the wildcard is used to represent the destination
port field. We also recognize that although a worm infec-
tion session usually involves only two nodes (infecter and
victim), a coordinated worm infection might involve more
than two nodes (e.g., downloading the worm replica from a
third node). In this case, the wildcard field can be used to
represent the infecter.

3.2 Extraction
A worm’s behavioral footprint can be obtained in the fol-

lowing way: the raw infection session traces of the worm
are first collected (e.g., using a honeyfarm [12]). The raw

traces are then processed by an algorithm, which extracts
the worm’s behavioral footprint common in the traces. In
this section, we present a pairwise alignment algorithm for
the extraction.

Our algorithm is based on Needleman-Wunsch algorithm
[9], which has been extensively used in bioinformatics re-
search to find certain patterns in large sequences of strings
such as DNA, RNA, and protein sequences. Note that any
type of protein is a sequence of amino acid sub-units and
there are only 20 different amino acids, which constitute the
“alphabet” for protein sequence analysis. Similarly, if we
consider all possible infection steps in a worm infection ses-
sion as the alphabet, the behavioral footprint of a worm can
be represented as a sequence of letters in the alphabet.

Given two infection traces F1 = x1x2 · · ·xn and F2 =
y1y2 · · · ym, our algorithm achieves an optimal alignment be-
tween them. Based on a pre-defined scoring matrix (e.g., a
match yields 1 while a mismatch yields 0), the alignment
algorithm inserts gaps, if necessary, to achieve maximum
alignment of the two sequences. The maximum alignment
is defined as the sum of terms for each aligned pair of let-
ters < xi, yj > within the sequences (representing similarity
s(xi, yj)), plus terms for each gap (representing a penalty
p). The similarity and gap penalty are defined as a part of
the scoring matrix and can be specific to different scenarios.

Based on our algorithm, a matrix M , indexed by i and j
with one index for each sequence, is iteratively constructed.
The cell M (i, j) is the score of the best alignment between
the initial segment x1x2 · · ·xi of x up to xi and the initial
segment y1y2 · · · yj of y up to yj . Initially, M (0, 0) = 0,
M (i, 0) = −ip, M (0, j) = −jp. The matrix is then itera-
tively filled from top-left cells to bottom-right cells based on
Eqn.(1).

M (i, j) = max

8

>

<

>

:

M (i− 1, j − 1) + s(xi, yj), i ≥ 1, j ≥ 1

M (i− 1, j)− p, i ≥ 1

M (i, j − 1)− p, j ≥ 1

(1)
Each case represents an option how current M (i, j) cell

is derived from one of the other three cells (above-left [i −
1, j − 1], above [i − 1, j], or left [i, j − 1]). Once all values
are calculated, the choices taken at each cell starting from
the bottom rightmost one are traced back so that an optimal
global alignment is derived. An example alignment apply-
ing our algorithm to a synthesized Welchia worm variant is
shown in Figure 2.

I 1I 1C1F 1F 1C2U1U1 R2

C1F 1F 1C2U1U1 R2U2U2

Sequence 1:

Sequence 2:

Figure 2: A pairwise alignment of two raw infection

traces of the same worm. The choices made during

the alignment are shown as “-” and “|”. The “-” in

the top sequence used as index i for M corresponds

to the choice “above” [i−1, j], the “-” in the bottom

sequence used as index j for M represents “left”

choice [i, j−1], while the “|” in the middle shows the

option “above-left” [i− 1, j − 1].

Our experiments (Section 4) show that the alignment al-

Figure 3: A Sample Output of Our Sneeze Tool

gorithm is highly effective in extracting behavioral footprints
for all the worms (Table 1) we have experimented with. For
more advanced worms that exhibit behavior polymorphism,
a counterpart of content polymorphism, we have designed a
tree-based algorithm that takes multiple infection traces as
input and the details are presented in [13].

4. EVALUATION
In this section, we first demonstrate the existence of be-

havioral footprints of worms. We then apply behavioral
footprints to worm identification during a post attack in-
vestigation based on real network traces.

4.1 Existence of Behavioral Footprints
We have accumulated a number of worm infection traces

from two earlier projects: Collapsar [12] and vGround [14].
Each infection trace is collected as a separate tcpdump log
file and is processed by sneeze, a tool we have developed
for behavioral footprint extraction and worm identification.
Sneeze extracts all TCP/UDP/ICMP flows in a complete
infection session 3. If necessary, it also performs packet re-
ordering and reassembly. After the extraction, the TCP/UDP
/ICMP flows are ordered based on time-stamps. The dura-
tion and payload size of each flow are also calculated by
sneeze. An example output generated by sneeze after ana-
lyzing a successful Sasser worm [4] infection session is shown
in Figure 3.

When analyzing different TCP segments in the same TCP
flow, sneeze is able to track relevant TCP states. Specifi-
cally, TCP control packets with SYN, ACK, FIN, or RST bit
set are recorded in the final representation. The TCP data
packets (though ACK bit turned on) are usually ignored.

3The current sneeze prototype assumes that each infection
session contains an exploitation using one infection vector.

However, as discussed in Section 3.1, unique payload con-
tent, or certain vulnerability-specific information can also
be integrated here to enrich the accuracy and completeness
of worm profiles.

Our pairwise alignment algorithm (Section 3) is then ap-
plied to extract behavioral footprints. The results are shown
in Table 1. Each letter in the table represents either a TCP
flow, a UDP flow, or an ICMP flow. The letter Ci represents
the standard three-way TCP connection handshake process.
Note that the same letter in different rows of the table con-
tains different field values (e.g., destination port numbers)
and are omitted for brevity.

We are able to reliably extract behavioral footprints for
all worms investigated. The Welchia worm is similar to the
MSBlaster worm except that an initial ICMP probing packet
is generated before actual exploitation and the second TCP

connection (
←−
C2) is initiated from the victim with connect-

back attack code. Though the MSBlaster worm and the
Welchia worm exploit the same vulnerability, their behav-
ioral footprints are different. The Enbiei worm exhibits a
footprint similar to that of the MSBlaster worm but has
a different binary file and payload. The Sasser worm uses

the ftp protocol (
←−
C3) to download a worm replica. Within

the ftp session, a PORT primitive is initiated to start an
embedded ftp-data session (C4).

Table 1 also shows behavioral footprints of several histor-
ical worms. The Ramen worm is a multi-vector worm with
three infection vectors (IVs): LPRng (CVE-2000-0917), wu-
ftpd (CVE-2000-0573), and nfs-utils (CVE-2000-0666). For
all three IV-specific behavioral footprints, the Ramen worm
starts a TCP control packet with SYN and FIN bits (SF

1)
set, source port 21, and destination port 21 to probe victims.

Name Infection Vector Behavioral Footprints Derived Platforms

MSBlaster RPC-DCOM vulnerability (MS03-026) C1R1C2

←−
U1U1R2 Windows

Welchia RPC-DCOM vulnerability (MS03-026) I1

←−
I1C1F1

←−
F1

←−
C2

←−
U1U1

←−
U2U2R2 Windows

Enbiei RPC-DCOM vulnerability (MS03-026) C1R1C2

←−
U1U1R2 Windows

Sasser LSASS vulnerability (MS04-011) C1R1C2

←−
C3C4F4

←−
F4F3

←−
F3R2 Windows

Ramen LPRng vulnerability (CVE-2000-0917) SF
1

←−
S1R1C2F2

←−
F2C3

←−
C4F4

←−
F4 Linux

WU-FTPD vulnerability (CVE-2000-0573) SF
1

←−
S1R1C2R2C3R3

NFS-UTILS vulnerability (CVE-2000-0666) SF
1

←−
S1R1U1

←−
U1U2C2

←−
C3F3

←−
F3R2

Lion BIND vulnerability (CA-2001-02) C1F1

←−
F1C2

←−
C3F3

←−
F3R2 Linux

Slapper OpenSSL vulnerability (CA-2002-23) C1F1

←−
F1C2

←−
F2

Q

22

i=3
CiC23C24 Linux

SARS Samba vulnerability (CAN-2003-0201) U1

←−
U1U2

←−
U2C1F1C2F2

←−
F2C3

←−
C4

←−
F4F4R3 Linux/BSD

Table 1: Worms and Their Behavioral Footprints

4.2 Behavioral Footprints for Worm Identifi-
cation

In this section, we demonstrate the effectiveness of behav-
ioral footprints in worm profiling and identification. To this
end, we perform a post-attack worm investigation using a
7-hour network trace (80M bytes) collected from a live hon-
eypot system that was successfully infected by 3 different
worms.

As a comparison, we apply the popular content-based
intrusion detection system snort side-by-side with our ap-
proach. The signature database used in snort has been up-
dated to contain the latest content signatures for known
intrusions. In the meantime we extend sneeze to recognize
worm infection sessions based on extracted behavioral foot-
prints. The results from snort and sneeze experiments are
shown in Table 2 and Figure 4, respectively.

Table 2 shows that snort performs well in detecting on-
going attacks (e.g., RPC DCOM buffer overflow attacks) and
reports numerous alerts such as “ICMP PING CyberKit 2.2
Windows”. However, these alerts are separately raised even
though they may be involved in the same worm infection
session. Figure 4 shows the sneeze result. Sneeze naturally
identifies 3 successful worm infections and also reports 2 un-
successful worm infections. Further manual analysis shows
that one unsuccessful worm infection has erroneously gener-
ated a wrong address (192.168.1.59) to download the worm
replica while another unsuccessful infection has a flawed ex-
ploitation in binding the command shell service. As the tftp
protocol is used for all these worms, we compare both out-
puts in this aspect. Table 2 reports four alerts with messages
“TFTP GET” while Figure 4 further reports that one tftp
is related to the Enbiei worm, one tftp is related to the MS-
Blaster worm, and the other two tftps are attributed to the
Welchia worm, which uses one tftp session to download the
file DLLHOST.exe (the worm payload) and the other tftp
session for SV CHOST.exe (a tftpd daemon).

Based on the above comparison, we observe that snort in-
spects every incoming/outgoing packet and raises an alert if
a specific content-based signature is detected. However, it is
not intended to correlate multiple alerts to identify the same
worm infection session. Sneeze instead recognizes a worm’s
infection session and therefore is capable of identifying each
individual worm.

Our other experiments [13] also show that snort becomes
unable to identify worms when their contents are mutated
or encrypted to evade content-based signatures. Sneeze is

by nature unaffected by these attacks. In the next Section,
we discuss some advanced attacks and possible countermea-
sures.

5. ATTACKS AND IMPROVEMENTS
Behavior substitution attack The goal of our al-

gorithm is to achieve an optimal alignment between worm
infection traces. An advanced worm could intentionally in-
troduce substitutable subsequences to corrupt the alignment
process while still achieving its goal of infection and prop-
agation. This is a feasible attack. However, if we consider
each substitution as a potential mutation, this attack is rem-
iniscent of the classic challenge faced by biologists of how to
optimally align gene sequences under possible mutations;
and the solutions lie in enhancing the underlying scoring
matrix. As a possible improvement, instead of simply re-
turning either 0 or 1 when comparing two flows, the scoring
matrix can be defined to return a normalized factor, indi-
cating how likely these two flows are substitutable for each
other.

Behavior-camouflaging attack In this attack, a worm
author might attempt to hide true infection steps by inject-
ing “noises” into the infection sequences. These noises, if
not removed, may eventually pollute the final behavioral
footprint generated. We could manually examine each in-
fection session and only use those true infection steps for
footprint analysis. However, this may be tedious and error-
prone. How to automatically and accurately extract be-
havioral footprints from tainted sequences is our on-going
research problem 4.

6. RELATED WORK
Our approach falls into the broader category of using at-

tack behavior [1, 10, 11, 23] for intrusion profiling and iden-
tification. For example, [11] profiles the behavior of vul-
nerable programs and use them as a reference for detect-
ing potential intrusions against systems. GrIDS [23] builds
an activity graph based on machines activities and uses it
to detect distributed intrusions. Assuming the existence of
behavioral signatures of worm attacks, [10] focuses on the
modeling of inter-machine communication patterns for worm

4A number of techniques might be helpful, such as proto-
col compliance analysis, semantic-aware tracking, as well as
various data mining techniques.

Snort Signature # Alerts # Sources # Dests

1 NETBIOS DCERPC ISystemActivator path overflow attempt little endian 539 12 201
2 NETBIOS SMB-DS Session Setup And X request unicode username overflow attempt 15 1 1
3 NETBIOS SMB-DS DCERPC NTLMSSP asn1 overflow attempt 14 2 1
4 ICMP Source Quench 28 28 1
5 ICMP redirect host 27 1 1
6 TFTP Get 24 1 4
7 ICMP Large ICMP Packet 3 2 2
8 ICMP PING CyberKit 2.2 Windows 307551 33 153549
9 ICMP Destination Unreachable Communication Administratively Prohibited 156 2 1
10 SCAN UPnP service discover attempt 30 1 1
11 NETBIOS SMB-DS IPC$ share unicode access 6 3 1

Table 2: Intrusion Alerts by Snort

Figure 4: Worm Profiling and Identification by Sneeze

activity detection. However, it does not address the prob-
lems of formal representation and extraction of behavioral
signatures, which are the main focus of our work.

Another related technique, anomaly detection [8, 15, 18,
27], leverages the insight that worms are likely to exhibit
anomalous behavior such as port scanning [15] and failed
connection attempts, which are different from the normal
behavior. Although such approach has been demonstrated
effective in detecting worm infection (i.e. “is there a worm
infection?”), it is not intended to identify worms (i.e. “which
worm is this?”).

Content-based fingerprinting [16, 17, 19, 22] is an exten-
sively studied dimension of worm characterization by ex-
tracting the most representative worm-identifying content
sequence(s). Previously, it was often a manual process. A
number of systems [16, 17, 22, 19] have recently been devel-
oped to automate the task of extracting representative con-
tent sequences. Our approach complements content-based
fingerprinting by capturing a worm’s behavior signature.
The two approaches can be naturally integrated to create
a more complete, multi-facet worm profile.

Other related approaches include vulnerability-specific char-
acterization [5, 26] and semantic-aware taintedness track-

ing [6, 7, 20, 21, 24]. Shield [26] proposes the notion of
vulnerability-specific signature and uses it to accurately fil-
ter out attack flows. TaintCheck [20], Minos [7], Vigilante
[6], and others [21, 24] enable the detection of unknown at-
tacks by associating a tag to untrusted information sources
and reporting an alert if a tainted instruction is executed.
These schemes are also applicable to the detection of un-
known attacks. While being able to detect the occurrence
of an exploitation, they do not aim at characterizing the
entire worm infection session where exploitation is only one
phase of the session.

7. CONCLUSION
We have presented a new dimension – behavioral foot-

printing – to profile self-propagating worms. Orthogonal
and complementary to existing dimensions, behavioral foot-
printing characterizes worm infection steps and their order
in every worm infection session. A pairwise alignment algo-
rithm is proposed to extract a worm’s behavioral footprint
from raw traffic traces. Our experiments with real-world
worms confirm the existence of behavioral footprints and
demonstrate their effectiveness in worm identification.

Acknowledgments
We thank the anonymous reviewers for their valuable feed-
backs and suggestions. We also thank Dr. Pei Cao and
Xiaoxin Wu for their comments on an earlier version of this
paper. This work was supported in part by a gift from Mi-
crosoft Research and grants from the National Science Foun-
dation (OCI-0438246, OCI-0504261, CNS-0546173).

8. REFERENCES
[1] Snort. http://www.snort.org.

[2] Lion Worms. http://www.sans.org/y2k/lion.htm, 2001.

[3] MSBlaster Worms.
http://www.cert.org/advisories/CA-2003-20.html,
2003.

[4] Sasser Worms. http://www.microsoft.com/security/
incident/sasser.asp, 2004.

[5] D. Brumley, J. Newsome, D. Song, H. Wang, and
S. Jha. Towards Automatic Generation of
Vulnerability-Based Signatures. Proceedings of the
27th IEEE Symposium on Security and Privacy, May
2006.

[6] M. Costa, J. Crowcroft, M. Castro, A. Rowstron,
L. Zhou, L. Zhang, and P. Barham. Vigilante:
End-to-End Containment of Internet Worms.
Proceedings of ACM SOSP 2005, Oct. 2005.

[7] J. R. Crandall and F. T. Chong. Minos: Control Data
Attack Prevention Orthogonal to Memory Model.
Proceedings of 37th International Symposium on
Microarchitecture, Oct. 2004.

[8] D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard,
J. Levine, and H. Owen. HoneyStat: Local Worm
Detection Using Honeypots. Proceedings of RAID
2004, Sept. 2004.

[9] R. Durbin, S. Eddy, and A. Krogh. Biological
Sequence Analysis. Cambridge University Press, ISBN:
0521629713, 1998.

[10] D. R. Ellis, J. G. Aiken, K. S. Attwood, and S. D.
Tenaglia. A Behavioral Approach To Worm Detection.
Invited talk in ACM WORM 2004, Oct. 2004.

[11] A. K. Ghosh, A. Schwartzbard, and M. Schatz.
Learning Program Behavior Profiles for Intrusion
Detection. Proceedings of the 1999 Workshop on
Intrusion Detection and Network Monitoring, Apr.
1999.

[12] X. Jiang and D. Xu. Collapsar: A VM-Based
Architecture for Network Attack Detention Center.
Proceedings of the 13th USENIX Security Symposium,
Aug. 2004.

[13] X. Jiang and D. Xu. Behavioral Footprinting: a New
Dimension to Characterize Self-Propagating Worms.
Department of Computer Science Technical Report
CSD TR 05-027, Purdue University, Jan. 2005.

[14] X. Jiang, D. Xu, H. J. Wang, and E. H. Spafford.
Virtual Playgrounds for Worm Behavior Investigation.
Proceedings of RAID 2005, Sept. 2005.

[15] J. Jung, V. Paxson, A. W. Berger, and
H. Balakrishnan. Fast Portscan Detection Using
Sequential Hypothesis Testing. Proceedings of the 25th
IEEE Symposium on Security and Privacy, May 2004.

[16] H. A. Kim and B. Karp. Autograph: Toward
Automated, Distributed Worm Signature Detection.

Proceedings of the 13th Usenix Security Symposium,
Aug. 2004.

[17] C. Kreibich and J. Crowcroft. Honeycomb: Creating
Intrusion Detection Signatures Using Honeypots.
ACM SIGCOMM Computer Communication Review,
Jan. 2004.

[18] M. E. Locasto, J. J. Parekh, A. D. Keromytis, and
S. J. Stolfo. Towards Collaborative Security and P2P
Intrusion Detection. Proccedings of the 6th Annual
IEEE Information Assurance Workshop, June 2005.

[19] J. Newsome, B. Karp, and D. Song. Polygraph:
Automatically Generating Signatures for Polymorphic
Worms. Proceedings of the 26th IEEE Symposium on
Security and Privacy, May 2005.

[20] J. Newsome and D. Song. Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature
Generation of Exploits on Commodity Software.
Proceedings of NDSS 2005, Feb. 2005.

[21] M. Rinard, C. Cadar, D. Dumitran, D. Roy, and
T. Leu. A Dynamic Technique for Eliminating Buffer
Overflow Vulnerabilities (and Other Memory Errors).
Proceedings of ACSAC, Dec. 2004.

[22] S. Singh, C. Estan, G. Varghese, and S. Savage.
Automated Worm Fingerprinting. Proceedings of the
6th ACM/USENIX Symposium on Operating Systems
Design & Implementation, Dec. 2004.

[23] S. Staniford and et al. The Design of GrIDS: A
Graph-Based Intrusion Detection System. UCD
Technical Report CSE-99-2, Jan. 1999.

[24] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas.
Secure Program Execution via Dynamic Information
Flow Tracking. Proceedings of the 11th International
Conference on Architectural Support for Programming
Languages and Operating Systems, Oct. 2004.

[25] G. Vigna, W. Robertson, and D. Balzarotti. Testing
Intrusion Detection Signatures Using Mutant
Exploits. Proceedings of the 11th ACM Conference on
Computer and Communication Security, Oct. 2004.

[26] H. J. Wang, C. Guo, D. R. Simon, and
A. Zugenmaier. Shield: Vulnerability-Driven Network
Filters for Preventing Known Vulnerability Exploits.
Proceedings of ACM SIGCOMM 2004, Sept. 2004.

[27] K. Wang and S. J. Stolfo. Anomalous Payload-based
Network Intrusion Detection. Proceedings of RAID
2004, Sept. 2004.

