
SAIN: Improving ICS Attack Detection Sensitivity via State-Aware Invariants

Syed Ghazanfar Abbas, Muslum Ozgur Ozmen, Abdulellah Alsaheel, Arslan Khan,
Z. Berkay Celik, Dongyan Xu

Purdue University,
{abbas4, mozmen, aalsahee, khan253, zcelik, dxu}@purdue.edu

Abstract
Industrial Control Systems (ICSs) rely on Programmable
Logic Controllers (PLCs) to operate within a set of states.
The states are composed of variables that determine how sen-
sor data is interpreted, configuration parameters are applied,
and actuator commands are issued. Recent works have shown
that attackers can manipulate these variables to compromise
ICS safety and security. To detect such attacks, previous ap-
proaches have leveraged invariants—a set of rules defining the
correct behavior of an ICS. However, these invariants suffer
from a critical limitation: they are state-agnostic. This means
they define variable ranges across all possible ICS states, lead-
ing to loosely bounded detection thresholds. Unfortunately,
attackers can exploit these loose bounds and launch stealthy
attacks that evade detection without violating such invariants.

In this paper, we introduce SAIN, an automated method
to derive state-aware ICS invariants with tighter bounds and
enforce them through a PLC-based monitor. SAIN first gen-
erates invariant templates by identifying the PLC program
states, state transitions, and the inter-dependencies among
sensing, actuation, and configuration variables within each
state through program analysis. It then partitions the ICS
data traces into state-specific sub-traces and quantifies the
invariant templates with concrete, tighter bounds, as system-
specific knowledge about the subject ICS. Lastly, it enforces
the state-aware invariants through a run-time monitor. We
evaluate SAIN on a Fischertechnik manufacturing plant and
a chemical plant simulator against 17 attacks. SAIN protects
the plants, on average, with a false positive rate of 2% and a
run-time overhead of 3%.

1 Introduction

Industrial Control Systems (ICS) play a vital role in automat-
ing and managing complex industrial processes. Compared to
traditional ICS with non-programmable controllers, ICS with
Programmable Logic Controllers (PLCs) achieve increased
configurability and automation. The PLC program acts as the

central processing unit that monitors and governs the entire
control process. The execution of a PLC program is based on
three categories of variables. (1) The sensing variables are
continuously updated with real-time data acquired from the
sensors connected to the PLC’s input station. (2) The configu-
ration variables encompass a set of parameters that establish
the operational characteristics of the ICS. (3) The actuation
variables define the control signals transmitted to the PLC’s
output station connected to the actuators.

Prior research has shown that ICSs are vulnerable to at-
tacks that manipulate the PLC variables without altering the
underlying PLC program [8, 10, 38, 43]. These attacks can
have disastrous consequences, as evidenced by real-world in-
cidents. For instance, the Stuxnet worm [13] caused extensive
damage to centrifuges in a nuclear facility by altering the
converter frequency variable from 2 Hz to 1410 Hz. Similarly,
the BlackEnergy attack [8] compromised a power system by
manipulating circuit breaker variables from 1 to 0, leading to
the disconnection of 27 substations.

To detect such ICS attacks, prior work has explored tech-
niques that leverage invariants, which define the relationship
between PLC variables and their value bounds [14, 23, 48].
These invariants are typically derived through data mining
techniques applied to ICS execution traces that record sen-
sor readings, actuator values, and configuration parameters
during the normal operation of an ICS. Another line of work
has incorporated the temporal characteristics of an ICS into
invariants [3,27,52,53], enabling them to integrate the timing
relations between variables to improve attack detection.

Despite their success, we notice that state-of-the-art tech-
niques define an invariant as a property/behavior that must
be true throughout the entire operation of an ICS and, as
a result, some invariants may set loose bounds of variable
values to hold throughout the ICS operation. In practice, how-
ever, an ICS process is naturally partitioned into a sequence
of distinct states (operational phases) to control the physi-
cal process in smaller tasks, ensuring that the operation of
the ICS in each state is successfully completed before tran-
sitioning to the next state. Our key observation is that the

0
S1

ICS States

0

30

600

900

1500

Po
si

ti
o

n
 S

en
so

r
B

o
u

n
d

s

State-aware

S2 S3 S40
S1

ICS States

0

30

600

900

1500

Po
si

ti
o

n
 S

en
so

r
B

o
u

n
d

s
State-agnostic

S2 S3 S4

Figure 1: Bounds in state-agnostic vs. state-aware invariants.

value bounds for an invariant may vary depending on the
specific ICS state. Figure 1 illustrates this limitation by com-
paring state-agnostic and state-aware invariants derived from
a manufacturing testbed [40]. The state-agnostic approach
sets a single, global bound on invariants that is satisfied by
all collected ICS traces. Such looser bounds in state-agnostic
invariants allow attackers to launch stealthy attacks in cer-
tain states. In contrast, the state-aware approach establishes
invariants with tighter bounds specific to each ICS state.

To address this problem, we introduce SAIN1, a framework
for deriving and enforcing state-aware invariants with tighter
state-aware PLC variable bounds. SAIN consists of four mod-
ules: ICS state identification, code-level invariant derivation,
invariant quantification, and runtime monitoring. SAIN first
conducts static analysis on the PLC program to extract ICS
states, state transitions, and the relations among PLC variables
(i.e., sensing, configuration, and actuation). It then generates
invariant templates that involve the relevant variables for
each state, and partitions benign ICS traces into state-specific
sub-traces based on the state transitions. Lastly, it leverages
an association mining algorithm to numerically instantiate the
invariant templates by mining the state-specific sub-traces.

During ICS operation, SAIN enforces the state-aware in-
variants in the PLC runtime, which executes the process con-
trol code and interacts with the I/O modules [33]. Among
the PLC runtime functions, only those that are subject to
(potentially malicious) remote update of PLC variables are
instrumented with the SAIN runtime monitor. As such, the
runtime monitor, as a detection agent, is only triggered when
the PLC receives a program variable update request from
an external entity (e.g., the human-machine interface). This
ensures that SAIN runtime monitor guards against external
attacks, with minimal impact on the PLC scan cycle time.

We evaluate SAIN on Fischertechnik (FT) [15] (a real
miniature manufacturing plant testbed) and a simulated chem-
ical plant [17] against 17 attacks, with real PLC code running
on both plants. Our evaluation shows that SAIN detects and
prevents all attacks on average with a false positive rate of 2%

1The acronym SAIN stands for “state-aware invariants”, with the word
sain in French meaning “healthy”.

and run-time overhead of 3%. We compare SAIN’s attack de-
tection effectiveness with state-of-the-art ICS invariant-based
techniques, Feng et al. [14] and VetPLC [52]. The invariants
derived from Feng et al. detect 5/17 attacks, and the temporal
invariants derived following VetPLC detect 6/17 attacks.

In summary, we make the following contributions.

• We introduce SAIN, an automated approach for deriv-
ing state-aware invariants, as system-specific knowledge,
by combining PLC program analysis and trace min-
ing. Compared to their state-agnostic counterparts, state-
aware invariants set tighter bounds that enable the detec-
tion of stealthy attacks.

• We develop a SAIN runtime monitor, as a detection agent,
that leverages state identification signatures to determine
the current ICS state and enforces state-aware invariants.

• We demonstrate the effectiveness of SAIN on two ICS
testbeds through 17 attacks, including false configuration
injection, sensor data manipulation, malicious actuation
signals, and physics-aware attacks. SAIN detects all at-
tacks with low runtime overhead.

SAIN source code, attack videos, and traces are available at
https://github.com/purseclab/SAIN.

2 Background

Programmable Logic Controller (PLC). The ICS monitors
and controls an industrial or manufacturing process. The PLC
is the central controller of the ICS, executing the control logic
that governs the sensing-control-actuation loop of the process.

The PLC has two key components: the variables and pro-
gram. PLC program variables fall into three categories: (1)
sensing variables that reflect real-time sensor measurements,
(2) configuration variables that define operational parame-
ters of the ICS, and (3) actuation variables that carry control
commands to physical actuators within the plant. The PLC
program defines the control logic, issuing control commands
to the physical plant based on real-time sensing variables.
State-driven PLC Program. The nature of ICS leads to the
fact that its PLC program reflects and implements the ICS’s
states and transitions, modeled with a Finite State Machine
(FSM) [18,30,53]. Each state in the FSM represents a specific
operational phase of the ICS and the corresponding actions
it performs. Transitions between states occur based on new
events or changes in process variables (e.g., sensor readings or
actuator states). The state-driven programming of PLCs natu-
rally aligns with industrial process control. By decomposing
the ICS operation into distinct states, the PLC program moni-
tors and executes control logic in a state-specific manner. The
FSM model has been widely used for the automated genera-
tion, validation, and transformation of PLC code [39, 45, 54].
PLC Runtime. The PLC runtime is a privileged layer of soft-
ware that executes the PLC program. Modern PLC runtime

https://github.com/purseclab/SAIN

1 int main(int argc,char **argv){
2 //Creating PLC Variables
3 glueVars();
4 //Initiating Server Applications
5 pthread_create(&interactive_thread, NULL, appThread, NULL);
6 //Scan Cycle
7 while(run_openplc){
8 //Updating Input Variables with Sensor Data
9 updateBuffersIn_MB();

10 //Execute Control Program
11 config_run__(__tick++);
12 //Write Output Variables to Output devices
13 updateBuffersOut_MB();}
14 }

Listing 1: Overview of OpenPLC runtime execution flow.

also supports the execution of server applications that allow
other devices/machines to communicate with the PLC. For
example, the Siemens PLC runtime executes a web server [5],
while the OpenPLC runtime supports applications to which
devices can be connected [2].

Listing 1 shows the control flow of an OpenPLC runtime.
The initialization phase establishes the PLC variables and
server applications. These variables can be accessed by both
the server applications and the PLC control program. The
main loop continuously updates the PLC variables with sen-
sor readings, executes the control program, and subsequently
sends control commands to the actuators.

3 Threat Model

We describe our threat model using the Purdue Model [50]
for ICS security. Purdue Model is a hierarchical model for
ICS, as shown in Figure 2. Level 0 implements a network of
sensors and actuators interfaced to Level 1, which consists
of multiple PLCs. Level 2 implements supervisory entities,
such as SCADA and HMI, to control PLCs by sending mes-
sages. The messages from Level 2 are served by different
server applications in the PLCs. These applications can al-
low the manipulation of PLC variables, including sensing,
configuration, and actuation variables.

We assume the entities above Level 1 can be remotely
compromised by the attacker to disrupt ICS operations. The
attacker can compromise entities at Level 2 and above us-
ing existing mechanisms (e.g., spearphishing to compromise
the HMI [31] and by exploiting disabled security functional-
ities in server applications [11]). Specifically, attackers can
remotely access these entities to inject malicious messages
into the Level 1 network and manipulate the sensing, configu-
ration, and actuation variables in the PLC. We assume that the
Level 0 and 1 network is air-gapped from the Level 2 network.
Therefore, entities at Level 2 cannot spoof messages within
Level 0 and Level 1 networks. We assume that the attacker
cannot manipulate the PLC firmware. Additionally, we as-
sume that the attacker does not have physical access to ICS
devices such as sensors, actuators, and PLCs. Consequently,

Sensors

HMI

Actuators

PLC

Physical Process

Basic Control

Supervisory Control

Level 0

Level 1

Level 2

HISTORIAN
Operational System

Level 3

Enterprise

Level 4
SIEM

Figure 2: The illustration of ICS operation based on Purdue
model and the threat model of SAIN.

the attacker cannot spoof physical sensor and actuator values.
We also assume that the PLC control program correctly im-
plements the ICS states and state transitions, ensuring that
the FSM derived from the PLC program is correct. Our threat
model aligns with those in the prior work that leverage invari-
ants for ICS security [24, 29, 30].

4 Overview of ICS Attacks and Invariant-
Based Defenses

A wide range of attacks are caused by the fact that PLCs
are becoming increasingly connected by running server ap-
plications (e.g., Web server, MQTT, and OPC-UA). Through
these applications, remote operators can access and modify
PLC program variables as an operation convenience. Unfor-
tunately, such remote connectivity also enables attacks that
remotely manipulate PLC program variables [8, 10, 38, 43].
As a defense, invariant-based techniques have been proposed
to detect attacks that violate the invariants.

However, previous approaches define state-agnostic invari-
ants. The lack of ICS state-awareness leads to invariants with
loose bounds, within which stealthy attackers can manipu-
late the variables “under the radar” and evade invariant-based
detection. We present a motivating example of a stealthy eva-
sion attack that exploits the loose bounds of the PLC variable
values in state-agnostic invariants.

4.1 Motivating Example

We present an attack against the Fischertechnik (FT) man-
ufacturing plant, a PLC-controlled production factory [40]
(described in Appendix A). The plant’s delivery process is
controlled by a PLC program that implements the FSM shown
in Figure 3. Each state (Si) is associated with a set of seman-
tically close actions to be completed. The state transitions
(Ti) represent the conditions that must hold for the PLC to
advance to the next state.

S1
S1: Perform VGR horizontal,
vertical, and rotational
movements towards input
station.

T1: All movements completed

S2: Pickup work piece.

S3: Perform VGR horizontal
and rotational movements
towards NFC.

S4: Perform VGR vertical
movement towards NFC.

S5: Start NFC.

S6: Perform VGR rotational
movement towards HBW.

S7: Perform VGR horizontal,
and vertical movements
towards HBW.

T2: Work piece collected

T3: Horizontal and rotational
movements completed

T4: Vertical movement
completed

T5: NFC scanned

T6: Rotational movement
completed

S2

S3

S4

S5

S6

S7

S8

S8: Drop work piece at HBW.

T7: Horizontal and vertical
movements completed

T8: Home positioning

Figure 3: PLC workflow in the FT manufacturing plant. Si
denotes the states, and Ti denotes the transition between states.

Attack Objective. In the delivery process, the attacker’s
objective is to initiate the vacuum gripper robot (VGR) hori-
zontal movement during state S6. Yet, the PLC control logic
is designed to trigger only the rotational movement in S6, with
the intent of preventing any collision between the VGR and
high-bay warehouse (HBW) storage site. Thus, if the attacker
can cause the VGR to perform a horizontal movement during
S6, this could potentially damage both the VGR and HBW.
PLC Logic for Controlling VGR Horizontal Movement.
The PLC configuration variable “H_TargetPosition” is set
based on the VGR’s target position, as 600 for HBW and
900 for NFC. To initiate the horizontal movement, the PLC
activates the VGR’s horizontal actuator “H_StartPositioning.”
During the horizontal movement, the PLC continuously re-
ceives the VGR’s current position through sensing variable
“H_ActualPositioning.” The PLC monitors the value of that
variable and compares it to the target position and an offset.
Specifically, when the value of “H_ActualPositioning” be-
comes greater than or equal to [H_TargetPosition - Offset]
and less than or equal to [H_TargetPosition + Offset], the PLC
stops the VGR’s horizontal movement.
Limitations of Previous Defenses. Previous invariant-based
approaches [12, 14] usually begin by defining predicates for
actuation variables and then deriving the value ranges of the
sensing variables for each predicate. For instance, the invari-
ant (I1) listed below is derived following Feng et al. [14] using
Fischertechnik’s data traces. I1 establishes the benign variable
value ranges based on traces from the entire plant operation.

Table 1: State-aware invariants to prevent VGR-HBW attack.

State Invariant
S1 H_Target = 30 & H_Actual[0-14] → H_Start = ON
S2 H_Start = OFF
S3 H_Target = 600 & H_Actual[0-584] → H_Start = ON
S4 H_Start = OFF
S5 H_Start = OFF
S6 H_Start = OFF
S7 H_Target = 900 & H_Actual[0-884] → H_Start = ON
S8 H_Start = OFF

However, such ranges turn out to be too loose, allowing a
stealthy attacker to carry out the VGR-HBW collision attack.
Specifically, the attacker is able to initiate the VGR’s hor-
izontal movement during a specific ICS state (S6) without
violating the invariant (I1).

• I1: if H_TargetPos[30-900] and H_ActualPos[0-884]
then H_Start = ON

The VGR-HBW attack remains undetectable even with
temporal invariants due to the absence of a tighter time bound.
Invariant I2 below is extracted following the temporal invari-
ant derivation method in VetPLC [52]. This invariant sets an
upper time limit of 7 seconds without considering the specific
timing constraints under individual states.

• I2: if H_TargetPos[30-900] and H_ActualPos[0-884]
then H_Start = [ON, 7 sec]

Our Approach. SAIN detects stealthy attacks by generating
state-aware invariants with tighter bounds and enforcing them
when the PLC receives an external variable update request
from the HMI. Table 1 presents the PLC variable bounds for
an invariant under different states. Thus, when the attacker
initiates the VGR’s horizontal movement in S6, a violation
is detected because the VGR’s horizontal movement is not
allowed in this state.

4.2 Design Goals and Challenges
Our main goal is to defend ICS against stealthy attacks that
evade state-agnostic invariants. To this end, we define our
design goals as follows:
G1: Generating state-aware invariants with tighter
bounds. As detailed in Section 4.1, prior works overlook
the ICS states and derive invariants from the entire set of
benign ICS traces, resulting in loose PLC variable bounds.
However, generating state-aware invariants as system-specific,
quantifiable knowledge is challenging because it requires (1)
identifying the specific states from a large PLC code that con-
trols multiple interacting components, (2) partitioning the data
traces based on the states, and (3) generating and quantita-
tively concretizing invariants that define the relations between
PLC variables under each state separately. Addressing these
challenges requires a combination of PLC program analysis
and ICS data trace mining.

FSM Extraction

Abstract Syntax Tree (AST)
Generator

PLC Code

ICS State Identification

Single Variable Invariants

State Signature
Generator

State-aware Code-Level
Invariants

Multi-Variable Invariants

State-Level Data Trace
Generator

ICS Data Traces

Invariant Quantification

State-Level Data Quantifier

ICS State Identification

State-aware Invariant
Validation

Runtime Monitor

State-aware Invariants

1 2 3 4

Figure 4: Overview of SAIN architecture.

G2: Monitoring and enforcing invariants at runtime. The
state-aware invariants need to be enforced during ICS opera-
tions. Here, challenges include dynamically determining the
ICS state at runtime and enforcing the associated invariants
accordingly. Moreover, the invariant enforcement should in-
cur a low performance overhead to satisfy the ICS’s real-time
requirements. To address these challenges, we extract the state
transition conditions from the PLC code as unique signatures
of each state, and use them at runtime to determine the current
ICS state. We also develop a PLC runtime monitor that incurs
minimal overhead on the PLC scan cycle timing.

5 SAIN Design

We introduce SAIN, an automated framework that generates
and enforces state-aware invariants with tighter PLC variable
value bounds, derived as system-specific knowledge from
both PLC program and traces. Figure 4 presents the overview
of SAIN, which is composed of four key stages: (1) ICS state
identification, (2) state-specific code-level invariant derivation,
(3) invariant quantification, and (4) SAIN runtime.

SAIN first leverages the PLC program to identify the states
that are defined and implemented to control ICS operations
(1). SAIN determines the conditions, which include the
sensing, configuration, and actuation variables in the PLC,
that must hold under each ICS state and converts them into
invariant templates (2). For example, an invariant template
defines the relation between specific sensing, configuration,
and actuation variables that trigger the VGR’s horizontal
movement. SAIN then quantifies the invariant templates
by leveraging ICS data traces – partitioned by state – to
set concrete bound values in the templates (3). Lastly, to
enforce state-aware invariants, SAIN has a runtime monitor
that validates PLC invariants upon receiving external requests
through the HMI. The runtime monitor identifies the current
ICS state and enforces invariants for that state (4).

5.1 ICS State Identification

SAIN extracts the ICS states from the PLC code through
program analysis. These states then guide SAIN’s code-level,
state-specific invariant derivation (Section 5.2) and invariant
quantification (Section 5.3) stages.

Our key observation is that the PLC functions as an FSM,
running among predefined states in accordance with the con-
trol flow of the PLC program. In fact, PLC programming
languages (IEC 61131-3 standard [22]) inherently emphasize
state-based control. For example, Structured Control Lan-
guage (SCL) and Structured Text (ST) allow the creation
of FSMs and state-driven logic using a text-based syntax.
Sequential Function Chart (SFC) is specifically designed to
define and execute state-based control logic, offering a visual
representation of states and transitions [54].

Following this observation, to extract ICS states from a
PLC program, SAIN first generates an Abstract Syntax Tree
(AST) as an intermediate representation of the PLC program.
It then builds an FSM model of the PLC code, mapping out the
behaviors and transitions of the ICS within and across states.

5.1.1 Abstract Syntax Tree (AST) Generation

SAIN performs parsing to break down the PLC code into
individual tokens, and constructs an AST through the Parsing
Expression Grammar (PEG) [16]. This grammar acts as a set
of rules that guide the parsing process and reflect the con-
trol logic structure. The AST is a generalized representation
of the PLC program that includes state identifiers, variable
dependencies, and control flow relations, enabling SAIN to
extract language-independent FSMs.

5.1.2 FSM Extraction

Algorithm 1 outlines SAIN’s approach to extracting an FSM
from the AST of the PLC code. The algorithm first examines
the functional blocks of the PLC control logic (Line 3-4).

Algorithm 1 Finite State Machine (FSM) Construction
Input: PLC Program
Output: Finite State Machine (FSM)

1: Initialize an empty FSM

2: Convert PLC program to an Abstract Syntax Tree (AST)
3: Extract function blocks from AST
4: for each function block do
5: for each case block in the function block do
6: Define a state in the FSM for case block
7: Create control flow graph for case block
8: Create data flow graph for case block
9: Combine control and data flow graphs to form PDG

10: Identify transition conditions from PDG

11: Include the transition conditions as an edge in the FSM

12: end for
13: end for
14: Return the FSM

Table 2: Illustration of state transition conditions for the de-
livery process in the FT manufacturing plant.

SS∗ DS† Transition Condition‡

S1 S2 H = INPUT, V = INPUT, R = INPUT
S2 S3 W =

√

S3 S4 H = NFC, R = NFC
S4 S5 V = NFC
S5 S6 S =

√

S6 S7 R = HBW
S7 S8 H = HBW, V = HBW

∗SS is the source state. †DS is the destination state. ‡H is for horizontal
sensor, V is for vertical sensor, R is for rotational sensor, W is for
workpiece collected, S is for NFC scan done.

For each functional block, SAIN iterates the case statement
blocks (Line 5), constructing a control flow graph for each
case (Line 7). The control flow graph represents individual
statements as nodes and reflects the program’s control flow
along its edges. SAIN then constructs a data flow graph by
tracing the data dependencies between statements (Line 8).
For each case statement, SAIN combines the control and data
flow graphs to create the Program Dependency Graph (PDG),
including both control and data dependencies (Line 9). Each
case block represents a distinct state in the FSM, allowing us
to perform state-level program analysis.

For each state, SAIN stores the PDG and a state transition
table. The transition table has two fields. The “toState” to
record the next state and “condition” to record state transition
conditions. SAIN determines the “toState” field by identifying
the specific variable(s) that cause the switches between the
case statements. It then finds the variables that have control
and data dependencies on the “toState” field from the PDG,
identifying the state transition conditions (Line 10). SAIN
then includes the state in the FSM as a node, and incorporates
the transition conditions to the outgoing edges from that node
(Line 11). Figure 5 shows the PDG and transition table for
state S3 extracted from Listing 2.

Table 2 shows the state transition conditions that corre-
spond to the FSM depicted in Figure 3. The Source State

1 //Horizontal (H) movement towards NFC
2 H_Target := NFC_Horizontal;
3 H_Actuator := TRUE ;
4 IF (H_Sensor <= (H_Target + H_Offset))
5 AND (H_Sensor >= (H_Target - H_Offset)) THEN
6 H_Actuator := FALSE;
7 END_IF;
8

9 //Rotational (R) movement towards NFC
10 R_Target := NFC_Rotational;
11 R_Actuator := TRUE ;
12 IF (R_Sensor <= (R_Target + R_Offset))
13 AND (R_Sensor >= (R_Target - R_Offset)) THEN
14 R_Actuator := FALSE;
15 END_IF;
16

17 IF (H_Sensor <= (H_Target + H_Offset))
18 AND (H_Sensor >= (H_Target - H_Offset))
19 AND (R_Sensor <= (R_Target + R_Offset))
20 AND (R_Sensor >= (R_Target - R_Offset)) THEN
21 H_Actuator := FALSE;
22 R_Actuator := FALSE;
23 #li_StepCase := 210;
24 END_IF;

Listing 2: The PLC code of state S3 shown in Figure 3.

Actuation variable

Code dependence Data dependence

Target Rotational Position of VGR
(R_Target = NFC_Rotational)

VGR Rotational Actuator
(R_Actuator=False)

Target Horizontal Position of VGR
(H_Target = NFC_Horizontal)

VGR Horizontal Actuator
(H_Actuator=False)

Horizontal Movement Condition
(H_Sensor <= (H_Target + H_Offset))

AND (H_Sensor >= (H_Target - H_Offset))

(a) Program Dependency Graph (PDG)

(b) Transition Table

State Transition
H_Sensor <= (H_Target + H_Offset))

AND (H_Sensor >= (H_Target - H_Offset))
AND (R_Sensor <= (R_Target + R_Offset))
AND (R_Sensor >= (R_Target - R_Offset)

H_Actuator = False AND
R_Actuator = False AND li_StepCase = 210

Rotational Movement Condition
(R_Sensor <= (R_Target + R_Offset))

AND (R_Sensor >= (R_Target - R_Offset))

State S3

Actuation variable

Condition toState

H_Sensor <= (H_Target + H_Offset)) AND (H_Sensor >= (H_Target - H_Offset)) AND
(R_Sensor <= (R_Target + R_Offset)) AND (R_Sensor >= (R_Target - R_Offset) AND
H_Actuator = FALSE AND R_Actuator = FALSE

li_StepCase = 210

Figure 5: The program dependency graph and transition table
for the state S3, extracted from Listing 2.

(SS) indicates the state from which the transition condition is
verified to move the ICS to the Destination State (DS). For
instance, if the ICS is in state S3, and the horizontal and rota-
tional sensors values indicate the VGR has reached the NFC
position, the ICS moves to state S4.

5.2 State-aware Code-level Invariants
SAIN leverages the FSM of the PLC program to extract each
state’s distinct properties, which become invariants of that
state. From the inter-state characteristics (state transition con-
ditions), we define (1) state identification signatures that en-
able identifying the current ICS state at runtime and (2) inter-
state invariants that allow checking the validity of state tran-
sitions. From the intra-state characteristics (the PLC variables
in a specific ICS state), we generate intra-state invariants that
define the properties/behaviors intrinsic to that state.

Algorithm 2 State Signature Generation
Input: Finite State Machine (FSM)
Output: State Signature Table

1: Initialize an empty State Signatures Table
2: Identify all paths in FSM using Depth-First Search (DFS)
3: for each path in the FSM do
4: for each state in the path do
5: Extract transition conditions leading to the state
6: Accumulate conditions into signature
7: end for
8: Remove redundant conditions from signature
9: Store the signature in State Signature Table

10: end for
11: return State Signature Table

5.2.1 ICS State Signatures

An ICS state signature consists of a set of PLC variables
and the unique values they take for the ICS to transition to
that specific state. In the FSM, the transition conditions are
designed to create a unique path to a state, guaranteeing that
no two states can be reached using the same combination
of transition conditions. Therefore, the combination of the
transition conditions generates a unique signature for a state.

From the FSM, SAIN collects PLC program variables from
the transitions leading to each state and specifies their value
or range during that state. By checking these variables during
runtime, SAIN determines the current ICS state. Algorithm 2
outlines state signature generation from the FSM. The al-
gorithm first traverses the FSM using the depth-first search
method to identify all distinct paths (Line 2). A path is a
sequential series of states within the FSM. For each state,
SAIN combines the state transition conditions leading to that
specific state (Line 5-6). This combination forms a signature
that encapsulates the sequence of conditions leading to a state.
If there are multiple paths leading to the same state, it gener-
ates multiple signatures for that state. SAIN eliminates any
repetitive conditions found in the signature, ensuring that each
signature is concise and unique (Line 8).

Table 3 presents the state signatures for the delivery process,
extracted from the transition conditions in Table 2. Each
signature is unique to the corresponding state, e.g., when
SAIN observes the signature “H=NFC, V=NFC, R=HBW,
W=

√
, S=

√
”, it determines that the current state is S7.

5.2.2 Intra-state Invariants

Intra-state invariants are rules that apply to a specific ICS
state to maintain its integrity. Each ICS state is programmed
to execute specific operations using the sensing, configuration,
and actuation variables. If an ICS state deviates from its desig-
nated operations at runtime, intra-state invariants are violated.

SAIN derives two types of intra-state invariants: single-
variable invariants and multi-variable invariants. A single-
variable invariant specifies the allowable value range for an
individual variable within a state. For instance, within a state,

Table 3: State signatures of the delivery process states.

State H V R W S
S1 0 0 0
S2 Input Input Input
S3 Input Input Input

√

S4 NFC Input NFC
√

S5 NFC NFC NFC
√

S6 NFC NFC NFC
√ √

S7 NFC NFC HBW
√ √

S8 HBW HBW HBW
√ √

H: Horizontal sensor, V: Vertical sensor, R: Rotation sensor, W: Workpiece
collected, S: NFC scanned.

a configuration variable is restricted to hold only the value
"900". A multi-variable invariant involves a set of inter-related
sensing, configuration, and actuation variables, along with
their respective value ranges, in a state. A multi-variable in-
variant is composed of two sides. The right side has the actua-
tion variable, and the left side has variables that can impact
the actuation variable’s value. To determine the actuation vari-
ables, SAIN checks if a variable has only incoming edges in
the PDG (defined in Section 5.1.2). To determine the variables
on the left side of the invariant, SAIN finds all variables with
outgoing edges directed toward the actuation variable.

Example. Listing 2 represents a code snippet for the state
S3 of Figure 3. The code segment first initializes the target
positions for the VGR’s horizontal and rotational movements,
represented by variables H_Target and R_Target, respectively.
It then sends control signals to the respective actuators. After
sending the control signals, it checks the readings from both
the horizontal sensor (H_Sensor) and the rotational sensor
(R_Sensor). If both the horizontal and rotational sensor read-
ings fall within their respective target ranges, it indicates that
the VGR has reached its desired positions for both horizontal
and rotational movements. In this case, the code segment sets
the corresponding actuators, H_Actuator and R_Actuator, to
false. This action deactivates the actuators, stopping further
movement and indicating that the desired movements have
been performed successfully. From Listing 2, SAIN derives
the following intra-state invariants:

• IntraS31 (For the Horizontal (H) Actuator Start): If
the "H_Sensor" is within the range [H_Sensor_Min,
H_Sensor_Max], then "H_Actuator" is TRUE.

• IntraS32 (For the Rotational (R) Actuator Start): If
the "R_Sensor" is within the range [R_Sensor_Min,
R_Sensor_Max], then "R_Actuator" is TRUE.

• IntraS33 (For the Horizontal (H) Actuator Stop): If the
"H_Sensor" is within the range [H_Target - H_Offset,
H_Target + H_Offset], then "H_Actuator" is FALSE.

• IntraS34 (For the Rotational (R) Actuator Stop): If the
"R_Sensor" is within the range [R_Target - R_Offset,
R_Target + R_Offset], then "R_Actuator" is FALSE.

5.2.3 Inter-state Invariants

Inter-state invariants are rules that indicate valid state tran-
sitions. Each state in an ICS is programmed to transition to
another state only when certain conditions are satisfied. If
a state changes without meeting such conditions, the corre-
sponding inter-state invariant is violated.

SAIN leverages the state transition conditions extracted
from the PDG in Section 5.1.2 to derive the inter-state in-
variants. In contrast to the intra-state invariants that define
the ICS properties/behaviors that must be satisfied within a
state, inter-state invariants determine the conditions necessary
before the ICS can transition to the next state. For instance,
in Listing 2, which shows a code snippet for state S3 from
Figure 3, SAIN derives the inter-state invariant defining the
transition condition from state S3 to S4.

• InterS31 (Transition from S3 to S4): If both "H_Sensor"
and "R_Sensor" are within their respective target ranges
[H_Target-H_Offset, H_Target+H_Offset] and [R_Target-
R_Offset, R_Target+R_Offset] and both "H_Actuator" and
"R_Actuator" are FALSE, then li_StepCase = 210.

Intra-state and inter-state invariants complement each other
to support state-aware ICS integrity enforcement. Intra-state
invariants pertain to the correctness of operations within a
state to maintain ICS integrity, whereas inter-state invariants
ensure the legitimacy of transitions between ICS states.

5.3 Invariant Quantification
Invariant quantification involves assigning concrete numerical
bounds to variables in an invariant template. Invariant tem-
plates extracted from the PLC code as described in Section 5.2
may leave their bounds unresolved. SAIN quantifies them
using data traces partitioned by state to ensure the bounds
are state-aware and hence tighter compared to those in state-
agnostic invariants. To this end, SAIN partitions the entire
ICS operation traces into state-specific sub-traces, which are
then mined to derive concrete variable value bounds.

The system-level ICS data traces encompass all benign
operations of the ICS, under all ICS states. SAIN partitions the
data traces according to the state transition conditions (derived
from the PLC code). The algorithm to partition system-level
data traces into state-specific sub-traces involves traversing
the traces and comparing the variable values with the state
transition conditions. Particularly, the algorithm detects state
transitions by identifying the points where the conditions are
met and records the corresponding indices in the data traces.
From these detected state transition points, the algorithm
then partitions the data traces into multiple sub-traces, each
corresponding to a specific state.

SAIN then quantifies the “unresolved” invariant templates
with state-specific sub-traces using the data mining tool Quant-
miner [41]. Incorporating the invariant templates (i.e., invari-
ants with unresolved bounds) and the partitioned sub-traces

Sensors

HMI

SMONITOR

Actuators

PLC Variables

PLC Control Program

Physical Process

PLC
Runtime

Server Applications

Figure 6: The deployment of SMONITOR in an ICS.

into the data mining process leads to state-aware invariants
with concrete, tight PLC variable value bounds. An invari-
ant template is a predicate. For example, a single-variable
invariant template may have the form # < V < #, where V
is a variable and # is a numeric value. For a multi-variable
invariant, its template defines the relation between sensing,
actuation, and configuration variables. The data mining tool
then sets the numerical bounds in the invariant templates us-
ing the state-specific sub-traces. For instance, the quantified
intra-state invariants from Listing 2 are:

• IntraS31 (For the Horizontal (H) Actuator Start): If the
"H_Sensor" is within the range [0-885], then "H_Actuator"
is TRUE.

• IntraS32 (For the Rotational (R) Actuator Start): If the
"R_Sensor" is within the range [40-691], then "R_Actuator"
is TRUE.

• IntraS33 (For the Horizontal (H) Actuator Stop): If
the "H_Sensor" is within the range [890,910], then
"H_Actuator" is FALSE.

• IntraS34 (For the Rotational (R) Actuator Stop): If
the "R_Sensor" is within the range [695,705], then
"R_Actuator" is FALSE.

• InterS31 (Common Condition for Both Actuators): If both
"H_Sensor" and "R_Sensor" are within their respective tar-
get ranges [890,910] and [695,705] and both "H_Actuator"
and "R_Actuator" are FALSE, then li_StepCase = 210.

5.4 SAIN Monitor
SAIN enforces the extracted state-aware invariants using a
monitoring agent (SMONITOR), implemented within the PLC
runtime, which checks external accesses to PLC variables.
Figure 6 shows the placement of SMONITOR in an ICS, and
Figure 7 illustrates the operation steps of SMONITOR.

For a given server application, SMONITOR first performs
use-definition chain analysis to identify the functions that can
access PLC variables. After identifying these functions, it in-
struments the target functions to invoke SMONITOR when the
function is called. This allows it to check variable update re-
quests against SAIN’s state-aware invariants. To achieve this,

Inter-state invariant
validation

State identification Intra-state
invariant
validation

State signatures

Current
state

Intra-state invariants

State transition

Inter-state invariants

Figure 7: Operation steps of SMONITOR.

SMONITOR performs two operations: (1) state identification,
and (2) intra-state and inter-state invariant validation.
State Identification. SMONITOR determines the current ICS
state by comparing state signatures with current variable val-
ues. Algorithm 3 shows the process of identifying an ICS
state. State signatures formatted as strings are loaded from
the PLC runtime database at the start of the PLC runtime (Line
1). SMONITOR then interprets them through the expression
parsing technique [35] and compares them with the real-time
PLC variable values (Line 3) to identify the current state of
the ICS (Line 5). After identifying the initial state of the ICS,
instead of using the state signatures, SMONITOR keeps track
of the state transitions to determine the subsequent ICS states.
This approach allows it to verify only the specific intra-state
and inter-state invariants related to the current state, reducing
the number of invariants that need to be checked. Thus, this
approach ensures that SMONITOR introduces minimal delays
and does not affect the operation of the ICS at runtime.
Intra-State and Inter-State Invariant Validation. For a
remote PLC variable update request, SMONITOR leverages the
current state to check the intra-state invariants under that state.
It first verifies the request against single-variable intra-state
invariants. If the request passes this initial check, it then eval-
uates the variable update request against the multi-variable in-
variants. For inter-state invariants, SMONITOR checks whether
the variable update request causes a state transition by check-
ing whether the updated variable appears in the state transition
conditions in the FSM. It then verifies the variable update
requests that cause a state transition against the inter-state
invariants. If an invariant violation is detected, the monitor
denies the variable update request and alerts the operator.

6 Implementation

We implement SAIN in C# with the following components. (1)
A static analysis tool that takes the PLC program (ST or SCL)
and extracts state identification signatures and intra-/inter-
state invariant templates. (2) A data partitioning tool to split
system-level data traces into state-specific sub-traces. (3) To
quantify invariant templates, we leverage a data mining tool
Quantminer [41]. SAIN enhances the data mining process
by providing invariant structures and integrating the state-

Algorithm 3 Run-time ICS State Identification
Input: PLC variables
Output: Current state
1: Load Signatures at PLC Runtime startup
2: for each signature in Signatures do
3: Compare signature with the real-time PLC variables values
4: if a signature matches the PLC variable values then
5: Mark the signature’s state as Current state

6: end if
7: end for
8: return Current state

specific sub-traces for mining, allowing us to derive state-
aware invariants with tight bounds. (4) A PLC-based monitor,
developed in C, compatible with the OpenPLC runtime to
check and enforce the state-aware invariants.

7 Evaluation

7.1 Experimental Setup
We evaluate SAIN on two ICS testbeds. The first is the FT
manufacturing plant [15], managed by the Unipi PLC [46]
equipped with OpenPLC runtime. FT is a suitable evaluation
platform as it includes diverse software components, sensors,
and actuators with close fidelity to real-world plant operations.
The second testbed is the Tennessee Eastman chemical plant
simulator [17]. This simulator integrates OpenPLC with an
ST application, a Human-Machine Interface (HMI), and the
Modbus/TCP protocol. We run SAIN’s offline components
(i.e., ICS state identification and state-aware invariant genera-
tion) on a laptop running Windows 10 (64-bit) and equipped
with 16 GB of memory and an Intel(R) Core(TM) i7-8550U
processor operating at 3.79 GHz.
Data Trace Collection. We collect data traces (sensing, actu-
ation and configuration variable values) over a 12-day period
from ICS plants operating 24/7, through PLC runtime logging
mechanisms. For the first ten days, we operated the plants un-
der normal conditions without attacks. We use the traces from
the first two days to quantify the invariants and the last eight
days to evaluate whether SAIN causes false alarms (i.e., false
positives). During the last two days, we perform attacks to
evaluate SAIN’s attack detection performance. Throughout
this period, we constantly log and transfer PLC variable data
to a historian server2.
ICS Attacks Performed. Table 4 presents the 17 attacks
we perform on the two ICS testbeds. Our attacks align with
our threat model; we exploit the HMI and send malicious
variable update requests to the PLC. Our attacks encompass
sensor variable manipulation (S), false configuration injection
(C), and malicious actuator commands (A). Particularly, in
9 attacks, we manipulate sensor variables; in 11 attacks, we

2We make the data traces publicly available to foster future work. https:
//github.com/purseclab/SAIN.

https://github.com/purseclab/SAIN
https://github.com/purseclab/SAIN

Table 4: Overview of attacks for SAIN evaluation.

ID Description
Manipulated∗

Type† PS A C
A1 Start horizontal movement while VGR can just rotate; VGR & HBW collide.

√ √
Intra-State

√

A2 Rotate the VGR towards the HBW instead of the NFC; the VGR collides with the HBW during NFC operations.
√

Intra-State
√

A3 Place the MPO robot in a position where only the VGR can work; the VGR and MPO robots collide.
√ √ √

Intra-State
√

A4 The VGR vacuum turned off during delivery; the workpiece falls at a random location.
√

Intra-State
A5 Spoof the VGR rotation sensor to avoid its benign stop; VGR stops at no man’s land.

√
Intra-State

√

A6 VGR relocates to an invalid home position after order completion; a collision occurs for the next order.
√ √

Intra-State
A7 Move the MPO robot to an invalid position; safety hazard.

√ √ √
Intra-State

A8 Halt the NFC scan operation; the delivery process halts.
√ √ √

Intra-State
A9 Send a false signal that the container is available while the VGR waits to drop an item on the conveyor; collision

√
Intra-State

A10 Continuously manipulate the VGR rotation speed to swing the workpiece; wear and tear of components
√ √ √

Intra-State
A11 Activate the MPO heating station; safety hazard.

√ √ √
Intra-State

A12 Rotate VGR to its maximum limit, exceeding the allowable range for normal plant operation; safety hazard.
√ √ √

Intra-State
A13 Move the HBW robot to a point that is not allowed in normal plant operation; safety hazard.

√ √ √
Intra-State

A14 Start a new state before finishing the current state; interrupting the planned sequence of activities.
√

Inter-State
A15 Transition to an unspecified state; stopping the plant operation.

√
Inter-State

A16 Raise the boiler pressure over the established safety threshold; explosion.
√

Intra-State
A17 Halt the product development process; decreasing output

√
Intra-State

∗S: sensor, A: actuator, C: configuration, †Intra: Intra-State attack, Inter: inter-state attack. A1 −A15 are attacks against the Fischertechnik manufacturing plant,
and A16 −A17 are attacks against the chemical plant.

manipulate actuator variables; in 13 attacks, we manipulate
configuration variables; and in 9 attacks, we manipulate multi-
ple PLC variables (e.g., sensor and actuator variables). These
attacks show that stealthy attackers can bypass the loosely
bounded invariants and cause damage to the ICS.

We also conduct 4 physics-aware attacks, in which we fol-
low the methodologies outlined in the prior work [19, 28, 47]
to minimally manipulate the PLC sensing, configuration, and
actuation variables in each scan cycle by closely following the
expected physical behavior of the ICS. Our attacks also align
with the MITRE ATT&CK techniques for ICS [32], such as
Control Manipulation (T831), Unauthorized Command Mes-
sage (T1047), and Modify Parameter (T817). The MITRE
ATT&CK framework for ICS defines adversary tactics, tech-
niques, and procedures used against ICS in the real world.
Since our attacks align with the MITRE framework, they can
be generalized to other ICS platforms. Our attack vectors are
similar to those adopted in prior ICS security efforts [49, 52].

We categorize the attacks performed into two types: intra-
state and inter-state. In an intra-state attack, the attacker keeps
the ICS in a correct state while manipulating the PLC sens-
ing, configuration, and actuation variables in a way that could
result in an unintended action within that current state. In
an inter-state attack, an attacker manipulates a PLC program
variable to cause either a premature or invalid state transition
within the ICS. A premature state transition occurs when an
ICS transitions to the next state before the current state is
complete. An invalid transition occurs when an ICS transi-
tions to a state that is not logically sequenced according to
the PLC control program’s FSM. We implement both types of
inter-state attacks to show the generality of SAIN in detecting
attacks that cause premature and invalid state transitions.
Research Questions. We evaluate SAIN by focusing on the
following research questions:

RQ1 What is the attack detection performance of SAIN?

RQ2 What is the comparison of attack detection performance
between SAIN and state-of-the-art methods?

RQ3 How many false positives do SAIN and state-of-the-art
methods cause?

RQ4 What is SAIN’s state-aware invariant generation time?

RQ5 What is the comparison of the number of validated
invariants between SAIN and the state-of-the-art?

RQ6 What is SAIN’s runtime performance overhead?

7.2 Effectiveness of SAIN

7.2.1 Attack Detection Performance (RQ1)

SAIN leverages state-aware invariants with tight bounds to
detect and mitigate all 17 attacks. These attacks cover intra-
state, inter-state, and physics-aware attacks.

In intra-state attacks, the attacker performs an operation
that is allowed when considering the overall ICS environment
but not in a specific ICS state. For instance, A1 is an intra-state
attack in which the attacker starts the horizontal movement of
the VGR. During this attack, the horizontal movement of the
VGR remains within the valid system-level bounds but causes
the VGR and HBW to collide when it is triggered in a spe-
cific ICS state. In the ICS states where this movement is not
allowed, SAIN detects this attack as the following invariant is
violated: H_Actuator = False. As another example, A16 is an
intra-state attack in which the attacker manipulates the boiler
threshold to a level that is prohibited in the overall chemical
process. SAIN detects this attack through the single variable
invariant Pressure[55295-55302], since the threshold exceeds
the limit during the attack.

Table 5: Attack detection comparison.

Attack ID Feng et al. [14] VetPLC [52] SAIN
A1

√

A2
√

A3
√

A4
√

A5
√

A6
√

A7
√ √ √

A8
√ √

A9
√

A10
√

A11
√

A12
√ √ √

A13
√ √ √

A14
√

A15
√ √ √

A16
√ √ √

A17
√

In inter-state attacks, the attacker manipulates PLC vari-
ables to follow an unexpected control-flow path. As an exam-
ple of a premature state transition attack, A14 is an inter-state
attack in which the attacker initiates a state transition before
the current state, S3, is completed. As an example of an invalid
state transition attack, A15 is an inter-state attack in which the
attacker initiates a state transition to S10, which is an invalid
transition from S6. Since SAIN derives inter-state invariants
from state transition conditions that need to be fulfilled before
the transitions to the next state, SAIN detects these attacks.

We present two case studies in Section 7.4 to further detail
how SAIN detects an intra-state and an inter-state attack.

In physics-aware attacks, the attacker manipulates the PLC
variables with minimal deviation from the benign values. For
example, in the attack A5, the attacker manipulates the VGR’s
rotational movement sensing variable (R_Sensor) close to
its benign values, eventually causing a collision between the
VGR and HBW. SAIN defines tight upper and lower bounds
for the VGR’s rotational movement sensing variable for each
state (S) as follows.

0 ≤ S1 ≤ 30 < S2 ≤ 40 < S3 ≤ 705 < S4,S5 ≤ 720 < S6 ≤ 5350

These tight bounds are sensitive even to stealthy manipula-
tion of variable values. Specifically, SAIN detects this attack
through the invariant bounds R_Sensor[0-30] for state S1, as
the variable’s manipulations exceed the upper bounds. The
attacker increases the R_Sensor value in the benign range of
1.5 to 2.1 at each scan cycle, and SAIN detects this attack
when it becomes 30.1 before any damage to the plant.

As another physics-aware attack example, in A1, the at-
tacker stealthily manipulates the actuator and configuration
variables to initiate the VGR’s horizontal movement during
state S6. Particularly, the attacker increases the H_Target vari-
able from its benign value 900 by 0.1-0.3 in each scan cycle
until it reaches 960 and sets the H_Actuator variable to True,
to cause a collision between the VGR and HBW. For state

Table 6: False positive comparison.

Testbed Feng et al. [14] VetPLC [52] SAIN
FT 51% 25% 2%
CP 2% 1% 1%

S6, SAIN’s state-aware invariants specify that H_Target must
be within the [890-910] range and H_Actuator must be False
and, therefore, SAIN detects this attack.

7.2.2 Attack Detection Comparison (RQ2)

We compare SAIN with two state-of-the-art ICS invariant
generation methods, Feng et al. and VetPLC because they
demonstrate better performance in generating comprehensive
ICS invariants compared to prior approaches. We reimple-
mented both of these approaches. To ensure the correctness
of our implementations, we extracted invariants from data col-
lected from our testbeds and integrated their invariants within
the PLC runtime. We then evaluated their ability to detect ICS
attacks in which the attacker performs an operation that is not
allowed during the entire ICS operation. Our results indicate
that they detect such attacks with high accuracy, consistent
with the results reported in their papers.

Table 5 presents the attack detection comparison between
SAIN and the state-of-the-art methods. As detailed in Sec-
tion 7.2.1, SAIN’s state-aware invariants detect and mitigate
all 17 intra-state and inter-state attacks. In contrast, Feng et
al. detects 5/17 (29%) attacks, while VetPLC detects 6/17
(35%) attacks. Both Feng et al. and VetPLC prevent attacks
where the invariants derived from system-level data traces
are violated. VetPLC, which extracts temporal invariants, is
more effective when the attack violates the timing constraints
between the PLC variables.

7.2.3 SAIN’s False Positive Performance (RQ3)

False positives occur when benign variable updates are
flagged as attacks, causing unnecessary alerts. Table 6
presents the false positive rates of SAIN and state-of-the-art
invariant derivation methods. For the FT manufacturing plant
Feng et al. generates 51% false positives, VetPLC generates
25% false positives, and SAIN generates 2% false positives.
For the chemical plant, Feng et al. generates 2% false posi-
tives, VetPLC, and SAIN generates 1% false positives.

We observe that false positives in Feng et al. and VetPLC
are primarily caused by either the incorrect definition of in-
variant structures or the underestimation of the invariant data
bounds, with the majority resulting from the former issue.
For instance, Feng et al. derives its invariant structures solely
from data traces, causing it to derive invariants that repre-
sent the correlations between PLC variables. However, we
observe that, especially in the FT manufacturing plant, the
correlations between the PLC variables vary based on ICS

Table 7: Average time (hh:mm:ss) to analyze the PLC pro-
gram of Fischertechnik (FT) and chemical (CP) plants to ex-
tract state-aware invariants.

ICS AST FSM State Invariant Trace State-aware Invariant
Testbed Construction Extraction Signatures Templates Partitioning Quantification

FT 00:00:17 00:01:30 00:00:45 00:02:25 02:10:00 00:17:00
CP 00:00:01 00:00:09 00:00:04 00:00:11 00:24:00 00:05:00

states. Such variations in correlations across ICS states cause
Feng et al. to have high false positives in certain states. For
example, FT manufacturing plant traces show a correlation
between the VGR horizontal sensor, vertical sensor, and ver-
tical actuator. Feng et al. derives an invariant based on this
correlation. However, in state S8, only the vertical sensor is
correlated with the vertical actuator. This causes Feng et al.’s
invariant to generate false positives in state S8.

Additionally, state-agnostic analysis generates conflicting
invariants when the occurrence of events varies across differ-
ent states. For instance, if the order of events is sequential in
one state but parallel in another state, an invariant designed
for sequential events generates false positives in the other
state. In contrast, SAIN does not generate false positives due
to incorrect invariant structures because it derives state-aware
invariant structures directly from the PLC code that controls
the ICS process. Thus, it only generates false positives when
it derives invariants with overly tight bounds.

7.3 Performance Evaluation
7.3.1 Invariant Generation Overhead (RQ4)

Table 7 presents the processing time for each stage of SAIN’s
state-aware invariant generation. We found that SAIN’s pro-
cessing overhead increases with the number of ICS states and
the amount of data traces used for invariant quantification.
For instance, FSM extraction takes 90 seconds for the FT
manufacturing plant and 9 seconds for the chemical plant. As
another example, partitioning the data traces takes 2 hours
and 25 mins for FT and 17 mins for the chemical plant.

7.3.2 Number of Validated Invariants (RQ5)

Table 8 shows a comparison between SAIN and state-of-the-
art methods in terms of the number of invariants validated. For
instance, the “Average” column indicates the average number
of invariants that are checked in response to a variable update
request. SMONITOR, upon receiving a variable update request,
only validates the specific set of invariants that are relevant
to the updated variable. On average, it validates 5 invariants
for the FT manufacturing plant and 3 for the chemical plant.
In comparison, Feng et al. validates 134 invariants for the FT
manufacturing plant and 11 for the chemical plant, while Vet-
PLC validates 35 invariants for the FT manufacturing plant
and 7 for the chemical plant. SAIN validates a smaller number

Table 8: Number of invariants validated for variable updates
in the Fischertechnik (FT) and Chemical (CP) plants.

Testbed Method Min. Average Max.

FT

Feng et al. 43 134 315
VETPLC 11 35 83

SAIN 1 5 11

CP

Feng et al. 7 11 27
VETPLC 3 7 12

SAIN 1 3 5

Table 9: Scan cycle time (ms) of PLCs controlling Fischertech-
nik (FT) and Chemical (CP) plants.

ICS Normal Time Method Min. Average Max.
Testbed Cycle Time Limit

FT 36 150
Feng et al. 44.46 57.48 84.3
VETPLC 38.42 43.7 49.26

SAIN 36.22 37.1 38.42

CP 5 25
Feng et al. 6.54 7.42 10.94
VETPLC 5.66 6.54 7.64

SAIN 5.22 5.56 6.10

of invariants because it selectively validates invariants accord-
ing to the current ICS state. Since each ICS state is designed
to execute a limited set of operations, it reduces the number
of invariant validations.

7.3.3 Runtime Performance Overhead (RQ6)

To assess the impact of SAIN’s state-aware monitoring on the
Fischertechnik and chemical plants, we measured the varia-
tions in PLC scan cycle times in two scenarios.

• Normal Operation: When SMONITOR is inactive.
• SMONITOR: When SMONITOR remains active and checks

invariants whenever the PLC receives a variable update
request from an external source.

To track the scan cycle time in the PLC runtime, we create
variables to record the start and end times of each cycle. We
use the CLOCK_MONOTONIC function for precise timing.
At the beginning of each cycle, we note the timestamp, let
the PLC perform its operations, and then mark the timestamp
again at the end. The difference between these two timestamps
provides us with the cycle’s duration.

Table 9 shows the PLC scan cycle time in both plants dur-
ing their normal operation, with an active SMONITOR, and
the maximum allowed execution time required for the safe
operation of the plants. We derive the maximum allowed ex-
ecution time for each plant from their PLC configurations
and developer documentations. Our measurements show that
the scan cycle time with SMONITOR for the FT manufactur-
ing plant is 37.1 ms, which slightly differs from the normal
operation of 36 ms. The normal operation and SMONITOR

monitor scan cycle times for the chemical plant are less than
6 ms. The overall maximum allowed execution time is 150
ms for the FT manufacturing plant and 25 ms for the chemi-
cal plant. Therefore, our experiments show that SMONITOR’s

Figure 8: Validation Time vs. No. of Invariants.

runtime performance overhead is minimal and complies with
the maximum allowed scan cycle time limits.

To assess the real-world impact of SAIN’s runtime over-
head, we evaluate the change in invariant validation overhead
as the number of invariants increases. Figure 8 shows a lin-
ear relationship between the number of invariants and the
invariant validation time. Considering that SAIN requires the
validation of only a small number of invariants, it remains
highly suitable for real-world ICS. Even with 500 invariants,
SAIN’s invariant validation overhead is below the maximum
execution time allowed in the FT manufacturing plant.

7.4 Case Studies
We present two case studies, an intra-state and an inter-state
attack, to demonstrate how SAIN’s state-aware invariants with
tight bounds detect these attacks.

7.4.1 Case Study 1: Intra-State Attack

In attack A10, the attacker constantly increases and decreases
the vertical movement speed of the VGR. This speed manipu-
lation over time causes the workpiece hanging from the VGR
to swing while the VGR moves.
Stealthiness. Unfortunately, both Feng et al. and VetPLC
cannot detect this attack because the attacker remains within
the allowed system-level bound ([500-800]) for the VGR’s
vertical speed, and does not violate the timing between events.

The VGR’s vertical speed in normal plant operation varies
based on the ICS states. The PLC adjusts the speed to match
the specific needs of the ICS process. In some states, the speed
increases, while in others it decreases to ensure synchroniza-
tion within the ICS. Feng et al.’s state-agnostic invariants
merge such speed variations into a generic bound, and do not
consider that the speed bounds could change when the ICS
state changes. Therefore, it fails to detect this attack.

In total, it takes the VGR 10 seconds to reach the HBW with
the workpiece during the benign operation of FT. While the
attacker modifies the VGR speed, they employ both fast and
slow speeds to ensure that the 10-second timing is not violated

while the workpiece swings and falls. This ensures that the
attack is stealthy against timing-based invariants (e.g., those
extracted by VetPLC).
SAIN Detection. To detect this attack, SAIN leverages a
tightly bounded invariant regarding the VGR’s vertical speed
while it carries a workpiece to the HBW.

7.4.2 Case Study 2: Inter-State Attack

In the FT manufacturing plant, the PLC program uses a vari-
able li_StepCase to determine which state should be exe-
cuted. In attack A14, an attacker prematurely sets li_StepCase
to "210", initiating the next state before the current one is
finished. This causes the VGR robot to begin its vertical
movement while still completing its horizontal and rotational
movements, leading to a collision with the HBW station.
Stealthiness. Unfortunately, both Feng et al. and VetPLC
cannot detect this attack due to their state-agnostic invariants.
During normal plant operation, the variable li_StepCase is set
to “210” multiple times in different ICS states. Consequently,
the state-agnostic invariant merges the constraints into a single
invariant that sets the li_StepCase variable to “210”. This
enables the attacker to manipulate the li_StepCase variable
before it was supposed to change in its intended state without
being detected by the invariants of these works.
SAIN Detection. SAIN detects this attack through a state-
aware invariant that ensures li_StepCase changes only when
the state transition condition is met. As this attack causes the
premature state transition, SAIN detects it.

8 Limitations And Discussions

False Positives. SAIN reduces false positive rates compared
to state-of-the-art invariant generation methods, yet it still
faces the challenge of completely eliminating false positives.
As discussed in Section 7.2.3, SAIN false positives occur
mainly due to overly tight bounds. This could be addressed
by ensuring that the data traces used to quantify invariants are
complete. However, collecting complete traces in ICS envi-
ronments might be challenging due to different environmental
conditions and the complexity of capturing diverse ICS pro-
cesses. We note that this limitation exists in all data-driven
approaches in ICS security [14, 30], which may be mitigated
by other forms of ICS knowledge/invariants (e.g., formal or
natural language specifications by vendors).
Adapting to Code Updates. If the PLC code is updated,
SAIN’s invariants must be regenerated to adapt to the new
control logic. However, in ICS, code updates are infrequent for
two main reasons. First, the code running on PLCs is typically
stable and well-tested before deployment. Second, the process
of updating the PLC code often involves downtime, which
could be costly in ICS [7, 42].

Table 10: Comparison of SAIN with relevant systems.

N
et

w
or

k
ID

S
[2

4]

C
2

[2
9]

U
rb

in
a

et
al

.[
47

]

O
rp

he
us

[9
]

A
ou

di
et

al
.[

4]

G
ha

ei
ni

et
al

.[
19

]

Fe
ng

et
al

.[
14

]

Ve
tP

L
C

[5
2]

PL
C

Sl
eu

th
[4

8]

SA
IN

System Type
State-aware ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓

Invariant-Based ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓

Physics-Based ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗

ICS Process Modeling
Data Traces ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Physics-Based Models ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗

PLC Code Analysis ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓

Automated ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Documentation ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

State Identification Method
Kalman Filter N/A N/A ✗ N/A N/A ✓ N/A N/A N/A ✗

Linear Dynamical Statespace N/A N/A ✓ N/A N/A ✗ N/A N/A N/A ✗

FSM Transitions N/A N/A ✗ N/A N/A ✗ N/A N/A N/A ✓

Invariant Types
Event Based ✓ ✓ N/A ✓ N/A N/A ✓ ✓ ✓ ✓

Temporal ✗ ✓ N/A ✗ N/A N/A ✗ ✓ ✗ ✗

State-aware ✗ ✗ N/A ✗ N/A N/A ✗ ✗ ✗ ✓

Data Mining and Monitoring System
State-aware Data Mining ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

PLC Based Monitor ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Potential Race Conditions. Race conditions in PLCs occur
when variable updates depend on the timing or order of execu-
tion of multiple code paths that manipulate shared variables.
SAIN does not introduce any race conditions into the PLC.
Particularly, SAIN’s invariants in SMONITOR are employed in
code blocks intended for external access to PLC variables and
do not involve any write operations on the variables; therefore,
it avoids introducing new race conditions.
Potential False Negatives. SAIN validates PLC invariants
when it receives external variable update requests via the
HMI. An attacker who has physical access to ICS devices
such as sensors and actuators can spoof physical sensor and
actuator values and bypass SAIN’s detection. This limitation
is common in ICS security approaches that operate on the
PLC or HMI [21, 25]. In future work, we will extend the
SAIN runtime monitor to validate sensor-to-PLC and PLC-to-
actuator communication with state-aware invariants, under a
more advanced threat model.

9 Related Work

We compare SAIN with the prior work in Table 10. For ICS se-
curity, several static analysis approaches have been proposed
to analyze the PLC code and identify vulnerabilities that may
lead to violations of predefined security policies [6, 30, 37].
Yet, the lack of runtime information poses challenges for
these approaches, resulting in overapproximations that cause
wrongly identified vulnerabilities and underapproximations
that cause missed vulnerabilities. For instance, when an at-
tacker manipulates runtime temperature sensor readings, static
analysis methods may not detect this attack because they lack

real-time sensor data. To address the limitations of static anal-
ysis, prior work has explored extracting invariants by mining
benign execution traces of a plant through statistical learning
techniques [4,14,23,25] and machine learning models [9,26].
These state-agnostic invariants are derived solely from data
traces without explicitly considering the specific states de-
fined in the PLC code. This limitation makes them vulnerable
to stealthy evasion attacks, as demonstrated in Section 7.2.

Recent works have proposed temporal invariant mining
approaches that capture the temporal dependencies between
system events and use event timings as safety requirements [3,
34, 52, 53]. These methods prove highly effective in detecting
attacks in which adversaries manipulate the order or timing of
events. Yet, some attacks may not involve altering event order
or timing. For instance, an attacker can manipulate a robot’s
speed in such a way that it arrives at its destination on time,
but the speed changes cause the robot to drop its payload.

Prior research has also proposed state-aware physics-based
attack detection (PBAD) techniques for ICS [19, 47]. These
techniques first extract ICS states manually or from data traces.
They then model the state-aware physical behavior of the ICS
with subspace models and compute runtime residuals, which
indicate the deviations between model estimations and real
sensor readings. PBAD techniques are highly effective against
ICS attacks when the residuals exceed a threshold. Unfortu-
nately, they are less effective against stealthy physics-aware
attacks that manipulate the actuator and sensor variables
within the residuals [20, 36, 44]. In contrast, SAIN derives
state-aware invariants for ICS through the combination of pro-
gram analysis and trace data mining. To achieve this, SAIN
extracts an FSM representing the states and state transitions in
the ICS through PLC program analysis, and it splits the ICS
data traces into state-specific sub-traces and quantifies the
invariants with concrete and tighter bounds. Therefore, SAIN
complements PBAD techniques by enforcing intra-state in-
variants with tighter bounds on PLC variables and inter-state
invariants that check the validity of state transitions.

10 Conclusions

In this paper, we first show that prior work generates invariants
with loose bounds, allowing an attacker to conduct stealthy
evasion attacks and avoid detection. We then introduce SAIN,
an automated method for generating state-aware ICS invari-
ants with tight bounds that detect such stealthy evasion attacks.
SAIN reasons about and enforces the state-aware invariants
through a novel PLC-based runtime monitor that detects and
mitigates ICS attacks with minimal impact on PLC scan cy-
cle timings. We evaluate SAIN on both Fischertechnik and
chemical plants to show its effectiveness in detecting various
attacks, including PLC variable manipulation and physics-
aware attacks, with minimal runtime performance overhead.

Acknowledgments

We thank the anonymous shepherd and the reviewers for their
timely, valuable comments and suggestions. This work was
supported in part by NSF under Grants IIS-2229876, CNS-
2144645, by ONR under Grant N00014-20-1-2128, and by
a grant from Cisco. Any opinions, findings, and conclusions
in this paper are those of the authors and do not necessarily
reflect the views of our sponsors.

References

[1] Wael Alsabbagh and Peter Langendöerfer. A new in-
jection threat on s7-1500 PLCs-disrupting the physical
process offline. IEEE Open Journal of the Industrial
Electronics Society, 2022.

[2] Thiago Rodrigues Alves, Mario Buratto, Flavio Mauri-
cio De Souza, and Thelma Virginia Rodrigues. Open-
PLC: An open source alternative to automation. In IEEE
Global Humanitarian Technology Conference, 2014.

[3] Saswat Anand, Mayur Naik, Mary Jean Harrold, and
Hongseok Yang. Automated concolic testing of smart-
phone apps. In ACM International Symposium on the
Foundations of Software Engineering, 2012.

[4] Wissam Aoudi, Mikel Iturbe, and Magnus Almgren.
Truth will out: Departure-based process-level detection
of stealthy attacks on control systems. In ACM Confer-
ence on Computer and Communications Security, 2018.

[5] Dillon Beresford. Exploiting siemens simatic s7 PLCs.
Black Hat USA, 2011.

[6] Sebastian Biallas. Verification of programmable logic
controller code using model checking and static analysis.
PhD thesis, RWTH Aachen University, 2016.

[7] Alvaro A Cárdenas, Saurabh Amin, Zong-Syun Lin, Yu-
Lun Huang, Chi-Yen Huang, and Shankar Sastry. At-
tacks against process control systems: risk assessment,
detection, and response. In ACM Symposium on Infor-
mation, Computer and Communications Security, 2011.

[8] Defense Use Case. Analysis of the cyber attack on the
ukrainian power grid. Electricity Information Sharing
and Analysis Center (E-ISAC), 2016.

[9] Long Cheng, Ke Tian, and Danfeng Yao. Orpheus: En-
forcing cyber-physical execution semantics to defend
against data-oriented attacks. In Annual Computer Se-
curity Applications Conference, 2017.

[10] Cyberattack on oldsmar water treatment facility. https:
//www.dragos.com/blog/industry-news/recommen

dations-following-the-oldsmar-water-\treatmen

t-facility-cyber-attack/, 2023. [Online; accessed
March 15, 2024].

[11] Markus Dahlmanns, Johannes Lohmöller, Ina Berenice
Fink, Jan Pennekamp, Klaus Wehrle, and Martin Henze.
Easing the conscience with opc ua: An internet-wide
study on insecure deployments. In ACM Internet Mea-
surement Conference (IMC), 2020.

[12] Michael D Ernst, Jake Cockrell, William G Griswold,
and David Notkin. Dynamically discovering likely pro-
gram invariants to support program evolution. In Inter-
national Conference on Software Engineering, 1999.

[13] Nicolas Falliere, Liam O Murchu, Eric Chien, et al. W32.
stuxnet dossier. White paper, Symantec Corp., Security
Response, 2011.

[14] Cheng Feng, Venkata Reddy Palleti, Aditya Mathur, and
Deeph Chana. A systematic framework to generate
invariants for anomaly detection in industrial control
systems. In NDSS, 2019.

[15] FischerTechnik. Fischertechnik plant manual. "https:
//www.fischertechnik.de/-/media/fischertechn

ik/fite/service/elearning/simulieren/lernfab

rik-4-0-24v/fabrik_2020_deutsch_s7-1500_en
_korrigiert_final.ashx", 2022. [Online; accessed
March 15, 2024].

[16] Bryan Ford. Parsing expression grammars: a
recognition-based syntactic foundation. In ACM Sympo-
sium on Principles of Programming Languages, 2004.

[17] David Formby, Milad Rad, and Raheem Beyah. Low-
ering the barriers to industrial control system security
with GRFICS. In USENIX Workshop on Advances in
Security Education (ASE), 2018.

[18] Luis Garcia, Stefan Mitsch, and André Platzer. Hy-
PLC: Hybrid programmable logic controller program
translation for verification. In ACM/IEEE International
Conference on Cyber-physical Systems, 2019.

[19] Hamid Reza Ghaeini, Daniele Antonioli, Ferdinand
Brasser, Ahmad-Reza Sadeghi, and Nils Ole Tippen-
hauer. State-aware anomaly detection for industrial
control systems. In Proceedings of the 33rd Annual
ACM Symposium on Applied Computing, 2018.

[20] Jairo Giraldo, David Urbina, Alvaro Cardenas, Junia
Valente, Mustafa Faisal, Justin Ruths, Nils Ole Tippen-
hauer, Henrik Sandberg, and Richard Candell. A survey
of physics-based attack detection in cyber-physical sys-
tems. ACM Computing Surveys (CSUR), 2018.

[21] Benjamin Green, Richard Derbyshire, Marina Krotofil,
William Knowles, Daniel Prince, and Neeraj Suri. Pcaad:

https://www.dragos.com/blog/industry-news/recommendations-following-the-oldsmar-water-\treatment-facility-cyber-attack/
https://www.dragos.com/blog/industry-news/recommendations-following-the-oldsmar-water-\treatment-facility-cyber-attack/
https://www.dragos.com/blog/industry-news/recommendations-following-the-oldsmar-water-\treatment-facility-cyber-attack/
https://www.dragos.com/blog/industry-news/recommendations-following-the-oldsmar-water-\treatment-facility-cyber-attack/
https://www.fischertechnik.de/-/media/fischertechnik/fite/service/elearning/simulieren/lernfabrik-4-0-24v/fabrik_2020_deutsch_s7-1500_en_korrigiert_final.ashx
https://www.fischertechnik.de/-/media/fischertechnik/fite/service/elearning/simulieren/lernfabrik-4-0-24v/fabrik_2020_deutsch_s7-1500_en_korrigiert_final.ashx
https://www.fischertechnik.de/-/media/fischertechnik/fite/service/elearning/simulieren/lernfabrik-4-0-24v/fabrik_2020_deutsch_s7-1500_en_korrigiert_final.ashx
https://www.fischertechnik.de/-/media/fischertechnik/fite/service/elearning/simulieren/lernfabrik-4-0-24v/fabrik_2020_deutsch_s7-1500_en_korrigiert_final.ashx
https://www.fischertechnik.de/-/media/fischertechnik/fite/service/elearning/simulieren/lernfabrik-4-0-24v/fabrik_2020_deutsch_s7-1500_en_korrigiert_final.ashx

Towards automated determination and exploitation of
industrial systems. Computers & Security, 2021.

[22] Peter Gsellmann, Martin Melik-Merkumians, and Georg
Schitter. Comparison of code measures of iec 61131–3
and 61499 standards for typical automation applications.
In 23rd International Conference on Emerging Tech-
nologies and Factory Automation, 2018.

[23] Shengjian Guo, Meng Wu, and Chao Wang. Symbolic
execution of programmable logic controller code. In
Joint Meeting on Foundations of Software Engineering,
2017.

[24] Dina Hadžiosmanović, Robin Sommer, Emmanuele
Zambon, and Pieter H Hartel. Through the eye of the
PLC: semantic security monitoring for industrial pro-
cesses. In Annual Computer Security Applications Con-
ference, 2014.

[25] Moses Ike, Kandy Phan, Keaton Sadoski, Romuald
Valme, and Wenke Lee. SCAPHY: Detecting modern
ICS attacks by correlating behaviors in scada and physi-
cal. In IEEE Symposium on Security and Privacy (S&P),
2023.

[26] Jun Inoue, Yoriyuki Yamagata, Yuqi Chen, Christo-
pher M Poskitt, and Jun Sun. Anomaly detection for
a water treatment system using unsupervised machine
learning. In IEEE International Conference on Data
Mining Workshops (ICDMW), 2017.

[27] Casper S Jensen, Mukul R Prasad, and Anders Møller.
Automated testing with targeted event sequence genera-
tion. In International Symposium on Software Testing
and Analysis, 2013.

[28] Ruggero Lanotte, Massimo Merro, Andrei Munteanu,
and Luca Vigan. A formal approach to physics-based
attacks in cyber-physical systems. ACM Transactions
on Privacy and Security (TOPS), 2020.

[29] Stephen McLaughlin. Blocking unsafe behaviors in
control systems through static and dynamic policy en-
forcement. In Annual Design Automation Conference,
2015.

[30] Stephen E McLaughlin, Saman A Zonouz, Devin J
Pohly, and Patrick D McDaniel. A trusted safety verifier
for process controller code. In NDSS, 2014.

[31] Thomas Miller, Alexander Staves, Sam Maesschalck,
Miriam Sturdee, and Benjamin Green. Looking back
to look forward: Lessons learnt from cyber-attacks on
industrial control systems. International Journal of Crit-
ical Infrastructure Protection, 2021.

[32] Mitre. ICS attack techniques. https://attack.mit

re.org/techniques/ics/, 2023. [Online; accessed
March 15, 2024].

[33] Efrén López Morales, Ulysse Planta, Carlos Rubio-
Medrano, Ali Abbasi, and Alvaro A Cardenas. Sok:
Security of programmable logic controllers. In USENIX
Security, 2024.

[34] Muslum Ozgur Ozmen, Xuansong Li, Andrew Chu,
Z. Berkay Celik, Bardh Hoxha, and Xiangyu Zhang.
Discovering physical interaction vulnerabilities in IoT
deployments. In ACM SIGSAC Conference on Com-
puter and Communications Security (CCS), 2022.

[35] Arash Partow. C++ mathematical expression toolkit
library (exprtk). "https://github.com/ArashPartow
/exprtk", 2000. [Online; accessed March 15, 2024].

[36] Fabio Pasqualetti, Florian Dörfler, and Francesco Bullo.
Attack detection and identification in cyber-physical sys-
tems. IEEE Transactions on Automatic Control, 2013.

[37] Prashant Hari Narayan Rajput, Constantine Doumani-
dis, and Michail Maniatakos. ICSPatch: Automated
vulnerability localization and non-intrusive hotpatch-
ing in industrial control systems using data dependence
graphs. In USENIX Security, 2023.

[38] Ransomware attack leads to shutdown of major u.s.
pipeline system. https://www.washingtonpost.com

/business/2021/05/08/cyber-attack-colonial-p

ipeline/, 2023. [Online; accessed March 20, 2024].

[39] Krzysztof Sacha. Automatic code generation for PLC
controllers. In International Conference on Computer
Safety, Reliability, and Security, 2005.

[40] Roberto Sala, Fabiana Pirola, and Giuditta Pezzotta. On
the development of the digital shadow of the fischertech-
nik training factory industry 4.0: An educational per-
spective. Procedia Computer Science, 2023.

[41] Ansaf Salleb-Aouissi, Christel Vrain, Cyril Nortet, Xian-
grong Kong, Vivek Rathod, and Daniel Cassard. Quant-
miner for mining quantitative association rules. Journal
of Machine Learning Research, 2013.

[42] Abraham Serhane, Mohamad Raad, Raad Raad, and
Willy Susilo. Programmable logic controllers based
systems (PLC-BS): Vulnerabilities and threats. SN Ap-
plied Sciences, 2019.

[43] W32.stuxnet dossier. https://www.wired.com/imag

es_blogs/threatlevel/2011/02/Symantec-Stuxnet

-Update-Feb2011.pdf, 2023. [Online; accessed March
20, 2024].

https://attack.mitre.org/techniques/ics/
https://attack.mitre.org/techniques/ics/
https://github. com/ArashPartow/exprtk
https://github. com/ArashPartow/exprtk
https://www.washingtonpost.com/business/2021/05/08/cyber-attack-colonial-pipeline/
https://www.washingtonpost.com/business/2021/05/08/cyber-attack-colonial-pipeline/
https://www.washingtonpost.com/business/2021/05/08/cyber-attack-colonial-pipeline/
https://www.wired.com/images_ blogs/threatlevel/2011/02/Symantec- Stuxnet- Update- Feb2011.pdf
https://www.wired.com/images_ blogs/threatlevel/2011/02/Symantec- Stuxnet- Update- Feb2011.pdf
https://www.wired.com/images_ blogs/threatlevel/2011/02/Symantec- Stuxnet- Update- Feb2011.pdf

[44] André Teixeira, Daniel Pérez, Henrik Sandberg, and
Karl Henrik Johansson. Attack models and scenarios for
networked control systems. In International Conference
on High Confidence Networked Systems, 2012.

[45] Devinder Thapa, Chang Mok Park, Sang C Park, and
Gi-Nam Wang. Auto-generation of iec standard PLC
code using t-mpsg. International Journal of Control,
Automation and Systems, 2009.

[46] Unipi PLC. "https://www.unipi.technology/uni
pi-neuron-l203-rpi3-p29", 2022. [Online; accessed
Mar 7, 2024].

[47] David I Urbina, Jairo A Giraldo, Alvaro A Cardenas,
Nils Ole Tippenhauer, Junia Valente, Mustafa Faisal,
Justin Ruths, Richard Candell, and Henrik Sandberg.
Limiting the impact of stealthy attacks on industrial
control systems. In ACM Conference on Computer and
Communications Security, 2016.

[48] Zeyu Yang, Liang He, Peng Cheng, Jiming Chen,
David KY Yau, and Linkang Du. PLC-Sleuth: Detecting
and localizing PLC intrusions using control invariants.
In International Symposium on Research in Attacks, In-
trusions and Defenses (RAID), 2020.

[49] Zeyu Yang, Liang He, Hua Yu, Chengcheng Zhao, Peng
Cheng, and Jiming Chen. Detecting PLC intrusions us-
ing control invariants. IEEE Internet of Things Journal,
2022.

[50] Alberto Zanutto, K Follis, J Busby, Awais Rashid, et al.
The shadow warriors: In the no man’s land between
industrial control systems and enterprise it systems. In
USENIX Symposium on Usable Privacy and Security
(SOUPS), 2017.

[51] Maximilian Zarte, Jeffrey Wermann, Philipp Heeren,
and Agnes Pechmann. Concept, challenges, and learning
benefits developing an industry 4.0 learning factory with
student projects. In IEEE International Conference on
Industrial Informatics (INDIN), 2019.

[52] Mu Zhang, Chien-Ying Chen, Bin-Chou Kao, Yassine
Qamsane, Yuru Shao, Yikai Lin, Elaine Shi, Sibin Mo-
han, Kira Barton, James Moyne, and Mao. Towards au-
tomated safety vetting of PLC code in real-world plants.
In IEEE Symposium on Security and Privacy (S&P),
2019.

[53] Qingzhao Zhang, Xiao Zhu, Mu Zhang, and Z Morley
Mao. Automated runtime mitigation for misconfigu-
ration vulnerabilities in industrial control systems. In
International Symposium on Research in Attacks, Intru-
sions and Defenses (RAID), 2022.

u v

y

w

x

Figure 9: The components of the FT manufacturing plant:
1 Vacuum Gripper Robot (VGR), 2 High-bay Warehouse

(HBW), 3 Multi-processing Station (MPO), 4 Sorting Line
(SLD), and 5 Environmental Station (SSC).

[54] Vladimir E Zyubin, Andrei S Rozov, Igor S Anureev, Na-
talia O Garanina, and Valeriy Vyatkin. post: A process-
oriented extension of the iec 61131-3 structured text
language. IEEE Access, 2022.

Appendix

A Fischertechnik (FT) Manufacturing Plant

The Fischertechnik (FT) Manufacturing Plant [40] in Figure 9
performs a number of PLC-controlled manufacturing
processes. It uses the Siemens S7-1500 PLC and SCL
programming language. The same testbed has already been
used in other ICS security research efforts [1, 40, 51]. It
consists of typical factory components such as a storage
and retrieval station, a vacuum gripper robot (VGR), a
high-bay warehouse (HBW), a multi-processing station with
an oven (MPO), a sorting line with color detection (SLD),
an environmental sensor, and a swiveling camera (SSC).

The factory operation is divided into two modes: (1) De-
livery - A raw workpiece is placed in the input area. When
the sensor detects the workpiece, it triggers the VGR to col-
lect it and move it to the NFC reader, where its identification
number is read. The VGR then transports the piece to the
HBW storage site. (2) Order - Users place an order through
the dashboard by choosing the desired workpiece. The HBW
withdraws the workpiece and positions it for VGR. The VGR
transfers the workpiece to the MPO, where it is processed for
delivery and finally moved to the delivery location.

https://www.unipi.technology/unipi-neuron-l203-rpi3-p29
https://www.unipi.technology/unipi-neuron-l203-rpi3-p29

	Introduction
	Background
	Threat Model
	Overview of ICS Attacks and Invariant-Based Defenses
	Motivating Example
	Design Goals and Challenges

	SAIN Design
	ICS State Identification
	Abstract Syntax Tree (AST) Generation
	FSM Extraction

	State-aware Code-level Invariants
	ICS State Signatures
	Intra-state Invariants
	Inter-state Invariants

	Invariant Quantification
	SAIN Monitor

	Implementation
	Evaluation
	Experimental Setup
	Effectiveness of SAIN
	Attack Detection Performance (RQ1)
	Attack Detection Comparison (RQ2)
	SAIN's False Positive Performance (RQ3)

	Performance Evaluation
	Invariant Generation Overhead (RQ4)
	Number of Validated Invariants (RQ5)
	Runtime Performance Overhead (RQ6)

	Case Studies
	Case Study 1: Intra-State Attack
	Case Study 2: Inter-State Attack

	Limitations And Discussions
	Related Work
	Conclusions
	Fischertechnik (FT) Manufacturing Plant

