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Abstract

A virtual networked environment (VNE) consists of virtuahohines (VMs) connected by a virtual
network. It has been adopted to create “virtual infrastrees” for individual users on a shared cloud
computing infrastructure. The ability to take snapshotamfentire VNE — including images of the
VMs with their execution, communication and storage stategields a unique approach to reliability
as a snapshot can restore the operation of an entire virtinaktructure. We present VNsnap, a system
that takes distributed snapshots of VNEs. Unlike existiistrithuted snapshot/checkpointing solutions,
VNsnap does not require any modifications to the applicatitibraries, or (guest) operating systems
running in the VMs. Furthermore, VNsnap incurs only secoofddowntime as much of the snapshot
operation takes place concurrently with the VNE’s normaragion. We have implemented VNsnap on
top of Xen. Our experiments with real-world parallel anduilisited applications demonstrate VNshap’s
effectiveness and efficiency.

1 Introduction

A virtual networked environment (VNE) consists of multipietual machines (VMs) connected by a virtual
network. In a shared physical infrastructure, VNEs can leated as private, mutually isolated “virtual
infrastructures” serving individual users or groups. Paraple, a virtual cluster can be created to execute
parallel jobs with its own root privilege and customizedtmne library; a virtual data sharing network can
be set up across organizational firewalls to support searfilesharing; and a virtual “playground” can be
established to emulate computer virus infection and prajpag With the emergence of cloud computing
[5] and “infrastructure as a service” (laaS) paradigms MNé& is expected to receive more attention.

To bring reliability and resume-ability to VNESs, it is hightlesirable that the underlying hosting in-
frastructure provide the capability of taking a distrillitnapshot of an entire VNE, including images of
the execution, communication, and storage states of all \iMBe VNE. The snapshot can later be used
to restore the entire VNE, thus supporting fault/outagevery, system pause and resume, as well as trou-
bleshooting and forensics.

In this paper, we present VNsnap, a system capable of takitigbdted snapshots of VNES. Based on
the virtual machine monitor (VMM), VNsnap rurmitsideof the target VNE. Unlike existing distributed
snapshot (checkpointing) techniques at applicationatiprand operating system (OS) levels, VNsnap does
not require any modifications to software running inside \és and thus works withunmodifiedappli-
cations and (guest) OSes thad nothave built-in snapshot/checkpointing support. VNsnapsgeeially
useful for virtual infrastructure hosting in cloud commgj where the host is required to provide virtual

*This report, submitted in March 2009, supersedes an eadision of the report (with the same title) submitted in ARAOS.
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Figure 1: A 4-VM VIOLIN based on Xen, hosted by two physicalahimes.

infrastructure recoverability without knowing the desadf guest VM setup. As such, VNsnap fills a void
in the spectrum of checkpointing techniques and complesn@mttead of replacing) the existing solutions.

There are two main challenges to taking VNE snapshots. , Eirstsnapshot operation may incur sig-
nificant systendowntime during which the VMs freeze all computation and commumicaivhile their
memory images are being written to disks. As shown in ouripusvwork [17], such downtime can be
tens of seconds long, which disrupts both human users adidamms in the VNE. Second, the snapshots
of individual VMs have to be coordinated to creatglabally consistent distributednapshot of the entire
VNE. Such coordination is essential to preserving the staisty of the VM execution and communication
states when the VNE snapshot is restored in the future.

To address the first challenge, VNsnap introduces an ogitiriechnique for taking individual VM snap-
shots where much of the VM snapshot operation takes placsuo@mtly with the VM’s normal operation
thus effectively “hiding” the snapshot latency from userd applications. To address the second challenge,
we instantiate a classic global snapshot algorithm and sisapplicability to taking VNE snapshots.

We have implemented a Xen [6] based VNsnhap prototype for VINDIL5] — our instantiation of the
VNE concept. To evaluate the VIOLIN downtime incurred by \dp and its impact on applications, we use
two real-world parallel/distributed applications — onaiggacy parallel nanotechnology simulatigithout
built-in checkpointing capability while the other is Bitffent, a peer-to-peer file sharing application. Our
experiments show that VNsnap is able to generate semayicatect snapshots of VIOLINS running these
applications, incurring about 1 second (or less) of VM domaetin all experiments.

2 VIOLIN Overview

For completeness, we give a brief overview of the VIOLIN wat networked environment and a previ-
ous VIOLIN snapshot prototype presented in [17]. Based on,>XeVIOLIN virtual networked envi-
ronment (or “VIOLIN” for short) provides the same “look andel” of its physical counterpart, with its
own IP address space, administrative privileges, runtiereices and libraries, and network configura-
tion. VIOLIN has been deployed in a number of real-world eyss: In the nanoHUB cyberinfrastructure
(http://www.nanoHUB.orgwith more than 20,000 users worldwide), VIOLINs run asuattLinux clus-
ters for the execution of a variety of nanotechnology sitfeprograms; In the vBET/vGround emulation
testbed [14, 16], VIOLINs run as virtual “testing groundst the emulation of distributed systems and
malware attacks.

As shown in Figure 1, a VIOLIN consists of multiple VMs contest by a virtual network. In our
implementation, VMs (i.e. guest domains) are connected IYLIN switches running in domain 0 (the
driver/management domain of Xen) of their respective ptatdiosts. Each VIOLIN switch intercepts link-



level traffic generated by the VMs — in the form of layer-2 Ettet frames — and tunnels them to their
destination hosts using the UDP transport protocol. VIOIsihpshots are taken by VIOLIN switches
from outside the VMs. As such, there is no need for modifyimg application, library, or OS (including
the TCP/IP protocol stack) that runs inside the VMs. Anothenefit of VIOLIN snapshots is that such
a snapshot can be restored on any physical machine and ketitbout requiring reconfiguration of the
VIOLIN'’s IP address space. This is due to the fact that VIOlp&tforms layer-2 network virtualization,
and as such its IP address space is totally orthogonal tothia¢ underlying hosting infrastructure.

In the previous work [17], we presented the first prototypadking VIOLIN snapshots. Unfortunately,
that prototype has serious limitations: By simply levenggKen’s live VM checkpointing capability, the
system has to freeze each VM for a non-trivial period of tinueirdy which the entire memory image of
the VM is written to the disk. As a result, taking a VIOLIN srsiot causes consideraldewntimeto the
VIOLIN, in the magnitude of ten or tens of seconds. Moreodee to TCP backoff incurred by the VM’s
long freeze, it will take extra amount of time for an applicatto regain its full execution speed, following
a VIOLIN snapshot.

3 VNsnap Design and Implementation

In this section, we present the design and implementatioviNgnap. We first describe our solution to
minimizing VM downtime during the VIOLIN snapshot operatioe then describe our solution to taking
distributed snapshot of a VIOLIN with multiple communicegiVMs.

3.1 Optimizing Live VM Snapshots
3.1.1 Overview

VNsnap aims at minimizing the Xen live VM checkpointing ddisme thus making the process of taking
a VM snapshotruly live. Interestingly, the solution is inspired by Xen’s VIWle migrationfunction [10]:
instead of freezing a VM throughout the snapshot [17], we t&ak/M snapshot much the same way as Xen
performs a live VM migration. As such we hide most of the shap$atency in the VM’s normal execution
time leading to a negligible (usually less than a second) \éMimtime.

Xen'’s live migration operates by incrementally copying gadrom the source host to the destination
host in multiple iterations while a VM is running. In evergiiaition, only the pages that have been modified
since the previous iteration get resent to the destinattorce the last iteration is determined (e.g., when a
small enough number of pages are left to be sent, the maxinumber of iterations are completed, or the
maximum number of pages are sent), the VM is paused and oalsethtively few remaining dirty pages
are resent to the destination host. Once this “stop-angi*qumase is completed, the VM on the source host
is terminated and its copy on the destination host is aetikaiAs a result, during live migration a VM is
operational for all but a few tens/hundreds of milliseconde adopted the same set of parameters used to
determine the last iteration in Xen migration for VNsnap.

Following the same principle, our optimized live VM checkpting technique effectively migrates a
running VM’s memory state to a local or remote snapshot fikewdthouta switch of control (hamely the
same VM will keep running). To facilitate such migration, ereate thesnapshot daemathat “imperson-
ates” the destination host during a live snapshot. The $siwamkemon interacts with the source host in
obtaining the VM’s memory pages, which is, to the source ,hjost like a live migration. However, the
snapshot daemon doest create an active copy of the VM. Instead, the original VM rasa execution
once the snapshot has been taken.



3.1.2 Detailed Design and Implementation

We have implemented two versions of the snapshot daemon véttdifferent advantages. Both versions
can run either locally on the same host where the VM is runningmotely on a different host. For the rest
of the paper we will refer to these two versions as"Wisnap-disk” and“VNsnap-memory’daemons. We
next describe their implementations and compare theiopadnce and effectiveness.

VM snap-disk daemon. The VNshap-disk daemon operates by recording the strearivioh€mory image
data generated by the source host VMM during a live migratiothis simple design, bytes received by the
VNsnap-disk daemon are grouped into chunks (32KB in ourémgntation) and as soon as a chunk is full
it is immediately written to the disk (Figure 2(a)). As sutie tdaemon is oblivious to the nature of data it
receives and is only concerned with recording the datamsteesais. When the snapshot file is restored on a
host in the future, the stream is played back and the hosépercthe operation as receiving a VM memory
image during live migration.

The VNsnap-disk daemon has two main advantages. Firsteg dot require a large amount of memory
as the daemon writes small chunks of VM memory image datattirm the disk (Figure 2(a)). Second, by
the time the (fake) VM migration is completed, the snapshetdireadily available on the disk. However, the
VNsnap-disk daemon does have a number of weaknessesthérstiapshot file it generates can potentially
be much larger than the actual VM memory imagerastiple copies of the same memory page may have
been received and recorded during migration. The larggpshita size translates into more writes to the
disk and consequently a lengthier duration of the snapspetation. Second, during a future snapshot
restoration, a host will have to go through multiple itevas to obtain the final image of a memory page. As
a result, without any offline processing of the snapshot tlile,restoration will take longer time compared
with restoring a snapshot file generated by Xen'’s origina tiheckpointing function.
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Figure 2: Designs of VNsnap-disk and VNsnap-memory forrojated live VM snapshot.

VNsnap-memory daemon. The VNsnap-memory daemon overcomes the weaknesses of theapgN
disk daemon, at the cost of reserving a memory area equaétsizk of the memory image of the VM it
checkpoints (Figure 2(b)). The VNsnap-memory daemon isscmus” of the nature of data it receives from
the source host and keeps only thest recentimage of a page — in the reserved memory area. As a result,
the final snapshot it generates is the same size as the VM'orgémage. The snapshot will not be written

to disk until the VM snapshot operation is complete and the hdd resumed normal execution. Compared
with VNsnap-disk, this design further hides the snapshetaton duration by postponing disk writes until
the VM snapshot is completed. It also leads to shorter VM doaawith only memory writes. Moreover,
VNsnap-memory causes much less TCP backoff than VNsn&paligo be explained and demonstrated in
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Sections 3.2.3 and 4. On the other hand, the postponed sitahshp in VNsnap-memory does lead to the
disadvantage that the snapshot file is not immediatelyaailin the disk after the snapshot operation.

Although the operation of the VNsnap-memory daemon resesntiiat of a live VM migration, the
implementation of the VNsnhap-memory daemon is not done imyplgi reusing some existing features of
Xen. It might seem that a VM snapshot can be done by performitige migration followed by (1) the
restart of the original VM and (2) the freeze and dump of the @epy on the destination host using
Xen'’s live VM checkpointing function. However, our experee indicates that this is not as simple as it
sounds. First, Xen by design does not allow checkpointindvetivat has not started or resumed execution
(which is the case for the new VM). Second, live migration ienXnvolves translating the VM’s memory
page addresses that are specific to the source host (i.e tgidge that referenamachine frame numbérs
into some host-independent representation fiseudo-physical frame numbgthrough what is known as
canonicalization. Upon receipt of such pages on the destin&iost, these pages have to be mapped to
the machine frame numbers specific to the destination hogjgioun-canonicalized). However, for VM
snapshots we need the canonicalized pages so that the shapsibe restored on any host in the future.
In our implementation, the VNsnap-memory daemon intescaptl maintains the most recent image of any
canonicalized page. Once the VM memory image transfer igptets) the daemon writes all memory pages
in batches to a snapshot file as if the snapshot file were gedeby Xen's live checkpointing function.
Third, a VM migration allocates and locks portions of the nogyron the destination host to be used by the
migrated VM. Such allocation can reduce memory availabléoimain 0 and potentially other domains in
the future. VNsnap-memory avoids such fixed allocation ofrroly by allocating memory from the heap
that can be swapped to disk.

The implementation of VNsnap-disk and VNsnap-memory daeniavolved making modifications to
the xendcomponent of Xen that handles VM live migration. Our implenation is based on a recent
unstable release of Xen (equivalent to Xen 3.1), but it camdmly ported to other VMMs that support
live migration (e.g., VMware). We point out that both daem@an run locally or remotely. For the local
run it would be helpful to reserve a certain amount of CPU cipdor the daemon in order to prevent a
snapshot from affecting the VMs’ execution. In a uni-corechiae this can be done by enforcing CPU
capacity allocations to different domains, while in a matire machine this can be done by assigning the
daemon and the VMs to different cores. For a remote run, teendas consume much less resources of
the source host but will depend on a high speed network betitmesource and destination hosts for VM
image transport.

3.2 Taking Distributed VIOLIN Snapshot
321 Oveview

With the individual VM snapshots achieving minimal downginwe now present how to coordinate these
VM snapshots in creating a consistent, distributed snapsteoVIOLIN. We adopt a simplified version of
Mattern’s distributed snapshot algorithm which is basedhessage coloring [19]. In VNsnap, the algorithm
is executed by the VIOLIN switches on the layer-2 Ethernaines generated by the VMs.

We point out that distributed snapshot algorithms have loegn proposed and applied [24, 13, 11,
18, 25, 23] and thuare not our contribution The contribution of VNsnap is the application of a classic
snapshot algorithm to the emerging virtualized environisieas well as the proof of igpplicability. The
applicability is not straightforward for the following reans: First, in previous application scenarios, the
message-passing layer is responsible for executing theskotalgorithm. However, in VNsnap the al-
gorithm is executed by VIOLIN switchesutsidethe VMs yet the goal is to guarantee causal consistency
for transport stateénsidethe VMs in VIOLIN. Second, Mattern’s original algorithm assesreliable com-
munication channels, whereas in VNsnap, the VIOLIN swiscfeeward layer-2 frames (encapsulating the



TCP/UDP packages from the VMs) between each other thrawgfreliable (fair-lossy by assumption)
UDP tunneling (recall Figure 1). Third, unlike some prei@ecenarios that require extra logging functions
to ensure correct message delivery (e.g., [23]), the VIO&Itchesdo not maintain any VM's internal
transport protocol state. Finally, previous works requiredification to application, library, and/or OS
when applying the algorithm; whereas VNsnap does not recanly modification to the VMs’ application
and system software (including the network protocol stack)
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Figure 3: lllustration of VNsnap’s snapshot algorithm: ®mapshot ol M; begins at time5; and ends at
T;.

In VNsnap, the snapshot algorithm works as follows: One MKDEwitch (or “switch”) initiates a run
of the algorithm by sending &ke_snapsHoTcontrol message to all switches running for the same VIOLIN.
This represents the initialization of an agreement prdt¢eg., 2PC). Upon receiving thewke_snapsHoT
message or a frame from a post-snapshot VM, a VIOLIN switaltsthe snapshot operations on the VMs
in the same physical host. While a VM snapshot is in progrigssinderlying VIOLIN switch colors that
VM with a pre-snapshotolor and prevents the delivery of frames from gust-snapshotolored VM.
Once the VM’s snapshot is completed, the switch will cola tfM with post-snapshot color. When all
VM snapshots in the same host are completed, the switchewotife initiator via auccessmessage. If the
initiator receivessuccessmessages from all switches of the VIOLIN, the agreementopaitterminates by
informing the switches to commit the snapshots (otherwdsgigcard them).

At the heart of the algorithm lie the different treatmentsagker-2 frames transmitted between VIOLIN
switches. Before describing the details, we first define¢hm t'epoch”: For a VM, an epoch is the contin-
uous interval between the completion times of two conseewwnapshot operations. In Figure 3, tiffids
when the snapshot &f M; completes and thus it marks the end of one epoch and the lirgiohthe next
epoch forV M; (1 < i < 4). A frame falls into one of the following three categories:

1. Aframe whose source and destination VMs are in the sanmehdpq., the frames labeled 1 in Figure
3). Category 1 frames will be delivered to the destinations/M

2. Aframe whose source VM is one epoch behind the destingtMie.g. the frame labeled 2 in Figure
3). Category 2 frames will be delivered to the destinations/M

3. A frame whose source VM is one epoch ahead of the destm&tid (e.g., the frame labeled 3 in
Figure 3). Category 3 frames adeoppedby the destination VIOLIN switches.



3.2.2 Applicability of Algorithm

Our proof of applicability needs to show that the snapshgbrithm, executedutsidea VIOLIN, will
preserve the semantics of application-level messagengassmmunication via (unmodified) TCP or UDP
insidethe VIOLIN. For space constraint, we will focus on the cas& GP while the proof for the UDP case
is much simpler and thus omitted. Inside the VMs, the TCPsjpart protocol achieves reliable message
delivery via acknowledgement, time-out and re-transmissemantics. Interestingly, we will show that
it is TCP’s semantics that preserve the correctness of@gijgn-level communications in the face of the
snapshot algorithm.

Proof sketch. The proof sketch has two parts. In the first part, we will shioat,twhen restoring a VIOLIN
snapshot, the semantics of application-level messagspainusing TCP will be preserved as in the original
execution during which the snapshot is takeBuppose, in the original executiori//; sends a message

to V M, via TCP. LetP be the set of TCP packets that carry the content of messadeet V. S(V M;) be
the VIOLIN switch running in the host of M;(i = 1,2). LetT;(: = 1,2) be the time when the snapshot
operation ofl” M; completes and let the epoch befdigbe epocte and the one aftef; be epoche + 1. To
show that message will be successfully delivered in the execution restoramhfrthe VIOLIN snapshot,
we will show that for each packet € P, following VIOLIN snapshot restorationly M- will eventually
see the receipt gf andV M; will eventually see the acknowledgmentof- denoted asiC K. Packetp

is encapsulated in a layer-2 frame, which is then tunneleah fr S(V M;) to V.S(V Ms). Let f(p) be the
frame that successfully arrives tS(V M3) (recall the unreliable UDP tunneling)t(p) falls into one of
the following cases:

Case 1: f(p) is a category 3 frame. This means ttfdp) is sent byV .S(V M) in epoche + 1 and
received byV S(V M) in epoche. According to the snapshot algorithm, category 3 frafitg) will be
dropped byl S(V M) and will not be delivered t& M,. As a result, the snapshot B\, does notecord
the receipt ofp and the snapshot df A/; does not record the receipt dfC K,,. Upon VIOLIN snapshot
restoration,V M, will, by TCP semantics, re-transmjitto V' Ms.

Case 2:f(p) is a category 2 frame. This means tlfép) is sent byl .S(V M) in epoche and received
by V'S(V Ms) in epoche+1. As such, the snapshot BfA/; does notecord the receipt gf but the snapshot
of V M, doesrecord the sending gf. We can further infer that the snapshotilofi/; does notrecord the
receipt ofAC' K, — If it did, the layer-2 frame that encapsulaté€’ K, would have been sent By.S(V M5)
in epoche + 1 and received by’ S(V M;) in epoche. This contradicts the snapshot algorithm which drops
category 3 frames. Upon snapshot restoration/; will, by TCP semantics, re-transmitto V M.

Case 3:f(p) is a category 1 frame. Here we have two sub-cases:

Case 3.1:V M transmitsp and receivesAC K, in the same epoch.Case 3.1.) If both happen in
epoche, the snapshot oV M; will record the transmission and acknowledgmenipofWe further infer
that the snapshot df M/, records the receipt gf: if not, ACK, would have been carried by a category 3
frame, contradicting the algorithm. Right upon snapshstoration, bothi” A7, andV M» will considerp
successfully deliveredGase 3.1.9 If both happen in epoch+ 1, the snapshots df M; andV M» do not
recordp’s transmission ang will be re-transmitted after snapshot restoration.

Case 3.2:V M, transmitsp in epoche and receivesiC K, in epoche+1. As such the snapshot bfA/;
does notrecord the receipt afAC' K. Upon snapshot restoratiolr,\/; will, according to TCP semantics,
re-transmitp to V' M. Note thatV’ Ms may or may not have receivedn epoche. But in either casé’ M,
will send AC K, to V' M; upon receiving the re-transmittgd according to TCP semantics.

In the second part of the proof sketch, we show that, wheaoniagta VIOLIN snapshot, the semantics of
TCP connection establishment and tear-down will be presksg in the original execution. These semantics
are specified by the well-known TCP state transition diagi2®h The TCP state transitions are triggered

1We assume that there is no host, VM, or network failure dukith@LIN snapshot taking and restoration. The handling of
failures is done outside of the snapshot algorithm.



by the receipt and/or transmission of a packet withsita\ or FIN control bit set and the receipt of its
correspondinghCK. Conveniently, the transmission, acknowledgment, andiplysre-transmission of these
control packets follow the same semantics as that of the T&CRegtp in the first part of the proof sketch. As
a result, we can basically follow the same logic in the first pmshow that, following snapshot restoration,
a control packet will eventually be transmitted and ackmalgked, which will trigger the proper TCP state
transitions on both sides of the TCP connection.

As an example, suppose in the original executidil/, (client) is trying to establish a TCP connection
with V M, (server). During TCP’s three-way handshakel/; completes its snapshot while its TCP state
iS SYN_LRCVD. At that momentV M; has sent control packestyN,ACK to V M5 but has not received the
correspondingaCK. On the other sidey M, receivessYN,ACK, sends amcK to the nowpost-snapshot
V M7, enters the&ESTABLISHEDState, and then completes its snapshot. Upon VIOLIN snapshtoration,
it may appear that the two VMs were in inconsistent stateth Wil/; stuck inSYN_RCVD state waiting for
the AcK already sent by Ms. However, such inconsistency won't last thanks to the TGRaseics:V M,
will time-out and re-transmisYN,ACK to V M5, which will in turn re-sendack to V M;. After that both
VMs are inESTABLISHEDstate and the TCP connection is established.

The proof sketch above covers the entire life cycle of a TGQiheotion inside the VIOLIN. One can see
that the TCP semantics play a critical role in showing thdieability of the snapshot algorithm, despite the
differences between VIOLIN and previous application scesgSection 3.2.1). Using a similar proof logic,
we can check the algorithm’s applicability under other amtion-oriented, reliable transport protocols. Our
work builds a “bridge” between the classic algorithm andcpca — with particular relevance to the emerging
virtualized infrastructures.

3.2.3 Implementation

In our implementation, a VIOLIN switch enters tkearsHoTstate when it starts the snapshot-taking op-
erations for the local VMs connected to it. It exits thearsHoT state when all the VM snapshots have
completed. To handle the asynchronous completion of VM simats on the same host, VNsnap imple-
ments two pairs of bridges and tap devices: one pair for teespapshot VMs and the other pair for the
post-snapshot VMs. As a result, it is guaranteed that nodrtom a post-snapshot VM can reach a pre-
snapshot VM on the same host. We modify Xexendto transition a VM from the pre-snapshot bridge to
the post-snapshot bridge at the end of the stop-and-comsephte also extendendsuch that it will notify
the VIOLIN switch whenever a VM finishes its snapshot operatiSpecifically, we define a signal handler
inside the VIOLIN switch which will receive a user-defined 8i& signal fromxendwhen a VM completes
its stop-and-copy phase. Once the VIOLIN switch has redeilie signals for all local VMs belonging to
the same VIOLIN, the switch will exignapsHoTState.

We point out that, although the snapshot algorithm preseiuectional semantics in a VIOLIN, it does
affect network performance in the VIOLIN. One direct impattunning the algorithm is th& CP backoff
inside the VIOLIN. More specifically, sinceot all VMs finish their snapshot operations at the same time,
the algorithm has to drop category 3 frames to enforce caosaistency between the VM snapshots. Such
frame drop results in temporary backoff of active TCP cotinas inside the VIOLIN. The duration of the
TCP backoff is directly related to thdegree of discrepancgmong the VMs’ snapshot completion times.
In fact, one of the motivations behind the design of VNsnapyary daemon (Section 3.1.2) is to reduce
such discrepancy by eliminating the impact of disk bandwioih VM snapshot completion times. For
UDP connections, Loss of UDP packets is “expected” from goliegtion’s perspective. If application
semantics require recovery of lost UDP packets due to sogpslis the application’s responsibility (e.g.,
through retransmission or erasure coding), while our sysiely preserves UDP’s property (unreliable, non-
FIFO). Similar argument can be made for other non-reliabtgqeols. Section 4 will present performance
evaluation results for TCP connections.



So far we have discussed the different ways VNsnap capthee¥ ¥ state and maintains causal con-
sistency. For a VIOLIN snapshot to be useful, it should afsdude the file system state. To meet this
goal, we store a VM's file system on an LVM [1] logical volumedamse the LVM snapshot capability to
capture the state of the file system at the time of snapshat. nTdin advantages behind LVM snapshots
are availability and speed. LVM snapshots do not requireséegy using the logical volume to be halted
during the snapshot. It also does not work by mirroring adalgivolume to some other partition. Instead,
it records only changes made to a logical volume after thesmat and as a result is very fast. A more
efficient way to use LVM snapshots can be found in [8]. In VNsra/M snapshots are taken during the
(very short) stop-and-copy phase when a VM is suspended sifdqeshot partitions can be processed after
the VM resumes normal execution.

4 Evaluation

In this section, we evaluate the effectiveness and effigieicVNsnap. First, we focus on testing the
optimized live VM snapshot technique. Then, we evaluateirttgact of VNsnap on VIOLINSs running
real-world parallel/distributed applications — NEMO30 ghd BitTorrent [3]. Throughout this section, we
compare VNsnap with our previous work [17]. All physical tosvolved in our experiments are Sunfire
V20Z servers with two 2.6GHz AMD Opteron processors and 4GBAM. In our setup, both domain-0
and guest domains run on the 2.6.18 Linux kernel.

4.1 Downtime Minimization for Live VM Snapshots

Xen Live Checkpointing
Application | Duration(s)| Iterations| Downtime(ms)| Pages in Last Iteration Size
Idle 9 1 8583 153600 1.00
NEMO3D 12 1 8626 153600 1.00
VNsnap-disk Daemon
Application | Duration(s)| Iterations| Downtime(ms)| Pages in Last Iteration Size
Idle 12 4 65 104 1.00
NEMO3D 72 30 1025 11102 1.55
VNsnap-memory Daemon
Application | Duration(s)| Iterations| Downtime(ms)| Pages in Last Iteration Size
Idle 8 4 68 104 1.00
NEMO3D 18 30 258 11094 1.00

Table 1: Measurement results comparing three VM snapshmementations for VNsnap.

We first evaluate the optimized live VM snapshot techniquectien 3.1) for individual VMs in a VI-
OLIN. The evaluation metrics include the tothiration and VM downtimeof an individual VM snapshot
operation as well as thgizeof the VM snapshot generated. For comparison, we experimigntall of the
following VM snapshot implementations: (1) Xen’s live VMe@tkpointing function (used in [17]), (2) the
VNsnap-disk daemon, and (3) the VNsnap-memory daemon. d&abr @ the implementations we measure
the metrics with the same VM with 600MB of RAM. The tests are both when the VM is idle and when
it is executing the parallel application NEMO3D.

Table 1 shows the results. Since both VNsnap-disk and VNem&pory daemons are based on Xen'’s
live migration function, they both involve multiple iterabs of memory page transfer during the snapshot
(the “iteration” column) while the VM is running. It is durgnthe very last iteration that the VM freezes and
causes the downtime (the “pages in last iteration” coluriifie number of iterations is proportional to the



application’s Writable Working Set (WWS) [10] or the ratewdtich the application is dirtying its memory
pages. For instance, we observe that, during the NEMO3Duére¢ memory pages get dirtied at a rate
about 125MB/s.

The most important metric in Table 1 is the VM downtime. Weédnhwee main observations. First, both
VNsnap-disk and VNsnhap-memory incur significantly shod@wntime (ranging from tens of milliseconds
to just above one second) than Xen'’s checkpointing fundmound 8.6 seconds). Second, for Xen’s live
checkpointing function, the downtime remains almost thees#or both the “idle” and “NEMO3D” runs.
VNsnap-disk and VNsnap-memory, on the other hand, exHilitter downtime for the “idle” runs than the
“NEMO3D” runs. This is because for VNsnap-disk and VNsnagamory, the downtime is determined by
the number of dirty pages transferred in thet iteration — about 100 pages in the “idle” run and 11,000
pages in the “NEMO3D” run — out of the total 153,600 pages ef WM. This differs from Xen's VM
checkpointing, where there is only one iteration duringchhthe VM freezes and all 153,600 pages are
written to disk. Third, VNsnap-memory achieves a much lodewntime for the “NEMO3D” run than
VNsnap-disk. This is because the VNsnap-disk daemon Hirecites the page images to the disk (which
is slow) while the VNsnap-memory daemon keeps them in the Riikihg the snapshot operation (which
is fast).
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Figure 4. The impact of different VM snapshot techniques @PTthroughput in a VIOLIN running
NEMO3D. Traces are obtained from tcpdump.

Another important metric from Table 1 is the total snapshatation. For both Xen checkpointing
and VNsnap-disk, the duration represents the amount of ititakes for the snapshot image to be fully
committed to disk. For VNsnap-memory, the duration repressthe amount of time it takes for the daemon
to construct a VM’s full image in memory and does not include hidden disk write latencgtfter the
snapshot. We observe that for the “NEMO3D” run, both VNsdigk and VNshap-memory incur longer
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duration than Xen checkpointing because of their multiaiien memory page transfer. The duration for
VNsnap-disk is particularly long (72 seconds vs. 12 secdad¥en checkpointing and 18 seconds for
VNsnap-memory) as the daemon competes with the local VM &b kisk bandwidth and CPU cycles.
Such a contention can be mitigated by running the VNsnap-dégmon on a remote host, which will
reduce the snapshot duration to 33 seconds as our expesinams.

Table 1 also shows the size of the VM snapshot relative tortheuat of memory allocated to the VM.
As discussed in Section 3.1.2, the VM snapshot generatedebyNsnap-disk daemon can be larger than
the VM’s memory size. In fact, the VM snapshot file is 1.55 tintke size of the VM’s memory image
for the “NEMO3D” run. Both Xen checkpointing and VNsnap-maw) by design, generate VM snapshots
of the samesize as the VM’s memory image. A larger VM shapshot consetyuessults in longer time
in restoringthe VM. Our experiments confirm that it takes 20 seconds tmres snapshot generated by
VNsnap-disk whereas it takes 8 seconds to restore a VM soagsherated by VNsnap-memory or Xen
checkpointing.
Impact of VM snapshot on TCPthroughput. As discussed in Section 3.2.3, individual VMs in a VIOLIN
may complete their snapshots at different times and thustiesT CP backoff. Figure 4 shows such impact
on a 2-VM VIOLIN executing NEMO3D, under no snapshot (Figd(a)), Xen live checkpointing (Figure
4(b)), VNsnap-disk (Figure 4(c)), and VNsnap-memory (Fegd(d)). We focus on one TCP connection
between the two VMs. The flat, “no progress” periods shownigufes 4(b) and 4(c) each consist of
two parts: (1) the downtime of the sender VM during snapshadt (@) the TCP backoff period due to the
different snapshot completion times of the two VMs. We obsehat both Xen live checkpointing (Figure
4(b)) and VNsnap-disk (Figure 4(c)) incur 2-3 seconds of Baekoff, whereas VNsnap-memory (Figure
4(d)) does not incur noticeable TCP backoff. More resul$ amalysis will be presented in the next two
subsections.

4.2 Taking Snapshot of VIOLIN Running NEMO3D

NEMO3D is a long-running (tens of minutes to hours), legaamaflel simulation program without any built-
in checkpointing support. It is widely used by the nanot@bdbgy community for nano-electric modeling of
guantum dots. To execute NEMO3D, we create VIOLINSs as Mittiraix clusters of varying size (with 2, 4,
8, and 16 VMs). The underlying physical infrastructure iduster of 8 Sunfire V20Z servers connected by
Gigabit Ethernet. For the 2, 4, or 8-VM VIOLIN, each VM runsardistinct physical host and is allocated
650MB of memory. For the 16-VM VIOLIN, there are two VMs perst@ach with 650MB of memory.
For each VIOLIN, we run NEMO3D with the same input parameterd trigger the snapshot algorithm
at exactly the same stage of NEMO3D execution for the Xenlgiwnting, VNsnap-disk, and VNsnhap-
memory implementations. For each implementation, we mreasm a per VM basis, the VM uptime and
VM downtime during the snapshot operation as well as the T&tkdff experienced by the VM due to
shapshot completion time discrepancy. We note that the Vivhtime plus the TCP backoff constitute the
actualperiod of disruptiornto application execution inside the VIOLIN.

Figure 5 shows the resulfs The times shown are averages of all VMs in a given VIOLIN fram
given experiment. We observe that VNsnap-memory alwayg#the least disruption (VM downtime+TCP
backoff) — more specifically 0.0, 0.8, 1.4, and 3.8 secondthf®o2, 4, 8, and 16-node VIOLINS, respectively.
VNsnap-disk also incurs minimal VM downtime but incurs hegif CP backoff than VNsnap-memory (to be
explained shortly). Still, it performs much better than Xdweckpointing, which incurs significantly higher
VM downtime as well as overall disruption period (from 10 tsconds). The 16-node experiment further
indicates that Xen live checkpointing not only suffers frlmnger downtime (about 20 seconds vs. less than
1 second in VNsnap-disk), but the downtime also scales wighnumber of VMs that are simultaneously

2\We would like to suggest color printing for viewing Figuress5and 8. We apologize for any inconvenience.
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Figure 5: The breakdown of snapshot timing under differelt 8hapshot implementations for 2, 4, 8 and
16-node VIOLINs running NEMO3D.

performing snapshot on the same host (about 20 secondswattiMs per host vs. about 10 seconds with
one VM per host as in the 2, 4, and 8-node cases).

To explain why VNsnap-memory leads to a smaller TCP backathtVNsnap-disk, we present the
detailed results from the 8-VM VIOLIN experiment. Figure lfos/s the individual result foeachof the
8 VMs in the VIOLIN. As discussed in Section 4.1, differenéed/M snapshot completion times (shown
by the upper edges of the “VM downtime” bars) lead to TCP b#ickAs can be seen in Figure 6, the
discrepancy among the 8 VMs is more significant for VNsnag@up to 4 seconds — Figure 6(b)) than for
VNsnap-memory (less than 1 second — Figure 6(c)). Our ilgag&in reveals that some of the hosts (e.qg.
the ones hosting VMs 3, 6, and 7) have longer disk write Iatehan the others, leading to a noticeable
difference in VM snapshot completion times for VNsnap-di§€kn the other hand, VNsnap-memory does
not involve disk writes (only memory writes) during snapsaied thus results in much less discrepancy and
TCP backoff.

In all experiments, we validate tleemantic correctnesst NEMO3D execution by comparing the out-
puts of the following: (1) an uninterrupted NEMO3D executi¢2) a NEMO3D execution during which a
VIOLIN snapshot is taken, and (3) a NEMO3D execution restdrem the VIOLIN snapshot. We confirm
that all executions generate the same program output.

4.3 Taking Snapshot of VIOLIN Running BitTorrent

In this section we study the impact of VNsnap on a VIOLIN runinthe peer-to-peer BitTorrent application
[3]. The reason for choosing this application is to demaistthe effectiveness of VNsnap for a VIOLIN
running a communication and disk I/O-intensive applicatibat spans multiple network domains. Figure
7 shows the experiment setup, where the VIOLIN spans twerdifit subnets at Purdue University. Our
testbed consists of 3 Sunfire servers in our lab at the ComBagience (CS) Department and 8 servers at
the Center for Education and Research in Information Asm@and Security (CERIAS). In the CS subnet,
we dedicate one host to run a remote VNsnhap-memory daemate®@émaining two hosts, we use one to
run a VIOLIN relay daemon (explained shortly) and the otheg to host two VMs: VM 1 (with 700MB of
memory) runs as a BitTorrent seed while VM 2 (with 350 MB of noey) runs an Apache webserver and a
BitTorrent tracker. In the CERIAS subnet, we use four hoathehosting a VM with 1GB of memory that
runs as a BitTorrent client or seed. The remaining four heat$ run a VNsnap-memory daemon. The 6
VMs —two in CS and four in CERIAS — form the BitTorrent netwofo overcome the NAT barrier between
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Figure 6: Per-VM breakdowns of snapshot timing for the 8engtlOLIN running NEMO3D.

the two subnets, we deploy two software-based VIOLIN relysrating at the same level as the VIOLIN
switches. The VIOLIN relays run in hosts with both public gd/ate network interfaces so that they can
tunnel VIOLIN traffic across the NAT.

The goal of the BitTorrent network is to distribute a 650MER: fitom two seeds (VMs 1 and 6) to all
participating clients (VMs 3, 4, and 5). The experimenttstavith the two seeds, one in CS and one in
CERIAS. We trigger the VIOLIN snapshot when all clients hdegnloaded almost 50% of the file. At that
time, the average upload and download rates for each cliereut 1350KB/s and 3200KB/s, respectively.

Figure 8 compares the per-VM snapshot timing breakdown rukda’s live checkpointing and under
VNsnap-memory. We observe that the total disruption cabsetthe snapshot operation (i.e. VM down-
time+TCP backoff) is considerably less — and at times niajgig- for VNsnap-memory (all below 2 seconds
except VM 3 — Figure 8(b)). The disruption periods under Xea theckpointing range from 15 seconds
to 25 seconds. Moreover, the slower disk bandwidth on somatslfoe. those hosting VMs 3 and 6) causes
large discrepancy (up to 10 seconds) among the VMs’ snapmgimopletion times, leading to non-trivial
TCP backoff (Figure 8(a)).

When looking at the result for VNsnap-memory (Figure 8(b)je notices that the VM snapshot com-
pletion times ardessuniform than those in the NEMO3D experiments. There areetheasons behind this
observation: First, as described in the experiment setipalhVVMs are configured with the same amount
of memory. For instance, given that VM 2 has only 350MB of megmib completes snapshot before other
VMs. Second, unlike the NEMO3D experiment where all VMs agaadly active, some VMs in the Bit-
Torrent experiment are more active than others (i.e. theg llager WWS). For example, at the time of the
shapshot, the three client VMs (VMs 3, 4, and 5) are mostlyraomicating with VM 1, leaving the other
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Figure 8: Per-VM breakdowns of snapshot timing for the VIQLunning BitTorrent.

seed (VM 6) mostly idle and thus a shorter snapshot duratio¥¥ 6. Third, the workloads of the hosts are
not uniform, which can have an impact on the VM snapshot tirres example, due to resource constraints
of our testbed, we have to run the CERIAS VIOLIN relay in thensaserver that runs a VNsnap-memory
daemon. As aresult, it takes VM 3, which is served by that daedonger time to finish its snapshot despite
the fact that VM 3 is just as busy as other clients (VMs 4 andT$)e longer duration of VM 3 snapshot
manifests itself as the TCP backoff during which VM 3 becomhesonly pre-snapshot VM in the VIOLIN.
Overall, the BitTorrent results demonstrate the effectss of VNsnap even under non-uniform host/VM
conditions. Finally, we validate the correctness of VNshgmomparing the checksum of the original file
with the checksums of the files downloaded during the run whensnapshot is taken and during a run
restored from the snapshot.

5 Discussion

In this section, we discuss some issues with VNsnap and peopdgure improvement. The first issue
is the negative impact of VM snapshot completion time digsarey on TCP throughput — especially for
VNsnap-disk. This problem can be substantially allevidategde further modify the VM live migration
implementation irxend As part of our future work, we plan to hawendspend auniform or bounded
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amount of time transferring VM memory pages to the VNsnapraaes. As such, all VMs in a VIOLIN
will start their “stop and copy” phase at about the same ti@ensidering the very short duration of this
phase (i.e. the VM downtime), their completion times for Yids will be of low discrepancy.

The second issue is the size of VIOLIN snapshots. We notedihatarities between different yet
similar VM snapshots can be exploited through efficient Haested mass storage techniques (e.g. [27,
7]) and compression. For instance, in a VIOLIN running NEMBD3he VMs share many pages for the
OS, library, and application code. Meanwhile, the simifabietween consecutive snapshot images of the
same VM can also be exploited for improved storage efficier8Bych similarity can also be exploited
during snapshot generation in order to reduce memory andorietoandwidth utilization by VNsnap. A
preliminary investigation using thesync utility [4] shows that, for the 2-node NEMO3D experiment in
Section 4.1, if two snapshots are taken 5 minutes apart, iffezethce between the two snapshots can be
accounted for by 25MB of data (df% of the snapshot file).

Finally, for a VIOLIN snapshot to be restorable, the VIOLIdshto be self-contained. This means that
any application inside the VIOLIN should not depend on angnextions tooutsidethe VIOLIN. In ad-
dition, VNsnap requires that applications running insidél@LIN be able to tolerate the short period of
disruption incurred by VNsnap. We believe that many — thonghall — applications meet such require-
ments.

6 Related Work

Many techniques have been proposed to checkpoint disdkafplications, but few have addressed the need
for checkpointing an entire execution environment, inglgdhe applications, OS and file system. These
techniques can be loosely categorized into applicatieekldébrary-level (e.g. [24, 13, 11, 9]), and OS-level
(e.g. [21, 29]) checkpointing. Although these techniquesheneficial in their own rights and work best in
specific scenarios, each comes with limitations: Applaralievel checkpointing requires access to applica-
tion source code and is highly semantics-specific. Sinyilamly a certain type of applications can benefit
from linking to a specific checkpointing library. This is laese the checkpointing library is usually imple-
mented as part of the message passing library (such as MRIhah all applications use. OS-level check-
pointing techniques often require modifications to the Oa&leor require new kernel modules. Moreover,
many of these techniques fail to maintain open connectiodsaacommodate application dependencies on
local resources such as IP addresses, process identifl&xs),(Rnd file descriptors. Such dependencies
may prevent a checkpoint from being restorable on a new gghiysical hosts. VNsnap complements the
existing techniques yet is not without its own limitatiorgettion 5).

Virtualization has emerged as a solution to decouple agiphic execution, checkpointing and restora-
tion from the underlying physical infrastructure. ZapC][8a thin virtualization layer that provides check-
point/restart functionality for a self-contained virtumhchine abstraction, namelypad (PrOcess Domain),
that contains a group of processes. Due to the smaller chatkpy granularity (a pod vs. a VM), ZapC
is more efficient than VNsnap in checkpointing a group of peses. However, ZapC does not capture the
entire execution environment which includes the OS itself. XenmfiniBand [25] is a Xen-based solution
with a goal similar to VNsnap. But it is designed exclusivédy the Partitioned Global Address Space
programming models and the InfiniBand network. Hence, enliltNsnap, it does not work with legacy
applications running on generic IP networks.

Recently, two solutions have been proposed based on Xetioigr [20] advocates using migration as
a proactive method to move processes from “unhealthy” ntwealthy ones in a high performance com-
puting environment. Though this method can be used for pldmutages or predictable failure scenarios,
it does not provide protection against unexpected failures does it restore distributed execution states in
the event of such failures. Remus [12] is a practical, guwassparent high-availability service that protects
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unmodified software against physical host failures. Thadarf Remus is individual VMs whereas VNsnap
focuses on distributed VNEs. Remus leverages an enhancgidrvef Xen migration to efficiently transfer

a VM state to a backup site at high frequency (i.e. 40 timesspeond), whereas VNsnap is triggered at
a much lower frequency (e.g., every tens of minutes), whahlme determined by existing solutions (e.g.
[22]) based on mean-time to failure prediction. The mositesl work is an advanced system [8] that real-
izes a more powerful capability of highly transparent clpaikting of closed distributed systems in Emulab
[28]. Being parallel efforts, VNsnap and [8] share similarats with different system requirements: [8]
requires high-accuracy clock synchronization and modifioa to the guest OS, whereas VNsnap assumes
VMs with unmodified software and no fine-grain clock synclization.

7 Conclusion

We have presented the VNsnhap system to take snapshots ofien\@NE, which include images of the
VMs with their execution, communication, and storage sta® minimize system downtime incurred by
VNsnap, we develop optimized live VM snapshot techniquepiied by Xen'’s live VM migration function.
We instantiate a distributed snapshot algorithm to enfoexesal consistency across the VM snapshots and
verify the algorithm'’s applicability. Our experiments Wwi/IOLINs running unmodified OS and real-world
parallel/distributed applications demonstrate the umigapability of VNsnap in supporting reliability for
the emerging virtual infrastructures.
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