

Mixed Reality Tabletop (MRT): A Low-Cost Teleconferencing Framework for
Mixed-Reality Applications

Daniel Bekins, Scott Yost, Matthew Garrett, Jonathan Deutsch,

Win Mar Htay, Dongyan Xu+, and Daniel Aliaga*
Department of Computer Science at Purdue University

ABSTRACT
Today’s technology enables a rich set of virtual and mixed-

reality applications and provides a degree of connectivity and
interactivity beyond that of traditional teleconferencing scenarios.
In this paper, we present the Mixed-Reality Tabletop (MRT), an
example of a teleconferencing framework for networked mixed
reality in which real and virtual worlds coexist and users can fo-
cus on the task instead of computer interaction. For example,
students could use real-world objects to participate in physical
simulations such as orbital motion, collisions, and fluid flow in a
common virtual environment. Our framework isolates the low-
level system details from the developer and provides a simple
programming interface for developing novel applications in as
little as a few minutes, using low-cost hardware. We discuss our
implementation complete with methods of hand and object track-
ing, user interface, and example applications focused on remote
teaching and learning.

Keywords: D.2.6.b Graphical environments; H.4.3.b Computer
conferencing, teleconferencing, and videoconferencing; H.5.1.b
Artificial, augmented, and virtual realities; I.3.2.a Distrib-
uted/network graphics.

1. INTRODUCTION
The proliferation of high-performance audio, video, and network-
ing technologies enables distant parties to interact in rich collabo-
rative environments. Simultaneously, virtual and mixed reality
technology supports more direct and natural interactions with
computer systems than is possible with standard input devices.
Together, these technologies enable a more immersive collabora-
tion than is possible in traditional teleconferencing.

In an effort to make mixed-reality available to a widespread
audience and to enable rapid development of applications, we
have developed the Mixed-Reality Tabletop (MRT) to demon-
strate the viability of a low-cost, networked mixed-reality system
(Fig. 1). The MRT provides a common plane for immersive dem-
onstration and perception in which the real and virtual worlds
coexist. As opposed to traditional video conferencing in which
two areas of attention are required (computer and real-world), the
MRT merges the two to allow more natural and direct interaction
with the task at hand, free of traditional devices like the monitor,
keyboard, and mouse. A MRT station comprises a physical table-
top, a PC, camera, and projector. The projector displays virtual
output such as video, text, interface, and other imagery onto the
tabletop. The camera tracks real-world objects and user hand
movements to allow natural, device-free interaction.

There is a wide spectrum of application scenarios made pos-
sible by the MRT environment. Given its low-cost infrastructure,
schools can install the system to enable children at several differ-
ent stations to work collaboratively on a virtual puzzle, a painting,
or learn a skill like origami from a remotely stationed teacher. The
MRT keeps children focused on the learning task instead of com-
puter interaction. Students could also use real-world objects to
participate in physical simulations such as orbital motion, colli-
sions, and fluid flow in a common virtual environment. Because
there are no physical input devices involved, several students can
participate on the same station without restriction.

Our general framework provides the essential functionality
common to networked mixed-reality environments wrapped in a
flexible application programmer interface (API). We have chosen
a demonstrative group of features for the MRT that will showcase
the viability of such a networked mixed-reality system. We dis-
cuss our implementation complete with methods of hand and ob-
ject tracking, user interface, and sample applications.

A rich history of research in virtual, augmented, and mixed
reality systems provide a foundation for our work. Application
development platforms for mixed-reality applications have been
developed such as MR platform [1], Tinmith-evo5 [2], VITA [3],
and Teleport [4]. These platforms target 3-D mixed-reality appli-
cations that require head-mounted displays and complicated infra-
structure making widespead deployment difficult. On the other
hand, MRT targets 2-D collaborative scenarios that enrich tradi-
tional conferencing applications and can be installed at signifi-
cantly less cost. As opposed to using a touch screen (e.g. a Tablet
PC), we use a large desktop and a more natural interface.

Closely related to the MRT are several flavors of custom
mixed-reality workbenches [5][6][7][8], systems that support a
variety of display surfaces (e.g., Emancipated Pixels [9], IBM’s
Everywhere Displays [10], TouchLight [11], and Build-It [12]),
and Hi-Space Enhanced [13] (a powerful test-bed and API for
implementing, measuring and analyzing direct interactions of
multiple users standing around a single tabletop display surface).

* = aliaga@cs.purdue.edu
+ = dxu@cs.purdue.edu
 Figure 1. MRT setup. A MRT station consists of (a) a physi-

cal tabletop, (b) a PC, and (c) an overhead camera-projector
tandem, and (d) synchronization device.

(a)

(c)

(b)

(d)

These systems provide a very useful basis for developing a single
MRT station, though none currently create both a networked
mixed-reality environment and support simultaneous real-world
and virtual display.

Three mixed-reality systems that do take advantage of net-
working capabilities are the Tele-Graffiti [14] project, blue-c pro-
ject [15], and Augmented Surfaces [16]. Tele-Graffiti uses net-
worked camera-projector setups to perform remote sketching, but
does not offer a method of object tracking and focuses on one
application. The blue-c project is developing a system to enable
real-time reconstruction of the participants and their full immer-
sion in a virtual world. Their approach, which uses a custom 3D
stereo projection theatre, distributed computing architecture and
dedicated highspeed networks, is not readily deployable to a large
user-base. The Augmented Surfaces project extends the desktop of
portable computers to tables and to displays using a custom in-
frastucture and visually-tagged objects and does not readily ex-
pose a programming interface.

2. SYSTEM OVERVIEW
The MRT configuration consists of a PC, camera, projector, and
tabletop. Multiple stations are connected via a network to create a
common, interactive mixed-reality environment. The cost for
converting an existing PC into an MRT station is about $100-$500
for a camera and $1000 for an entry-level projector.

We have created a framework that handles all of the low-
level details of a MRT application. Figure 2 provides a conceptual
diagram of the software pipeline of a single MRT station. During
the incoming pipeline, the station receives and processes video
from remote stations before displaying output to the projector.
During the outgoing pipeline, it receives and processes local video
before sending it to the network. Remote video is formatted and
displayed during the incoming pipeline, while object and hand
tracking takes place during the outgoing pipeline. The application
accesses the video data via callbacks.

3. SYNCHRONIZATION AND CALIBRATION
One of the most challenging problems in composing real and
virtual objects is simultaneously displaying output to and accept-
ing input from the same location. A single overhead camera sees
both the real-world objects as well as the projected virtual image,
so a system is needed for differentiating between the two.

Our approach is to control the shuttering of the camera and
projector so that the camera only captures the real-world objects.
To accomplish this, we synchronize the projector with the camera,
making sure the projector is showing black while the camera is
taking a snapshot. A “black box” electronic device receives a sync
signal from the PC and sends out sync signals to the camera and

to the projector. We use a Point Grey Firewire camera that accepts
external trigger and send sync signals to the project via a standard
RGBHV connection. Our projector runs at 60 Hz, and we take a
snapshot of the table every third frame, or at 20 Hz (Fig. 3). While
this effectively solves the problem, it does result in a noticeable
flicker. We discuss possible improvements to this method in the
future work section.

Because of misalignment between the camera and projector
it is necessary to calibrate each device to obtain a consistent stan-
dard coordinate system. Calibration is performed during installa-
tion by establishing correspondences between points in the cam-
era image, projector image and physical table. During each frame,
the camera image is postwarped into canonical space before mak-
ing it available to the application and the output image is pre-
warped before projection onto the tabletop.

4. APPLICATION PROGRAMMING INTERFACE
Our application programming interface provides access to events
related to incoming and outgoing table images, network data,
object tracking, and hand tracking. Because the hand tracking
system is similar to a standard point-and-click interface, MRT
application code is nearly identical to standard GUI application
code. The API also provides controls such as buttons, panels, and
labels, as well as an easy way to create custom controls.

4.1 Programmability
The API, developed in C++, takes advantage of class inheritance
and virtual functions. In order to create a fully functional MRT
application, the programmer simply creates a class derived from
the MRTApp base class and provides function overrides for the
desired events (Fig. 4). The framework includes a networking
layer to send both video and data at 30 frames per second. Sepa-
rate sockets are established for each and are accessible via the
API. Point-and-click events are exposed in their most essential
form. However, the application still has access to the tracked ob-
jects, hands, and raw local and remote video images.

There are several MRT configurations that make sense in a
networked environment, and not all of them require the same set
of features. The application can disable unneeded features in order

Figure 2. MRT pipeline. A conceptual diagram of the soft-
ware pipeline of a MRT station.

Figure 3. Synchronization. The camera becomes active
during every third frame. c)

clock

camera

projector

 class SampleApp : public MRTApp {

 public:

 SampleApp() { }

 void Initialize() {

 btnQuit = new MRTButton("Quit", 0.5, 0.5, 0.25, 0.25);

 AddControl(btnQuit); }

 void OnRender(); // OpenGL per-frame rendering code

 void OnVideoIncoming(uchar *video); // process in images

 void OnVideoOutgoing(GLubyte *video); // process out images

 void OnPointerDown(int pointerId, float x, float y);

 void OnPointerMove(int pointerId, float x, float y);

 protected:

 MRTButton *btnQuit;

 // add application data here

};

Figure 4: Example application. A simple application derived
from MRTApp base class that creates a clickable quit button.

to gain performance. For example, a simple tic-tac-toe application
might use hand tracking and virtual graphics, but not video. The
API makes all of the possible scenarios simple to realize and op-
timize for performance. Our sample applications demonstrate a
variety of possible MRT configurations (Section 5). The features
implemented for each application are summarized in Table 1.

4.2 Object and Hand Tracking
To provide the user with a list of objects on the table and to sup-
port point-and-click (e.g., a virtual mouse), we implemented a
real-time method for separating foreground and background pixels
and subsequently grouping pixels into objects using a single cam-
era. While a near-infrared camera could be used to assist with
tracking, it would require an additional camera per station to cap-
ture color images for mixed-reality rendering. Instead, during
each frame a snapshot of the empty tabletop is compared with the
current snapshot. Foreground pixel regions are segmented by
tracing the outline of each connected component in the image and
creating a polygonal outline. By tracing the outline we ignore
potential “holes” in the interior of an object. Regions touching the
frame edge are classified as pointers (e.g., user’s arm and hand
reaching to an object), while purely interior regions are counted as
table objects (objects touching the frame edge at startup are also
considered table objects). The API makes available to the pro-
grammer several object features such as object border, object
center, and object size in pixels (Fig. 5a).

Each object on the table is assigned a numeric label to allow
the programmer to track its movement. During each frame, the
objects in the current frame are compared to those of the previous
frame in order to reassign labels. The size, shape of the polygonal
outline, and location of each object is used to determine corre-
spondence between frames. Because tabletop objects are unlikely
to move or change shape very quickly, this simple heuristic is
sufficient and fast.

It is also desirable to provide a mechanism of point-and-click
that will be familiar to MRT users and therefore make the system
more intuitive. Such a system also has the advantage of making
MRT applications nearly identical to standard GUI applications,
enabling a seamless transition from “PC-only” mode. We have
found that it is very simple and natural to use fingers as both
“pointers” and “clickers” by opening and closing the hand. For
example, the index finger can be used to point, while the thumb
can be used to click. Alternatively, a scissor motion can be made
with the index and middle finger, or a grabbing motion can be
performed with the entire hand. It is interesting to note that the
MRT allows several pointer objects at once, as opposed to the
traditional mouse. A single user can use both hands to perform
tasks, and several users can perform point-and-click actions on the
same table at once.

Hand tracking is performed in software by observing the
pixel-thinned skeleton of the hand and arm region (Fig. 5b-c). A
graph is constructed describing the pixel connectivity, then in-
spected for certain features. A closed hand (mouse down) contains
no sharp edges and its graph will therefore consist of a single edge
oriented according to the forearm. An open hand (mouse up) will
consist of a forearm edge as well as several edges corresponding
to fingers. In each case, we take the farthest point from the table
border as the current pointer position. Hand tracking is then a
simple matter of 1) how many nodes are in the graph (mouse
state), 2) where the farthest graph node from the edge is (mouse
location).

In practice, variations in shadows and lighting may cause ar-
tifacts in the form of superficial graph edges, which affects hand
tracking. To address this, it suffices to use length metrics for the
graph edges to determine if they represent fingers or noise. It is
unlikely that edges due to noise will be as long as a finger. An
especially noisy graph can simply be removed from consideration.

5. SAMPLE APPLICATIONS
We have implemented three sample applications using the MRT
API for use in a classroom setting. The API is exposed as a C++
library of classes and methods. Each application demonstrates a
different configuration and use of MRT. Two of the three applica-
tions were developed by programmers with no knowledge of the
underlying system details.

The Interactive Classroom application is designed as an aid
to an actual classroom lecture held over the Internet (Fig. 6a).
Video of real-world objects placed on the instructor’s tabletop is
sent to the student tables, where they can identify certain parts of
the object, ask questions about the object, or be quizzed interac-
tively by the instructor. The instructor could examine an artifact,
perform a dissection, or disassemble a mechanical part.

The Interactive Physics application allows students to ex-
periment with the physics behind gravitational motion (Fig. 6b).
Students at each MRT station supply a real-world object to act as
a satellite for the object at the teacher table. The students set the
mass and initial velocity of their objects, and then view a simula-
tion showing the orbital path of their object. Since the real-world
object cannot be animated, the projected background is animated
instead. The background for each table includes images of the
other tables’ objects, showing their relative motion and rotation.
Thus, there is a common global coordinate system and a local
coordinate system centered at and aligned with its real-world ob-
ject. At any time the user can adjust the position of their satellite
and view the newly calculated motion.

The Interactive Origami application allows the teacher to
enhance the view of the real object (origami paper) with virtual
objects (illustration) to conduct a more effective remote teaching

Table 1. Application features.
The framework is fully custom-
izable to allow a variety of
application configurations.

Application Hand Tracking Object Tracking Networked Video

Tic-tac-toe Yes No None
Interactive Classroom Yes Yes One way streaming multicast
Interactive Physics Yes Yes Two way snapshots
Interactive Origami Yes No Two way streaming

Figure 5. Tracking. (a) The system approximates the center and polygonal border of each object. (b-c) The pixel skeletons of
hand pointer regions are used to classify them as open or closed.

a) b) c)

session (Fig. 6c). Each table is split vertically into a local work-
space and video window displaying the remote tabletop. This
allows the teacher and the student to examine each other’s origami
fold as if they are sitting next to each other. The application pro-
vides virtual drawing tools that allow the teacher to draw various
lines and symbols corresponding to specific origami folds.

6. DISCUSSION AND FUTURE WORK
Our MRT framework uses a synchronization-based method to
compose real and virtual objects. This allows us to simultaneously
display output and accept input from the same location at the ex-
pense of a perceivable flickering effect. As future work, we would
like to investigate several methods to ameliorate this flickering
effect. Possibilities include using higher frame rate cameras and
projectors and displaying an alternate color during the "projector-
off" frame. In addition, we look at imperceptible structured light
research as a viable way of addressing this problem [17]. For
improved hand-tracking, we are looking to real-time implementa-
tions of more accurate batch processing methods [18, 19]. We
would also like to extend our API to include collaborative tools
such as object synchronization and locking.

Another avenue of future work is to liberate users from static
tables and to provide them with mobile augmented-reality percep-
tion and interaction. Using Tablet PCs [20] as portable windows
into a mixed-reality environment or IBM Everywhere Displays
technology are both possibilities.

7. CONCLUSION
We have presented a low-cost framework to create mixed-reality
applications in educational scenarios. Our approach, the Mixed-
Reality Tabletop, allows networked immersive interactive learn-
ing that combines virtual and real imagery. The developer is given
the essential functionality common to mixed-reality environments
and is able to focus immediately on the application itself without
having to worry about low-level details.

We look forward to deploying our lightweight system and
framework to local schools and campuses. The quick installation
and rapid prototyping made possible by our system make it ideal
for non-graphics experts to develop applications and setup the
system in classrooms or labs.

ACKNOWLEDGMENTS
This research was made possible by funding provided in part by
Microsoft Research Conference XP Team and by Oliver Colic for
assembling the camera-projector boxes.

REFERENCES
[1] S. Uchiyama, K. Takemoto, K. Satoh, and H. Yamamoto, “MR Plat-

form: A Basic Body on Which Mixed Reality Applications Are
Built”, Proceedings of IEEE ISMAR, 2002.

[2] W. Piekarski and B. Thomas, “An Object-Oriented Software Archi-

tecture for 3D Mixed Reality Apps”, Proceedings of ISMAR, 2003.
[3] H. Benko, E. Ishak, and S. Feiner, “Collaborative Mixed Reality

Visualization of an Archaeological Excavation”, Proceedings of
IEEE ISMAR, 2004.

[4] C. Breiteneder, S. Gibbs, C. Arapis, “Teleport – An Augmented
Reality Teleconferencing Environment”, Proc. of Eurographics
Workshop on Virtual Env. and Scientific Vis., pp. 41-49, 1996.

[5] Leibe, B., T. Starner, W. Ribarsky, Z. Wartell, D. Krum, B.
Singletary, and L. Hodges, “The Perceptive Workbench: Towards
Spontaneous and Natural Interaction in Semi-Immersive Virtual En-
vironments,” IEEE Virtual Reality 2000 Conference (VR'2000), New
Brunswick, NJ, March 2000, pp. 13-20.

[6] Ullmer, B., Ishii, H., “The metaDESK: Models and Prototypes for
Tangible User Interfaces,” Proceedings of the ACM Symposium on
User Interface Software and Technology, 1997, 223-232.

[7] Kobayashi, M. and H. Koike, “EnhancedDesk: integrating paper
documents and digital documents”, Proceedings of 3rd Asia Pacific
Computer Human Interaction, pp. 57-62 (1998).

[8] H. Ishii, J. Underkoffler, D. Chak, B. Piper, E. Ben-Joseph, L. Ye-
ung, Z. Kanji, “Augmented Urban Planning Workbench: Overlaying
Drawings, Physical Models and Digital Simulation”, Proceedings of
IEEE ISMAR, 2002.

[9] J. Underkoffler, B. Ullmer, and H. Ishii, “Emancipated Pixels: Real-
World Graphics in the Luminous Room,” Proc. Siggraph 99, ACM
Press, New York, 1999, pp. 385-392.

[10] C. Pinhanez, “The Everywhere Displays Projector: A Device to
Create Ubiquitous Graphical Interfaces,” Proc. UbiComp 2001:
Ubiquitous Computing, LLCS 2201, Berlin, 2001, pp. 315-331.

[11] A. Wilson, “Touchlight: An Imaging Touch Screen and Display for
Gesture-based Interaction”, Proceedings of Int’l Conference on Mul-
timodal Interfaces, 2004.

[12] Rauterberg, M.; Fjeld, M.; Krueger, H.; Bichsel, M.; Leonhardt, U.;
Meier, M.: "BUILD-IT: a computer vision-based interaction tech-
nique for a planning tool", Proceedings of HCI, pp. 303-314, 1997.

[13] R. May, “Toward Directly Mediated Interaction in Computer Sup-
ported Environments”, Ph.D. Dissertation, University of Washing-
ton, Seattle, CA, 2004.

[14] N. Takao, J. Shi, and S. Baker. “Telegraffiti: A camera-projector
based remote sketching system with hand-based user interface and
automatic session summarization,” International Journal of Com-
puter Vision, 53(2):115-133, July 2003.

[15] M. Gross, S. Wurmlin, M. Naef, E. Lamboray, C. Spagno, A. Kunz,
E. Koller-Meier, T. Svoboda, L. van Gool, S. Lang, K. Strehkle, A.
Wande Moere, O. Staadt, “blue-c: A Spatially Immersive Display
and 3D Video Portal for Telepresence”, Proceedings of ACM SIG-
GRAPH, 2003.

[16] J. Rekimoto , M. Saitoh, “Augmented Surfaces: A Spatially Conti-
nous Work Space for Hybrid Collaborative Environments”, Proc. of
ACM CHI, 1999.

[17] D. Cotting, M. Naef, M. Gross, and H. Fuchs, “Embedding Imper-
ceptible Patterns into Projected Images for Simultaneous Acquisition
and Display”, Proceedings of IEEE ISMAR, 2004.

[18] Xiao R., Zhu L., Zhang H., “Boosting Chain Learning for Object
Detection”, Proceedings of ICCV, 2003.

[19] Stenger B., Thayananthan A., Torr P., Cipolla R., “Filtering using a
Tree-based Estimator”, Proceedings of ICCV, 2003.

[20] G. Klein and T. Drummond, “Sensor Fusion and Occlusion Refine-
ment for Tablet-Based AR”, Proceedings of IEEE ISMAR, 2004.

Figure 6. Sample applications. (a) An instructor teaches computer circuitry to a set of remote students. (b) Students control a net-
worked physics simulation. (c) A teacher demonstrates origami using a set of virtual illustration tools.

a) b) c)

