
72 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 1, JANUARY 2014

Data-Centric OS Kernel Malware Characterization
Junghwan Rhee, Member, IEEE, Ryan Riley, Member, IEEE, Zhiqiang Lin, Member, IEEE,

Xuxian Jiang, and Dongyan Xu, Member, IEEE

Abstract— Traditional malware detection and analysis
approaches have been focusing on code-centric aspects of
malicious programs, such as detection of the injection of
malicious code or matching malicious code sequences. However,
modern malware has been employing advanced strategies, such
as reusing legitimate code or obfuscating malware code to
circumvent the detection. As a new perspective to complement
code-centric approaches, we propose a data-centric OS
kernel malware characterization architecture that detects and
characterizes malware attacks based on the properties of data
objects manipulated during the attacks. This framework consists
of two system components with novel features: First, a runtime
kernel object mapping system which has an un-tampered view
of kernel data objects resistant to manipulation by malware.
This view is effective at detecting a class of malware that hides
dynamic data objects. Second, this framework consists of a
new kernel malware detection approach that generates malware
signatures based on the data access patterns specific to malware
attacks. This approach has an extended coverage that detects
not only the malware with the signatures, but also the malware
variants that share the attack patterns by modeling the low
level data access behaviors as signatures. Our experiments
against a variety of real-world kernel rootkits demonstrate the
effectiveness of data-centric malware signatures.

Index Terms— OS kernel malware characterization,
data-centric malware analysis, virtual machine monitor.

I. INTRODUCTION

MODERN malware use a variety of techniques to cause
divergence in the attacked program’s behavior and

achieve the attacker’s goal. Traditional malicious programs
such as computer viruses, worms, and exploits have been
using code injection attacks which inject malicious code into
a program to perform a nefarious function. Intrusion detection
approaches based on such code properties effectively detect
or prevent this class of malware attacks [14], [20], [42], [43],
[45], [51].

Manuscript received February 28, 2013; revised July 4, 2013 and
October 8, 2013; accepted November 7, 2013. Date of publication
November 20, 2013; date of current version December 17, 2013. This work
was supported in part by the U.S. National Science Foundation (NSF)
under Grant 1049303 and the U.S. Air Force Office of Scientific Research
(AFOSR) under Contract FA9550-10-1-0099. The associate editor coordi-
nating the review of this manuscript and approving it for publication was
Prof. C.-C. Jay Kuo.

J. Rhee is with NEC Laboratories America, Princeton, NJ 08540 USA
(e-mail: rhee@nec-labs.com).

R. Riley is with the Department of Computer Science and Engineering,
Qatar University, Doha 2713, Qatar (e-mail: ryan.riley@qu.edu.qa).

Z. Lin is with the Department of Computer Science, the University of Texas
at Dallas, Richardson, TX 75080 USA (e-mail: zhiqiang.lin@utdallas.edu).

X. Jiang is with the Department of Computer Science, North Carolina State
University, Raleigh, NC 27695 USA (e-mail: jiang@cs.ncsu.edu).

D. Xu is with the Department of Computer Science and CERIAS, Purdue
University, West Lafayette, IN 47907 USA (e-mail: dxu@cs.purdue.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2013.2291964

In response to these techniques, alternate attack vectors were
devised to avoid violation of code integrity and therefore elude
such detection approaches. For instance, return-to-libc attacks
[8], [33], return-oriented programming [6], [23], [46], and
jump-oriented programming [10], [16], [17], [21], [27] reuse
existing code to create malicious logic. Additionally, kernel
malware can be launched via vulnerable code in program
bugs [31], [49], [50], third-party kernel drivers, and memory
interfaces [18] which can allow manipulation of kernel code
and data using legitimate code (i.e., kernel or driver code).

In order to detect such attacks, another group of defense
techniques focus on identifying malware based on behav-
ior [3], [4], [12], [25], [26]. These approaches generate mal-
ware signatures by using a pattern of malware code sequence
(e.g., instruction sequences or system call sequences) to match
malware behavior. However, some malware employ techniques
that obfuscate or vary the patterns of code execution. For
example, code obfuscation [11], [13], [47], [53] and code emu-
lation [48] techniques can confuse behavior-based malware
detectors and hence avoid detection.

This arms-race between malware and malware detectors
centers around properties of malicious code: injection/integrity
of code or the causal sequences of malicious code patterns.
While the majority of existing work focuses on the code
malware executes, relatively little work has been done which
focuses on the data it modifies.

Data-centric approaches require neither the detection of
code injection nor malicious code patterns. Therefore they
are not directly subvertible using code reuse or obfuscation
techniques. However, detecting malware based on data modifi-
cations has a unique challenge that makes it distinct from code-
based approaches. Unlike code, which is typically expected
to be invariant, data status can be dynamic. Correspondingly,
conventional integrity checking cannot be applied to data
properties. In addition, monitoring data objects of an operating
system (OS) kernel has additional challenges because an OS
may be the lowest software layer in conventional computing
environments, meaning that there is no monitoring layer
below it.

In this paper, we present a novel scheme, data-centric OS
kernel malware characterization which enables the detection
and characterization of OS kernel malware based on the
properties of kernel data structures. Additionally, we present a
prototype called DataGene and evaluate it against a set of real
world kernel malware samples. This system consists of two
essential components to monitor and analyze data properties
of OS kernels.

The first component is a kernel object mapping system that
externally identifies dynamic kernel objects of the monitored
OS at runtime. This component enables an external monitor

1556-6013 © 2013 IEEE

RHEE et al.: DATA-CENTRIC OS KERNEL MALWARE CHARACTERIZATION 73

Fig. 1. Data-Centric OS Kernel Malware Characterization.

to recognize the access behavior to data objects. We make use
of memory allocation events to build the object map. Some
malware hides itself by manipulating data structures, and our
experiments show that this map can reliably detect such attacks
since its view is not manipulated by malware.

With this map in place, we then present a malware char-
acterization approach based on kernel object access patterns.
This approach can generate a signature of a malware’s unique
data access behavior. By matching data behavior signatures, it
can detect classes of kernel malware that share common attack
patterns on kernel data structures.

Contributions: The contributions of this paper are summa-
rized as follows:

• Reliable Detection of Kernel Object Hiding Attacks.
Kernel object hiding attacks attempt to hide data objects
by manipulating pointers reaching such objects. Our
kernel object mapping approach recognizes data objects
based on memory allocation events, not inter-memory
pointers. Therefore, such attacks do not tamper with the
identification of data objects in our mapping scheme. Our
experiments show that our approach successfully detects
kernel data hiding rootkits that manipulate data object
pointers in order to evade traditional rootkit detectors.

• Conception of Malware Signature Based on Data
Access Behavior During Attacks. We propose a new
malware signature based on the unique patterns of kernel
data accesses that occur during an attack. This technique
can complement code-based malware signatures.

• Detection of Malware Variants Having Similar Data
Access Patterns. Our approach determines malware
attacks by extracting and matching data access patterns
specific to malware attacks. Kernel malware aiming at
similar malicious features often manipulates common
data structures. This mechanism can detect such malware
variants having similar data access patterns.

This paper is organized as follows. In Section I, we present
the problem statement. Section II introduces the approaches
based on data properties. Sections III and IV present the details
of those approaches. Sections V and VI present implementa-
tion and evaluation of our system. Section VIII presents related
approaches in kernel malware defense and analysis. Section IX
concludes this paper.

II. DATA-CENTRIC KERNEL

MALWARE CHARACTERIZATION

In this section, we present the overall design of data-
centric kernel malware characterization. Fig. 1 illustrates our
approach.

Fig. 2. Live Kernel Object Mapping System.

Tracking OS data allocations and uses is difficult because
the OS is traditionally the lowest software layer in a con-
ventional computer system. To overcome this challenge, we
make use of virtualization technology. A guest OS runs on top
of a hypervisor which transparently and efficiently captures
memory related OS events to generate a kernel object map.
This map is able to provide the live status of dynamic kernel
objects. Many kernel rootkits are stealthy and attempt to
hide themselves. Many of these attacks are implemented by
manipulating data structures and making them appear dead
(freed) to the OS when they are in fact alive (allocated).
DataGene enables the detection of such malware based on
the status of data liveness. This component is to be presented
in Section III in details.

This map, which accurately identifies static and dynamic
kernel data objects, enables the monitoring and analysis of
kernel memory access patterns. Using this information we
propose a new approach to characterize and detect kernel
malware. DataGene monitors kernel memory access behavior
such as reads and writes on OS kernel objects and systemat-
ically extracts memory reference patterns specific to malware
attacks by comparing benign kernel execution and malicious
kernel execution compromised by kernel rootkits. By matching
these signatures DataGene enables the detection of kernel
malware and their variants. This functionality will be presented
in Section IV.

III. LIVE KERNEL OBJECT MAPPING

DataGene uses the properties of kernel data objects for
malware characterization. In this section, we introduce the
allocation-driven mapping scheme which enables the creation
of a live, dynamic map of kernel data object.

A. Allocation-Driven Mapping Scheme

Allocation-driven mapping is a kernel memory mapping
scheme that generates a synchronous map of kernel objects by
capturing the kernel object allocation and deallocation events
of the monitored OS kernel. Fig. 2 illustrates how this scheme
works. Whenever a kernel object is allocated or deallocated,
the virtual machine monitor (VMM) intercedes and captures
its address range and the information to derive the data type
of the object subject to the event in order to update the kernel
object map.

This approach does not rely on any content of the
kernel memory which can potentially be manipulated by
kernel malware. Therefore, the kernel object map provides an

74 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 1, JANUARY 2014

un-tampered view of kernel memory wherein the identification
of kernel data is not affected by the manipulation of memory
contents by kernel malware. This tamper-resistant property is
especially effective to detect sophisticated kernel attacks that
directly manipulate kernel memory to hide kernel objects.

The key observation is that allocation-driven mapping cap-
tures the liveness status of the allocated dynamic kernel
objects. For malware writers, this property makes it signifi-
cantly more difficult to manipulate this view. In Section VI-B,
we show how this mapping can be used to automatically detect
data hiding attacks without using any knowledge specific to a
kernel data structure.

There are a number of challenges in implementing a live
kernel object map based on allocation-driven mapping. For
example, kernel memory allocation functions do not provide
a simple way to determine the type of the object being
allocated.1 One solution is to use static analysis to rewrite
the kernel code to deliver the allocation types to the VMM,
but this would require the construction of a new type-enabled
kernel, which is not readily applicable to off-the-shelf systems.
Instead, we use a technique that derives data types by using
runtime context (i.e., call stack information). Specifically, this
technique systematically captures code positions for memory
allocation calls and translates them into data types so that OS
kernels can be transparently supported without any change in
the source code.

B. Techniques

We employ a number of techniques to implement allocation-
driven mapping. First, a set of kernel functions (such as
kmalloc) are designated as kernel memory allocation func-
tions. If one of these functions is called, we say that an
allocation event has occurred. Next, whenever this event occurs
at runtime, the VMM intercedes and captures the allocated
memory address range and the code location calling the
memory allocation function. This code location is referred to
as an allocation call site and we use it as a unique identifier
for the allocated object’s type at runtime. Finally, the source
code around each allocation call site is analyzed offline to
determine the type of the kernel object being allocated.

1) Runtime Kernel Object Map Generation: At runtime,
the VMM captures all allocation and deallocation events
by interceding whenever one of the allocation/deallocation
functions is called. There are three things that need to be
determined at runtime: (1) the call site, (2) the address of
the object allocated or deallocated, and (3) the size of the
allocated object.

To determine the call site, we use the return address of the
call to the allocation function. In the instruction stream, the
return address is the address of the instruction after the call
instruction. The captured call site is stored in the kernel object
map so that the type can be determined during offline source
code analysis.

1Kernel level memory allocation functions are similar to user level ones. The
function kmalloc, for example, does not take a type but a size to allocate
memory.

The address and size of objects being allocated or deallo-
cated can be derived from the arguments and return value.
For an allocation function, the size is typically given as a
function argument and the memory address as the return value.
For a deallocation function, the address is typically given
as a function argument. These values can be determined by
the VMM by leveraging function call conventions. Function
arguments are delivered through the stack or registers, and
they are captured by inspecting these locations at the entry
of memory allocation/deallocation calls. To capture the return
value, we need to determine where the return value is stored
and when it is stored there. Integers up to 32-bits as well as
32-bit pointers are delivered via the EAX register and all values
that we would like to capture are either of those types. The
return value is available in this register when the allocation
function returns to the caller. In order to capture the return
values at the correct time the VMM uses a virtual stack. When
a memory allocation function is called, the return address is
extracted and pushed on to this stack. When the address of the
code to be executed matches the return address on the stack,
the VMM intercedes and captures the return value from the
EAX register.

2) Dynamic Data Type Inference: The object type informa-
tion related to kernel memory allocation events is determined
using static analysis of the kernel source code offline. First,
the allocation call site of a dynamic object is mapped to the
source code using debugging information found in the kernel
binary. This code assigns the address of the allocated memory
to a pointer variable at the left-hand side of the assignment
statement. Since this variable’s type can represent the type of
the allocated memory, it is derived by traversing the declara-
tion of this pointer and the definition of its type. Specifically,
during the compilation of kernel source code, a parser sets
the dependencies among the internal representations (IRs) of
such code elements. Therefore, the type can be found by
following the dependencies of the generated IRs. There are
several patterns regarding how these components are related
in the source code and such details are specifically described
in [39].

IV. DATA BEHAVIOR-BASED MALWARE

CHARACTERIZATION

In this section, we present how the data behavior of kernel
malware is characterized and used to determine the presence
of malware. The overview of this component is presented in
Fig. 3, and the sub-components are as follows.

As a basic unit to represent the kernel’s data behavior,
DataGene generates a summary of the access patterns for
all kernel objects accessed in a kernel execution instance. To
identify dynamic kernel memory objects, this process takes
advantage of a kernel object map (shown as The Kernel
Memory Mapper in Fig. 3) described in the previous section.
For each access on kernel memory in the guest OS, the
VMM intercedes and records the relevant information about
the kernel memory access, such as the accessing code, the
accessed memory type, and the accessed offset (shown as The
Data Behavior Aggregator).

RHEE et al.: DATA-CENTRIC OS KERNEL MALWARE CHARACTERIZATION 75

Fig. 3. Data Behavior-based Malware Characterization.

To determine malware behavior, the memory access patterns
for two kinds of kernel execution instances are generated:
benign kernel runs and malicious kernel runs where kernel
malware is active. By taking the difference between the two
sets of memory access patterns, we estimate the data behavior
specific to the kernel malware and generate its signature (Data
Behavior Signature). Later, in order to detect kernel malware,
the generated signatures are compared to the memory access
patterns of a running instance of the OS (Checking Kernel
Execution).

A. Data Behavior Profile Approach

In this section, we present basic terminologies that represent
the memory access patterns of kernel execution.

Definition 1 (Data Behavior Element) A data behavior
element (DBE) represents a pattern of a memory access. It
is defined as a quintuple, (c, o, m, i, f): the address of
the code that accesses memory (c), the kind (read or write)
of memory access (o), the kind (static or dynamic) of the
accessed memory (m), the class of the accessed memory
(i), and the accessed offset(s) (f) inside the memory of the
class i .

c is the address of the kernel code that reads or writes kernel
memory. o represents the kind of memory access which is 0 for
a memory read and 1 for a memory write.

The kind of the accessed memory, m, is 0 for a dynamic
object and 1 for a static object. The class i is defined
differently, depending on the memory kind. Static objects are
known at compile time; therefore, we are able to assign unique
numbers as their identifiers. A class of a static object can
represent either a static data object or a kernel function in the
kernel text. In the case of dynamic kernel objects, there are
multiple memory instances for the same data type at runtime.
Dynamic kernel objects allocated by the same code correspond
to the data instances of the specific data type used in the
allocation code. Thus, we aggregate the access patterns of
dynamic kernel objects that share the allocation code. The
address of this allocation code is used as a unique class for
such objects.

f is an offset, or a range of offsets, accessed by the code
at c. We allow a range of offsets because if this object is an
array, the accessed offsets can vary for the same accessing
code. Handling them as separate data behavior elements can
cause a high number of elements with slightly different offsets

Fig. 4. An Example of Kernel Behavior.

for the same accessing code. To avoid this problem, we use
a threshold (T f) to convert a list of elements whose offsets
are different (but with the same accessing code) to an element
with an offset range.

Definition 2 (Kernel Execution Instance) A kernel execution
instance or a kernel run is an instance of the OS kernel
execution.

Definition 3 (Data Behavior Profile) For a kernel execution
instance r , a data behavior profile (DBP) is defined as a set
of DBEs observed and it is denoted as Dr .

A DBP represents a set of data behavior elements observed
in a kernel execution instance. It is a summary of all observed
kernel-mode memory access patterns in the kernel run.

Fig. 4 presents kernel code showing the examples of data
behavior elements. The rounded box shows a dynamic kernel
object allocated by the code c1. This object is then accessed
by the code c2 and two fields, next_task (offset 80) and
prev_task (offset 84), are written by it. Therefore, the data
behavior elements for this code example are as follows.

(c2, 1, 0, c1, 80) , (c2, 1, 0, c1, 84) ,

These elements are the access patterns in a benign kernel
run. If kernel malware is active in this kernel, the access
patterns can be extended due to the malware behavior. For
instance, if kernel rootkits hp and fuuld are active as shown
in the right-hand section of Fig. 4, there would be additional
accesses to the next_task and the prev_task fields by
the code c3 and c4. Consequently, the data behavior profile is
extended with the additional elements as follows.

(c3, 1, 0, c1, 80) , (c3, 1, 0, c1, 84) ,

(c4, 1, 0, c1, 80) , (c4, 1, 0, c1, 84)

Here c3 represents the code of the hp rootkit, which is in
the form of a kernel driver. The code integrity-based rootkit
defense approach [42], [45] can determine this access as
malicious based on the fact that this driver code is not in
the authorized code list. In contrast, the code at c4 is part
of legitimate kernel code which is indirectly exploited to
overwrite this data structure. This rootkit does not violate
kernel code integrity; therefore, the approach based on code
integrity cannot detect this attack behavior.

In both cases, malware behavior appears only when the
malware runs. Our approach aims to capture such behavior
specific to the attack in order to determine the presence of
malware.

76 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 1, JANUARY 2014

Fig. 5. Aggregating Memory Accesses on Dynamic Kernel Objects Regard-
ing Allocation Sites ca1 and ca2.

In a kernel execution instance, there exist a varying number
of dynamic kernel data instances. To compare the access
patterns of dynamic kernel objects in different kernel runs,
it is necessary to aggregate the memory accesses on such
objects regarding their classes. The allocation code represents
the instantiation of a data type at a specific code position.
By using a memory allocation code site as the classifier of
dynamic kernel objects, we aggregate the access patterns of
dynamic instances of the same type.

Fig. 5 illustrates this aggregation process. When a dynamic
kernel object is allocated in a guest OS kernel, the allocation
code site is stored in the kernel memory map as the class
information. Whenever kernel code reads or writes a dynamic
kernel object, the VMM intercedes and identifies the targeted
object by using its class information from the kernel object
map. The memory access pattern is recorded in the aggregated
memory profile.

B. Characterizing Malware Data Behavior

In this section we demonstrate how we characterize the
behavior of kernel malware based on data behavior profiles.
We first describe the challenges and describe how we address
them. Then, we describe how we generalize malware behavior
in order to match similar behavior in different malware.

1) Challenges and Our Solutions: DataGene characterizes
malware behavior by using dynamic kernel execution. We
list several challenges caused by our foundation on dynamic
analysis. We then present our solutions for these challenges.

• Variations in the Runtime Kernel Behavior. Gener-
ally, the difficulty in obtaining a complete set of ker-
nel execution paths is a well-known challenge for an
approach based on dynamic execution. If we focus on
the data behavior in benign execution, it is in fact a
problem because the runtime kernel behavior can be
highly dynamic across different runs. However, we focus
on the data behavior specific to malware that consistently
appears only when the malware is active.

• Irregular Access Patterns on Kernel Stacks. Kernel
stacks are kernel objects that have irregular access pat-
terns. Whenever a kernel function is called or returns,
the stack is accessed for various purposes such as return
values, function arguments, and local variables. Since the
kernel control flow is highly dynamic, the set of code
sites that access the stack and the accessed offsets within
the stack vary significantly. Also, the contents of kernel
stacks are irregular at different runs. As such, a simple

Fig. 6. Using a Single Kernel Run for Both Benign and Malware Memory
Access Patterns.

way to handle this problem is to exclude stacks from
our analysis. The kernel memory mapper provides the
identifier for kernel stacks and we solve this problem by
removing the information for such dynamic objects from
the analysis.

• Varying Offsets in Arrays. Some data structures (e.g.,
arrays and buffers) have a range of space, a part of
which can be used at runtime. For example, the accessed
offsets of a buffer can be different depending on the data
contained in it. This problem is handled by using multiple
instances of kernel execution. If the accessed offset of
memory is different in each execution, it is not used for a
malware signature because it may not be used in another
run. Only the data behavior that occurs in a consistent
pattern when malware is active becomes a candidate for
the signature.

2) Characterizing Malicious Data Behavior: In order to
reliably characterize the data behavior of kernel malware
in dynamic execution, we use multiple kernel runs in the
signature generation stage. Let us call a DBP for a malicious
kernel run j with malware M DM, j , and DB,k represents a
data behavior profile for a benign kernel execution k. We apply
set operations on n malicious kernel runs and m benign runs
as follows. The generated signature is called a data behavior
signature for the malware M and shown as SM .

SM =
⋂

j∈[1,n]
DM, j −

⋃

k∈[1,m]
DB,k (1)

This formula represents that SM is the set of data behavior
that consistently appears in n malware runs, but never appears
in m benign runs. The underlying observation from this
formula is that kernel malware will consistently perform mali-
cious operations during attacks. This means, we can estimate
malware behavior by taking the intersection of malicious runs.
Such behavior should not occur in benign runs, so we subtract
the union of benign runs from the derived malware behavior.

When we use kernel execution instances to generate mal-
ware signatures, the malicious runs and benign runs can be
independent. They do not need to be, however. We can use
the execution period before the attack as a benign run and
consider only the new patterns after the attack as the malware
kernel run if we have control on the launch of malware attacks
as shown in Fig. 6. This technique prunes out a significant
number of benign access patterns from the malicious kernel
run, hence reducing risk for potential false positives.

False positives may occur if a consistent pattern in the
malicious runs is later observed in a newly tested benign run.

RHEE et al.: DATA-CENTRIC OS KERNEL MALWARE CHARACTERIZATION 77

The cause of this problem is not unknown kernel behavior, but
rather a problem of proper pruning during signature genera-
tion. By exercising a variety of workloads in multiple kernel
execution instances, we expect that such potential behavior for
this error can be significantly reduced.

3) Generalizing Malware Code Identity: DataGene aims
at matching the variants of the rootkits whose signatures are
available. For example, DataGene can be used to inspect
suspicious data activity in the execution of new signed drivers
(which may include hidden malicious code), the execution of
an unknown driver (which may be malware or its variant),
or kernel execution (where legitimate kernel code can be
exploited indirectly for attacks).

In order to cover variants of malicious code, DataGene
does not use specific identification of kernel drivers. When
we generate or test signatures, we generalize the information
specific to kernel drivers, thus allowing signatures to be tested
against any driver. Specifically, when the signature for a driver-
based rootkit is generated, all code sites in this malicious
driver are substituted by a single anonymous code site, ε.
Some rootkits allocate memory and place their code on it,
and any code site in such memory is also generalized as ε. In
this process, we also generalize all benign kernel modules in
the same way and subtract their memory access patterns from
the candidates for the signature to collect only the behavior
specific to the malware.

If a piece of malware does not use a driver, but instead
exploits legitimate code (e.g., the rootkits using memory
devices or return-oriented rootkits) then this will result in
access patterns of legitimate code that are not observed in
benign runs. In addition, when we match a malware signature
with the data behavior profile of a kernel run, we generalize
the driver code in the tested run similarly for comparison.

4) Matching a Malware Signature With a Kernel Run:
The likelihood that a malware program M is present in a
tested run r is determined by deriving a set of data behavior
elements in SM which belong to the data behavior profile,
Dr . This set I corresponds to the intersection of SM and Dr

2

(i.e., I = {i |i ∈ SM ∧ i ∈ Dr }).

V. IMPLEMENTATION

We have implemented DataGene in a software virtualiza-
tion system and applied it to Linux based operating systems.
While our approach is general enough to work with any OS
that follows standard function call conventions (e.g., Linux,
Windows, etc.), our prototype supports three off-the-shelf
Linux OSes of different kernel versions: Fedora Core 6,
Debian Sarge, and Redhat 8. For the virtual machine monitor,
any software virtualization system, such as VMware Work-
station [52], VirtualBox [24], and Parallels [34] can be used
for implementation. We choose QEMU [5] with the KQEMU
optimizer for implementation convenience.

In this section, we will discuss more details about our
implementation and the challenges associated with it.

2The data behavior signature (SM) is a data behavior profile (i.e., a set of
data behavior elements) because it is derived by the intersection and union of
data behavior profiles.

A. Live Kernel Object Map

In the kernel source code, many wrappers are used for kernel
memory management, some of which are defined as macros
or inline functions and others as regular functions. Macros
and inline functions are resolved as the core memory function
calls at compile time by a preprocessor; thus, their call sites
are captured in the same way as core functions. However, in
the case of regular wrapper functions, the call sites will belong
to the wrapper code.

To solve this problem, we take two approaches. If a wrapper
is used only a few times, we consider that the type from the
wrapper can indirectly imply the type used in the wrapper’s
caller due to its limited use. If a wrapper is widely used in
many places (e.g., kmem_cache_alloc – a slab allocator),
we treat it as a memory allocation function. Commodity OSes,
which have mature code quality, have a well defined set of
memory wrapper functions that the kernel and driver code
commonly use. In our experience, capturing such wrappers, in
addition to the core memory functions, can cover the majority
of the memory allocation and deallocation operations.

We categorize the captured functions into four classes:
(1) page allocation/free functions, (2) kmalloc/kfree
functions, (3) kmem_cache_alloc/free functions (slab
allocators), and (4) vmalloc/vfree functions (contiguous
memory allocators). These sets include the well defined wrap-
per functions as well as the core memory functions. In our
prototype, we capture about 20 functions in each guest kernel.
The memory functions of an OS kernel can be determined
from its design specification (e.g., the Linux Kernel API),
kernel source code, or tracing sample runs.

Automatic translation of a call site to a data type requires a
kernel binary that is compiled with a debugging flag (e.g.,
-g to gcc) and whose symbols are not stripped. Modern
OSes, such as Ubuntu, Fedora, and Windows, generate kernel
binaries of this form. Upon distribution, typically the stripped
kernel binaries are shipped; however, unstripped binaries (or
symbol information in Windows) are optionally provided for
kernel debugging purposes. In our experiments we found that
the kernels of Debian Sarge and Redhat 8 are not compiled
with this debugging flag. Therefore, we compiled the distrib-
uted source code and generated the debug-enabled kernels.
These kernels share the same source code with the distributed
kernels, but the offset of the compiled binary code can be
slightly different due to the additional debugging information.

For static analysis we use a gcc [22] compiler
(version 3.2.3) that we instrumented to generate IRs for the
source code of the experimented kernels. We place hooks in
the parser to extract the abstract syntax trees for the code
elements necessary for static code analysis.

B. Data Behavior-Based Characterization

We implement the kernel object mapper and the data aggre-
gator in the VMM. When there is a request to the VMM, a
DBP is written to a file in the host OS. In order to detect
kernel malware, the data behavior profile can be generated on
the fly and periodically compared with the signature while the
OS is running.

78 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 1, JANUARY 2014

Fig. 7. A Snapshot of a Live Kernel Object Map.

During benign runs we performed various workload from
daily commands to non-trivial application benchmarks. The
tested workload includes kernel compilation, Apache web-
server, UnixBench, nbench, mysql database, thttp webserver,
find, gzip, ssh, scp, lsmod, ps, top, and ls. Some
workloads were executed for several hours to allow any back-
ground administrative operation to be performed. We also used
the workload of benign module loading and simple operations
making use of the /dev/kmem device (e.g., open and close
without overwriting kernel memory).

In our experiments we measured the quality of signatures,
whether they trigger false positives, as we increased the
number of benign runs and malicious runs used for generating
malware signatures. We found with five or more sets of benign
runs and malicious runs, we could generate signatures that do
not cause false positives in our testing with newly generated
benign runs. Therefore, in the next section we present the data
of these five sets of runs. However, we believe that a large
number of runs will further improve the quality of signatures.

VI. EVALUATION

We have evaluated our system on a server containing a
3.2Ghz Pentium D CPU and 2GB RAM. The guest VMs being
monitored are configured with 256MB RAM.

A. Live Kernel Object Map

In this section, we evaluate the functionality of live kernel
object mapping with respect to the identification of kernel
objects.

1) Runtime Tracking of Dynamic Kernel Objects: The live
kernel object map synchronously identifies dynamic kernel
objects on their allocations and deallocations. Therefore,
unlike other kernel memory mapping approaches that sample
memory status or traverse memory snapshots, it can continu-
ously track changes in kernel memory state. Fig. 7 illustrates
the GUI interface of our prototype. The black screen at the
top shows the guest operating system. The kernel object map
is illustrated below the screen. The statistics of current kernel
objects are shown in the left pane.

TABLE I

ALLOCATION CALL SITES, DERIVED DATA TYPES, AND THE NUMBER

OF CORE DYNAMIC KERNEL OBJECTS

2) Identifying Dynamic Kernel Objects: To demonstrate the
ability to inspect the runtime status of an OS kernel, Table I
presents a list of important kernel data structures captured
during the execution of Debian Sarge. These data structures
manage key OS status information such as process informa-
tion, memory mapping of each process, and the status of file
systems and the network. This information is often targeted
by kernel malware and kernel bugs [31], [35]–[38], [44], [49],
[50]. Kernel objects are recognized using allocation call sites
shown in column Allocation Call Site during runtime. Using
static analysis, this information is translated into the data types
shown in column Data Type [39]. The number of the identified
objects in the inspected runtime status is presented in column
#Objects. At that time instance, the live kernel object map
had identified a total of 29488 dynamic kernel objects with
their data types derived from 231 allocation code positions.

In order to evaluate the accuracy of the identified kernel
objects, we built a reference kernel where we modify kernel
memory functions to generate a log of dynamic kernel objects
and run this kernel with the live kernel object map. We observe
that the dynamic objects from the log accurately match the live
dynamic kernel objects captured by the live memory map. To
check the type derivation accuracy, we manually translate the
captured call sites to data types by traversing kernel source
code as done by related approaches [9], [15]. The types derived
manually match the results from our automatic static code
analysis.

B. Detecting Data Hiding Malware Attacks

Existing memory map approaches [2], [9], [36], [44], [54]
identify memory objects by asynchronously scanning the

RHEE et al.: DATA-CENTRIC OS KERNEL MALWARE CHARACTERIZATION 79

TABLE II

DETECTION OF DKOM DATA HIDING ROOTKITS USING THE

UN-TAMPERED VIEW OF LIVE KERNEL OBJECTS

pointers in the memory image. Therefore, they are not able to
detect manipulation of objects without relying on some incon-
sistency of data. In this section we present a reliable hidden
kernel object detector built on top of allocation mapping that
does not suffer from this limitation.

Some advanced kernel rootkits hide kernel objects by simply
removing all references to them from the kernel’s dynamic
memory. We model the behavior of this type of data hiding
attack as a data anomaly in a list. If a dynamic kernel object
does not appear in a kernel object list, then it is orphaned and
hence an anomaly.

Allocation-driven mapping provides an un-tampered view of
the kernel objects not affected by manipulation of the actual
kernel memory content. Therefore, if a kernel object appears in
the map but cannot be found by traversing the kernel memory,
then that object has been hidden. More formally, for a set of
dynamic kernel objects of a given data type, a live set L is the
set of objects found in the kernel object map. A scanned set
S is the set of kernel objects found by traversing the kernel
memory as in the related approaches [2], [9], [36]. If L and
S do not match, then a data anomaly will be reported.

There are two dynamic kernel data lists which are favored
by rootkits as attack targets: the kernel module list and the
process control block (PCB) list.3 However, other linked list-
based data structures can be similarly supported as well. The
basic procedure is to generate the live set L and periodically
generate and compare with the scanned set S. We tested
8 real-world rootkits and 2 of our own rootkits (linuxfu and
fuuld) previously used in [29], [40], and [44]. All of these
rootkits commonly hide kernel objects by directly manipulat-
ing the pointers of such objects. Our map successfully detected
all of these attacks by detecting the data anomaly. The detailed
results are available in Table II.

In the experiments, we focus on a specific attack mechanism
– data hiding via direct kernel object manipulation (DKOM)
– rather than the attack vectors of rootkits. This means that
our system can still detect malware that uses a previously
unknown attack vector in order to manipulate kernel data

3A process control block (PCB) is a kernel data structure containing
administrative information for a particular process. Its data type in Linux
is task_struct.

structures. For example, a large number of rootkits are based
on loadable kernel module (LKM), which can be detected
by code integrity approaches [42], [45] or with a kernel
module signing and verification scheme. However, there exist
alternate attack vectors such as /dev/mem, /dev/kmem
devices, return-oriented techniques [23], [46], kernel bugs, and
unproven code in third-party kernel drivers which can elude
existing kernel rootkit detection and prevention approaches.
We present the DKOM data hiding cases of LKM-based
rootkits as part of our results because these rootkits can
be easily converted to make use of these alternate attack
vectors.

We also include results for two other rootkits that make use
of these advanced attack techniques. hide_lkm and fuuld
in Table II respectively hide kernel modules and processes
without any kernel code integrity violation (via /dev/kmem),
and existing rootkit defense approaches cannot properly detect
these attacks. However, our monitor effectively detects all
DKOM data hiding attacks regardless of attack vectors.

In the experiments that detect rootkit attacks, we generate
and compare L and S sets every 10 seconds. When a data
anomaly occurs, the check is repeated in 1 second. (The
repeated check ensures that a kernel data structure was not
simply in an inconsistent state during the first scan.) If the
anomaly persists, then we signal that an anomaly has been
detected.

With these monitoring policies, we successfully detected
all tested DKOM hiding attacks without any false positives or
false negatives.

So far, we have presented the detection of kernel malware
which achieves its malicious functionality by hiding kernel
data structures. DKOM data hiding techniques are simple to
perform (i.e., isolation of data) but very challenging to detect
due to non-deterministic locations and values of dynamic ker-
nel objects. In addition to data hiding, malware can manipulate
kernel data to perform a variety of other types of attacks such
as privilege escalation of a backdoor process and manipulating
statistics and information stored in the kernel. Due to the fact
that all these attacks are performed by a manipulation of kernel
data, they can be modeled in terms of kernel data access
behavior. In the next section, we present the detection of a
wider scope of kernel malware beyond DKOM data hiding
rootkits.

C. Data Behavior-Based Malware Characterization

In this section we evaluate the effectiveness of malware
characterization based on data behavior signatures as follows.
First, we extract the signatures of three classic rootkits and
match them with benign and malicious kernel runs. Second,
we compare the signatures of all of the tested kernel rootkits to
determine common data behavior across different rootkits and
how such common behavior can be used to detect rootkit
variants. Third, we list specific data elements that are shared by
rootkit signatures, which provide an in-depth understanding of
the attack operations that are common across kernel rootkits.

1) Malware Signature Generation: When a data behavior
signature is generated, the information specific to the malicious

80 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 1, JANUARY 2014

code is largely generalized. Therefore, we hypothesize that
data behavior signatures may be effective not only to detect
the malware whose signature is available, but also to determine
the presence of related malware. In order to validate this
hypothesis, we generated the signatures of three representative,
classic rootkits, and tested benign kernel runs and malicious
kernel runs with 16 rootkits.

To generate malware signatures, we chose three rootkits,
adore 0.38, SucKIT, and modhide. We chose these
three for the following reasons: The adore rootkit has been
studied in several rootkit defense approaches [35], [36], [42],
[44]. This rootkit has several versions with differences in
features and we chose an old version, 0.38, for the signature
to evaluate its effectiveness toward newer rootkit versions
(0.53 and 1.56). SucKIT is known for its attack vector, the
/dev/kmem device, that avoids using a conventional driver-
based mechanism [18]. Several other rootkits followed by
using the same attack vector. modhide is a rootkit packaged
with various versions of the adore rootkit to hide it from the
list of kernel modules. We present our results for other rootkit
choices in Section VI-C.3.

To generate each malware signature, we used kernel data
behavior profiles (DBP) for both benign and malicious kernel
execution. For benign behavior we used a diverse set of
workloads including booting & shutdown, kernel compilation,
apache, mysql, nbench, unixbench, and thttpd. To determine
how many DBPs would be necessary for analysis, we com-
puted the cumulative union behavior of profiles with a random
order of workload. Figure 8 shows that after taking the union
of seven DBPs, the kernel behavior patterns are stabilized for
our workloads. This data suggests at least seven profile runs
should be used to derive reliable malware signatures. This
number, however, could vary depending on the dynamics of the
workload. To collect stable profiles conservatively, we did not
stop at seven runs. Instead, we used 15 benign runs, slightly
over the twice of the number of runs that we observed the
stable cumulative patterns, for our experiments.

For malicious kernel DBPs, we take the intersection of
behavior to extract consistent behavior across attacks. Figure 9
shows the cumulative intersection behavior of adore 0.38
rootkit attacks. Since the rootkit does not vary its behavior in
each attack instance, the common attack behavior is converged
upon quickly even with only a few malware attack samples. In
particular, the rootkits that we chose for signatures commonly
show stable behavior only with two runs. Similar to our
practice used for the benign case, we conservatively collected
about twice this many runs. Hence, we used five malicious
kernel runs to generate malware signatures.

Table III shows the summary of benign and malicious kernel
execution instances (D) and the generated signatures (S). In
all data behavior profiles measured, we set the threshold for
aggregating offsets (T f) as 15. Thus, we consider an object
as an array if more than 15 offsets within the object are
swept over by the common code. Typically, different data fields
have corresponding sets of accessing code because most APIs
access relevant data fields and do not scan the whole data
object through. For some array-like data fields or strings,
T f lowers the granularity of analysis by managing a set

Fig. 8. Cumulative Union Characteristics of Benign DBPs. CL: Classes,
RS: Read Sites, WS: Write Sites.

Fig. 9. Cumulative Intersection Characteristics of DBPs for adore 0.38
Rootkit Attacks.

TABLE III

DETAILS OF BENIGN AND MALICIOUS KERNEL DBPS (D) AND

SIGNATURES (S). CL: # OF CLASSES, RS: # OF READ SITES,

WS: # OF WRITE SITES

of addresses as a range instead of many individual items.
The value 15 was determined for our experiments through
empirical testing.

Table IV presents the details of our three sample rootk-
its. The data behavior signatures of the adore, SucKIT,
and modhide rootkits have 35, 12010, and 1 data behavior
elements (DBEs), respectively. SucKIT has a significantly
high number of elements because it scans kernel memory
to collect information about the attack targets (e.g., the

RHEE et al.: DATA-CENTRIC OS KERNEL MALWARE CHARACTERIZATION 81

TABLE IV

DETAILS OF THE ROOTKIT SIGNATURES. CL: # OF CLASSES,

RD: # OF READ DBES, WD: # OF WRITE DBEs

system-call table), and this behavior is observed as read-
ing numerous static objects with a variety of offsets. The
modhide rootkit simply manipulates the kernel module list;
thus, it has only one element.

2) False Positive Analysis: To evaluate the false positives
of the generated signatures, we compared the signatures with
new benign kernel execution instances. In these extra, benign
kernel runs we ran additional workloads not included during
our initial signature generation phase in order to ensure more
code paths and data operations were executed than previously.
In this experiment, no false positive cases were found, which
confirms that our signature generation procedure captures a
reasonably close set of the data behavior specific to the kernel
rootkits and that the tested runs did not contain any data
behavior that appears in the signatures.

3) Detecting Rootkits Using Data Behavior Signatures:
Malicious kernel runs were next tested by using three sig-
natures to determine any running malware based on the
similarity of the data access patterns between the compared
signature and the kernel run. We tested a total of 80 kernel
runs of 16 rootkits having a variety of targets and attack
vectors. For instance, seven rootkits (fuuld, hide_lkm, hp,
linuxfu, cleaner, modhide, and modhide1) directly
manipulate kernel objects (DKOM [7]). Four rootkits (fuuld,
hide_lkm, SucKIT, and superkit) manipulate kernel
memory by using the /dev/kmem memory device, among
which two rootkits (fuuld and hide_lkm) directly manip-
ulate only kernel data and do not violate kernel code integrity.
Therefore, they are not detected by code integrity-based
defense systems [42], [45].

For this testing we use a slightly different set of rootkits
than the DKOM hiding rootkits evaluated in Section VI-B
(Table II). Among these, two rootkits, adore-ng-2.6 and
ENYELKM 1.1, are not included in this evaluation due to the
fact that they require a specific OS platform that is supported
by the live kernel object map, but not by the system as a
whole. Incompatibilities such as this are not uncommon in
rootkit defense research, and we have parallel work [41] that
is meant to address this issue for future research in the area.
We would like to note that, at a fundamental level, these two
rootkits have behavior similar to other rootkits which were
tested, and there is no reason to believe that they would be
more difficult to detect.

Table V presents the number of matched data behavior
elements between signatures and kernel runs with rootkits (I).
Two left-hand columns show the information about signatures:
the name (M) of the rootkit used for the signature and the size
of the signature (|SM |). The remaining 16 columns present the

number of data behavior elements common in the compared
signature (based on the rootkit in the row heading) and the
kernel run (where the rootkit in the column heading is active).

We consider a tested run to include malware if it contains
a DBE that matches a known malware signature. In our
experiments, all kernel runs with rootkits share elements with
one or more signatures (shown in the row at the bottom of the
table), leading to the detection of all 16 kernel rootkits.

One potential question regarding malware signatures would
be the selection of kernel rootkits for signatures. To understand
which signatures would be effective on which rootkits, we
performed a more comprehensive set of experiments using
different rootkits for signatures. We first generated the rootkit
signatures of all 16 kernel rootkits using five malicious kernel
runs and 15 benign kernel runs. Then we applied them to the
kernel runs (different sets from the ones used for signature
generation) contaminated by 16 kernel rootkits.

The comparison result is presented in Table VI. When
the rootkits in the signature and the tested run are matched,
the entire signature is matched (# matched DBE = |SM |, the
numbers are shown in italics). The bottom row shows that
given a rootkit in the column heading, how many rootkit sig-
natures other than its own signature can detect the rootkit. This
number varies from 2 to 10 depending on how many similar
rootkits exist in the set of our experiments. On average more
than six rootkit signatures are able to detect a given rootkit.

4) Similarities Among Data Behavior Signatures: In this
section we quantitatively analyze the similarities in data behav-
ior across rootkits by generating and comparing the signatures
of the tested rootkits.

We calculated the similarities among signatures by compar-
ing the signatures of 16 kernel rootkits with one another. Our
experiments reveal that each rootkit shares its data behavior
with 2∼10 other rootkits (more than six rootkits on average)
which is consistent with the results of the cross comparison
in the previous section.

The rootkits show similar data behavior not only among
close variants, (e.g., different versions of adore) but also
across rootkits having different attack mechanisms. For exam-
ple, the /dev/kmem based SucKIT shows similarities with
driver-based rootkits such as knark and kis, despite the fact
that they are not derived from one another.

The strong similarities of data behavior across rootkits
are visualized in Fig. 10. The family of adore rootkits
are strongly related in general. The adore-ng 1.56 is
connected to other versions with less strong connections,
thick dashed arrows, because in newer adore versions, the
internal attack vector is substantially changed to use dynamic
objects instead of static objects. A group of rootkits using
the /dev/kmem memory device (i.e., SucKIT, hide_lkm,
fuuld, and superkit) have a strong relationship to one
another. SucKIT and superkit are especially connected
by using thick solid arrows because they share a majority of
data behavior. Some rootkits have relationships with different
kinds of rootkits. For example, the kis rootkit is connected to
other driver-based rootkits such as the adore rootkits and the
knark rootkit, but it is also closely related to /dev/kmem
based rootkits such as the SucKIT.

82 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 1, JANUARY 2014

TABLE V

THE NUMBER OF MATCHED DATA BEHAVIOR ELEMENTS BETWEEN THREE ROOTKIT SIGNATURES AND THE

KERNEL RUNS WITH 16 KERNEL ROOTKITS (AVERAGE OF 5 RUNS)

AD1: adore 0.38, AD2: adore 0.53, AD3: adore-ng 1.56, FL: fuuld, HL: hide_lkm, SK: SucKIT, ST: superkit,
LF: linuxfu, CL: cleaner, MH: modhide, MH1: modhide1

TABLE VI

THE NUMBER OF COMMON DATA BEHAVIOR ELEMENTS BETWEEN 16 ROOTKIT SIGNATURES AND THE

KERNEL RUNS WITH 16 KERNEL ROOTKITS (AVERAGE OF 5 RUNS)

AD1: adore 0.38, AD2: adore 0.53, AD3: adore-ng 1.56, FL: fuuld, HL: hide_lkm, SK: SucKIT, ST: superkit,
LF: linuxfu, CL: cleaner, MH: modhide, MH1: modhide1

Fig. 10. Similarities Among the Data Behavior of Rootkits. Types of Arrows (|I |: # of Matched Elements): Thin Solid (0 < |I | < 5), Thick Dashed
(5 <= |I | < 25), and Thick Solid (|I | >= 25).

In summary, the data behavior is not only common in the
family of rootkits or similar kinds, but also is available across
different kinds of rootkits. The signatures of these related
rootkits can be interchangeably used to detect one another.

5) Extracting Common Data Behavior Elements: In this
section we demonstrate the details of common rootkit attacks
which are systematically extracted based on similarities in
rootkit data behaviors. The data behavior elements (DBEs)
from the signatures of all experimented rootkits are ranked
with the order of the appearance in rootkits’ signatures (N).

The top DBEs are presented in Table VII after being classified
into several categories.

The first three columns present the information regarding
rootkits which share data behavior elements. The number N
and the names of rootkits whose signatures share a DBE are
listed. A short description of the DBE is provided in the next
column.

The next five columns present the contents of the DBEs:
the accessing code (c); the kind of memory access (o) such
as a read (R) or a write (W); the kind of accessed memory

RHEE et al.: DATA-CENTRIC OS KERNEL MALWARE CHARACTERIZATION 83

TABLE VII

TOP COMMON DATA BEHAVIOR ELEMENTS AMONG THE SIGNATURES OF 16 ROOTKITS

(m) such as a dynamic object (D) or a static object (S); the
accessed memory’s class (i), which is converted to a data type
for dynamic data or a variable name for static data; and the
accessed offset(s) (f). The offset is converted to a field name
if it corresponds to a specific field. If the accessed object is
the system-call table, a system-call number (#) is presented
by dividing the offset by the size of a pointer.

a) Attacks on process control blocks (PCBs): The first
category at the top of Table VII lists the data behavior that
targets a process control block. This is a core data structure
that maintains administrative information about processes.
Therefore, it is a major target of rootkits. Table VII shows
that seven rootkits read the process ID numbers in PCBs
during attacks. Several rootkits, such as the family of adore
rootkits, the kbdv3 rootkit, and the knark rootkit, provide
a back-door that permits the root privilege to an ordinary
user (privilege escalation). The hp and linuxfu rootkits
manipulate the pointers connecting PCBs. This behavior is
for hiding PCBs from the view of OS.

b) Attacks using /dev/kmem: The second category shows
the rootkit behavior that manipulates kernel memory by using
a memory device (e.g., /dev/kmem). This device allows a
user program to read and write kernel memory like a file
putting the kernel integrity at risk. The kernel runs com-
promised by fuuld, hide_lkm, SucKIT, and superkit
rootkits commonly show specific data behavior that the mem-
ory related kernel functions access file objects.

c) Attacks on the kernel module list: The next category
lists rootkit attacks on the kernel module list. The next
pointer field of module objects are written by the cleaner,
modhide, and modhide1 rootkits. The module objects
constitute the list of kernel modules and they are connected
by this next pointer. The rootkit attacks that hide a module
appear as direct manipulation of this field.

d) Attacks on static kernel objects: The last category
is the manipulation of static kernel objects. Several rootkits

Fig. 11. Performance Comparison of QEMU and DataGene (DataGene-
Map: Kernel Object Map, and DataGene-DBP: Data Behavior Profile).

hijack system-calls by replacing system-call table entries with
the addresses of malicious functions. This behavior is captured
by the manipulation of the system-call table by several code
sites, depending on the attack vector. In the case of driver-
based rootkits, such behavior is captured as access by the
generalized rootkit code, ε. The rootkits based on memory
devices (e.g., /dev/kmem) use legitimate kernel code for
manipulation (e.g., __generic_copy_from_user).

D. Performance Evaluation

Since DataGene primarily targets non-production environ-
ments such as malware analysis honeypots, performance is not
a primary concern. Still, we would like to provide a general
idea of the cost of data-centric malware characterization.

We evaluated the performance of DataGene compared to
unmodified QEMU. We performed five benchmarks : compil-
ing the kernel source code, nbench, bzip2, the find utility,
and UnixBench.

Fig. 11 presents the performance overhead of unmod-
ified QEMU, DataGene with the live kernel object
map (DataGene-Map), and DataGene with data behavior

84 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 1, JANUARY 2014

profile support (DataGene-DBP). All performance numbers
are normalized to the result of unmodified QEMU and a lower
number represents a faster execution.

In DataGene-Map, the VMM only intercedes when the
kernel executes kernel memory allocation and deallocation
code. Therefore it has a 1 ∼ 1.42x overhead. DataGene-DBP
intercedes on every kernel mode memory access to generate
a data behavior profile which is the summary of all kernel
mode memory access patterns. Therefore full DataGene has
a higher performance overhead of 1 ∼ 5.99x.

Kernel compilation, UnixBench, and find intensively use
system resources such as file systems, pipes, and processes.
Such activities invoke kernel services such as system calls
and page fault handling which indirectly triggers kernel-
level memory activities, which causes a overhead greater
than 5x. The nbench benchmark involves only user-level CPU
workload. Both DataGene-Map and DataGene-DBP do not
have additional overhead for this case. The bzip2 benchmark
involves both file system access and user-level computation.
Therefore it causes a lower overhead compared to kernel
compilation, UnixBench, and find.

VII. DISCUSSION

Since DataGene operates in the VMM beneath the hard-
ware interface, we assume that kernel malware cannot directly
access DataGene code or data. However, it can exhibit
potentially obfuscating behavior to confuse the view seen
by DataGene. Here we describe several scenarios in which
malware can affect DataGene and our counter-strategies to
detect them.

First, malware can implement its own custom memory allo-
cators to bypass DataGene observation. This attack behavior
can be detected based on the observation that any memory
allocator must use internal kernel data structures to man-
age memory regions or its memory may be accidentally
re-allocated by the legitimate memory allocator. Therefore,
we can detect unverified memory allocations by comparing
the resource usage described in the kernel data structures
with the amount of memory being tracked by DataGene.
Any deviance may indicate the presence of a custom memory
allocator.

In a different attack strategy, malware could manipulate
valid kernel control flow and jump into the body of a memory
allocator without entering the function from the beginning.
This behavior can be detected by extending DataGene to
verify that the function was entered properly. For example,
the VMM can set a flag when a memory allocation function
is entered and verify the flag before the function returns by
interceding before the return instruction(s) of the function. If
the flag was not set prior to the check, the VMM detects a
suspicious memory allocation.

DataGene is a signature-based approach that detects known
and unknown rootkits based on kernel data access patterns
similar to the signatures of previously analyzed rootkits. If
a rootkit’s attack behavior is not similar to any behavior in
existing signatures or it does not involve kernel data accesses,
such malware is out of coverage of DataGene since such
behavior does not match the DataGene’s signature.

Many existing rootkits that share common attack goals often
exhibit similar data access patterns because essentially these
malicious programs generate a false view by manipulating
legitimate kernel data structures relevant to the goals. Our
approach can detect rootkits by focusing on the common attack
targets described in the malware signatures even though such
rootkits have different functionalities.

Obfuscating data access patterns involves comparatively
more sophistication than code obfuscation because malware
is required to use alternate legal code to access kernel data
beyond the diversification of a malware’s own code patterns.
Such attack attempts can be detected by employing defense
approaches related to control flow integrity [1].

DataGene is mainly designed for kernel malware analysis
where a potential attack sample is analyzed to determine
whether it is malware based on its data behavior. In such an
analysis/classification environment with controlled configura-
tions, it is possible to produce no false alarms as presented in
our experiments. However, if this technique is further aimed
towards a production environment where a wider diversity of
workload could be generated, false alarms may occur due to
the fact that our technique is founded on dynamic execution.

Broadly, DataGene can be categorized as a behavior-
based approach due to its use of memory access behavior.
However, this approach is clearly distinguished from tra-
ditional behavior-based methods. Traditional code behavior-
based approaches use code sequences as patterns. Since code
execution follows a program control flow specified in the
program semantics, this approach is intuitively understandable.
Unlike the program control flow; however, data accesses are
not a single continuous flow. From the data point of view,
the accesses from various code can be interleaved making
a sequence not stable as a consistent pattern for a behavior
signature. DataGene solves this problem by using a different
aspect of program behavior. Instead of simply using the code
to create malware signatures, we model data accesses with two
entities: the subject (the accessing code) and the object (the
accessed data). This allows us to determine the patterns of
relationship between subjects and objects, and hence provides
more robust signatures.

Regarding DataGene’s effectiveness when compared to
code behavior-based approaches, there are more constraints
a malware author must consider when designing an evasion
technique. For example, one evasion technique for a standard
code behavior-based approach would be to find a functionally
similar code sequence from the existing code and use that
instead of including your own code. Return-oriented and jump-
oriented programming would be such examples. In contrast,
data access behavior has multiple dimensions to consider:
accessing code, specific field of data, and the source of
data (allocation). First of all, regarding the accessing code,
our approach has an advantage since DataGene normal-
izes accessing code to detect malware variants as shown in
Section IV. Second, specific fields being accessed should be
preserved for the data object to be valid so that legitimate
code can also properly use them. Third, using a custom
allocator could be a feasible attack, but such an unknown
memory allocation would be trackable by the OS as previously

RHEE et al.: DATA-CENTRIC OS KERNEL MALWARE CHARACTERIZATION 85

discussed. By checking the allocation code of data objects in
kernel data structures, foreign objects could be detected.

Sections VI-B and VI-C, for instance, present hide_lkm
and fuuld which could not be detected by existing code-
based approaches because they perform attacks on data
by utilizing legitimate code. These rootkits highlight the
unique detection capability of the data-centric malware defense
approach.

VIII. RELATED WORK

DataGene introduces a new approach that generates the
signature of kernel malware by using their unique data access
patterns. There are several approaches related to DataGene
in the area of malware analysis and detection.

Malware Defense Based on Code Behavior. There has
been a variety of approaches which characterizes malware
behavior by using its control flow (e.g., instruction sequences
and system-call graphs) [3], [4], [12], [25], [26], and such
approaches can face the following challenges.

First, malware can obfuscate its execution to elude the code
behavior-based malware analyzers. Several papers describe
obfuscating techniques such as dead code insertion, code
transformation, and instruction substitution [11], [13], [47],
[53], and new techniques also have been introduced [47]. Most
such techniques focus on the control dependency. Approaches
characterizing malware behavior using its control flow can
face an arms-race with anti-analysis schemes such as these
obfuscation techniques.

Second, malware control flow can vary at runtime and the
detection mechanism using malware code behavior should be
able to handle such variations. In [3], the authors describe
several cases where the system-call trace can be inconsistent,
such as the expiration of timeout and the delivery of signals.
Their system handles this problem by using a flexible matching
algorithm.

Compared to these approaches, DataGene uses a more gen-
eral characteristic, the pattern of kernel memory accesses, to
characterize malware behavior. Because this approach avoids
using control dependency in malware behavior, it can be toler-
ant to obfuscation techniques and variations in the malware’s
control flow. Moreover, it has an advantage that it can match
common behavior across malware.

Kernel Malware Defense Based on Code Integrity.
Another approach for malware defense is based on code
integrity [42], [45]. This approach allows only authorized
kernel code to execute: the kernel text and white listed kernel
modules. This approach is effective in preventing driver-based
kernel rootkits (i.e., kernel modules in Linux) that introduce
their own code. However, some advanced rootkits operate
without explicit malicious code by using techniques such as
kernel memory devices (e.g., /dev/kmem) or return-oriented
programming [23]; and this approach cannot handle such
cases. DataGene uses unique data access patterns of kernel
rootkits regardless of their attack vectors. Thus it can handle
these challenging rootkits based on their unique data behavior.

This approach also determines benign or malicious
driver code based on policies (e.g., a white list and

code-signing [30]). Such policies often are not based on
systematic examination of code behavior, rather they are
based on trusting the OS developers or vendors. This kind of
classification of code does not guarantee safety from undesired
effects. For instance, as seen in Sony’s rootkit incident [32],
the code from third party vendors may include potentially
malicious code.

Kernel Rootkit Profilers. Kernel rootkit profilers [44], [54]
provide a variety of aspects of rootkit behavior by tracking
the memory access targets of malware code or examining
user space impact. The profiling result of these approaches
is specific to the analyzed malware. In contrast, DataGene
uses the generalized memory access patterns of malware
and explores common characteristics across multiple rootkits.
Therefore, it has the potential to detect rootkit variants or
unknown rootkits that are similar in data behavior to current
rootkits.

These profilers can be used as a component of DataGene in
place of the kernel object mapper. Such an implementation can
have the following limitations, however. First, some rootkits
have attack mechanisms (e.g., using registers) that are resistant
to these rootkit profilers as shown in [40]. Second, these
profilers rely on code integrity-based approach [42], [45] to
recognize malware code. Thus, the scope of malware to be
analyzed is limited to the rootkits that violate kernel code
integrity.

Signatures Based on Data Structures. Laika [15] can
detect malware by determining data structures and classifying
their unique patterns for malware. This approach is effective
for user space malware (e.g., botnet programs), which have
their own memory space. However, kernel malware code and
data resides in kernel memory together with legitimate kernel
code and data. In addition, kernel malware mainly targets
legitimate kernel data and uses very little of its own data.
Therefore, kernel malware may have a relatively weaker set
of data information to determine the malware’s characteristics
compared to malware based on a user process.

Several approaches [19], [28] can detect kernel data struc-
tures based on data invariant properties such as data values
and pointer connections. However, if a data structure is simple,
such as a string buffer that can have arbitrary values without
any pointers, these signature approaches cannot be applied. In
comparison, DataGene does not have any restrictions on the
coverage of kernel data structures.

IX. CONCLUSION

In this paper, we present DataGene, a new OS malware
characterization system based on data-centric properties. The
system works by building a live kernel object map which
can reliably detect data hiding rootkit attacks due to its un-
tampered view of kernel objects. The map is then used in
combination with a monitoring agent to track memory access
patterns on kernel data objects. Based on these access patterns,
we propose a new malware signature approach using consistent
patterns specific to malware attacks. We demonstrate this
scheme is not only effective at detecting previously evaluated
rootkits, but also their variants which often share similar

86 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 1, JANUARY 2014

memory access patterns. Our evaluation on real world rootkits
shows that data-centric malware characterization is highly
effective. It could be an effective solution that complements
code-centric approaches in the kernel malware defense.

REFERENCES

[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-flow
integrity: Principles, implementations, and applications,” in Proc. 12th
ACM Conf. CCS, Nov. 2005, pp. 1–4.

[2] A. Baliga, V. Ganapathy, and L. Iftode, “Automatic inference and
enforcement of kernel data structure invariants,” in Proc. 24th ACSAC,
Dec. 2008, pp. 77–86.

[3] D. Balzarotti, M. Cova, C. Karlberger, C. Kruegel, E. Kirda, and
G. Vigna, “Efficient detection of split personalities in malware,” in Proc.
17th Annu. NDSS, Feb. 2010, pp. 1–17.

[4] U. Bayer, P. Milani Comparetti, C. Hlauscheck, C. Kruegel, and
E. Kirda, “Scalable, behavior-based malware clustering,” in Proc. 16th
Symp. NDSS, Feb. 2009, pp. 1–26.

[5] F. Bellard, “QEMU: A fast and portable dynamic translator,” in Proc.
USENIX Annu. Tech. Conf., Mar. 2005, pp. 41–46.

[6] E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When good
instructions go bad: Generalizing return-oriented programming to
RISC,” in Proc. 15th ACM Conf. CCS, Oct. 2008, pp. 27–38.

[7] J. Butler. (2012, Dec. 12). DKOM (Direct Kernel Object Manipu-
lation) [Online]. Available: http://www.blackhat.com/presentations/win-
usa-04/bh-win-04-butler.pdf

[8] (2010). Bypassing Non-Executable-Stack During Exploita-
tion Using Return-to-Libc [Online]. Available: http://www.
citeulike.org/user/rvermeulen/author/C0ntex

[9] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and X. Jiang, “Mapping
kernel objects to enable systematic integrity checking,” in Proc. 16th
ACM Conf. CCS, Nov. 2009, pp. 555–565.

[10] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie, “DROP:
Detecting return-oriented programming malicious code,” in Proc. 5th
ICISS, Dec. 2009, pp. 163–177.

[11] M. Christodorescu and S. Jha, “Static analysis of executables to detect
malicious patterns,” in Proc. 12th USENIX Sec. Symp., Aug. 2003,
pp. 169–186.

[12] M. Christodorescu, C. Kruegel, and S. Jha, “Mining specifications of
malicious behavior,” in Proc. 6th Joint Meeting ESEC/FSE, Sep. 2007,
pp. 1–10.

[13] C. Collberg, C. Thomborson, and D. Low, “Manufacturing cheap,
resilient, and stealthy opaque constructs,” in Proc. 25th ACM SIGPLAN-
SIGACT Symp. POPL, Jan. 1998, pp. 184–196.

[14] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,
et al., “StackGuard: Automatic adaptive detection and prevention of
buffer-overflow attacks,” in Proc. 7th USENIX Sec. Conf., Jan. 1998,
pp. 63–78.

[15] A. Cozzie, F. Stratton, H. Xue, and S. T. King, “Digging for data
structures,” in Proc. 8th USENIX Symp. OSDI, 2008, pp. 1–16.

[16] L. Davi, A.-R. Sadeghi, and M. Winandy, “Dynamic integrity measure-
ment and attestation: Towards defense against return-oriented program-
ming attacks,” in Proc. ACM Workshop STC, 2009, pp. 49–54.

[17] L. Davi, A.-R. Sadeghi, and M. Winandy, “ROPdefender: A detection
tool to defend against return-oriented programming attacks,” Syst. Sec.
Lab., Tech. Univ. Darmstadt, Darmstadt, Germany, Tech. Rep. HGI-TR-
2010-001, 2010.

[18] (2001, Dec. 28). Linux on-the-Fly Kernel Patching Without LKM
[Online]. Available: http://www.phrack.com/issues.html?issue=58&id=7

[19] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin, “Robust
signatures for kernel data structures,” in Proc. 16th ACM Conf. CCS,
2009, pp. 1–12.

[20] H. Etoh. (2011, May). GCC Extension for Protecting Applica-
tions From Stack-Smashing Attacks [Online]. Available: http://www.trl.
ibm.com/projects/security/ssp/

[21] A. Francillon, D. Perito, and C. Castelluccia, “Defending embedded
systems against control flow attacks,” in Proc. 1st ACM Workshop Secure
Execution Untrusted Code, Nov. 2009, pp. 19–26.

[22] Free Software Foundation, Boston, MA, USA. (2013). The GNU Com-
piler Collection [Online]. Available: http://gcc.gnu.org/

[23] R. Hund, T. Holz, and F. C. Freiling, “Return-oriented rootkits: Bypass-
ing kernel code integrity protection mechanisms,” in Proc. 18th USENIX
Sec. Symp., 2009, pp. 383–398.

[24] Innotek, Singapore. (2011, May). Virtualbox [Online]. Available:
http://www.virtualbox.org/

[25] C. Kolbitsch, P. Milani Comparetti, C. Kruegel, E. Kirda, X. Zhou, and
X. Wang, “Effective and efficient malware detection at the end host,”
in Proc. 18th USENIX Sec. Symp., Aug. 2009, pp. 351–366.

[26] C. Kruegel, W. Robertson, and G. Vigna, “Detecting kernel-level rootkits
through binary analysis,” in Proc. 20th ACSAC, Dec. 2004, pp. 91–100.

[27] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram, “Defeating return-
oriented rootkits with ‘return-less’ kernels,” in Proc. 5th ACM Eur. Conf.
Comput. Syst., Apr. 2010, pp. 1–14.

[28] Z. Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang, “SigGraph: Brute
force scanning of kernel data structure instances using graph-based
signatures,” in Proc. 18th Annu. NDSS, Feb. 2011, pp. 1–18.

[29] Z. Lin, R. D. Riley, and D. Xu, “Polymorphing software by randomizing
data structure layout,” in Proc. 6th Int. Conf. DIMVA, May 2009,
pp. 107–126.

[30] Microsoft, Redmond, WA, USA. (2007, Mar. 21). Driver Sign-
ing Requirements for Windows [Online]. Available: http://www.
microsoft.com/whdc/driver/install/drvsign/default.mspx

[31] MITRE Corporation, Bedford, MA, USA. (2013, Sep. 5). Common
Vulnerabilities and Exposures [Online]. Available: http://cve.mitre.org/

[32] D. K. Mulligan and A. K. Perzanowski. (2007). The magnif-
icence of the disaster: Reconstructing the Sony BMG rootkit
incident. 22 Berkeley Tech. L.J. 1157 [Online]. Available:
http://scholarship.law.berkeley.edu/facpubs/2130/

[33] Nergal, “The advanced return-into-lib(c) exploits: PaX case study,”
Phrack, vol. 11, no. 58, article 4, Dec. 2001.

[34] Parallels, Inc., Renton, WA, USA. (2013). Parallels [Online]. Available:
http://www.parallels.com/

[35] N. L. Petroni, T. Fraser, J. Molina, and W. A. Arbaugh, “Copilot—
A coprocessor-based kernel runtime integrity monitor,” in Proc. 13th
USENIX Sec. Symp., Aug. 2004, pp. 179–194.

[36] N. L. Petroni and M. Hicks, “Automated detection of persistent ker-
nel control-flow attacks,” in Proc. 14th ACM Conf. CCS, Oct. 2007,
pp. 103–115.

[37] N. L. Petroni, A. Walters, T. Fraser, and W. A. Arbaugh, “FATKit:
A framework for the extraction and analysis of digital forensic data from
volatile system memory,” Digit. Invest. J., vol. 3, no. 4, pp. 197–210,
Dec. 2006.

[38] N. L. Petroni, T. Fraser, A. Walters, and W. A. Arbaugh, “An architecture
for specification-based detection of semantic integrity violations in
kernel dynamic data,” in Proc. 15th Conf. USENIX Sec. Symp., 2006,
pp. 289–304.

[39] J. Rhee, R. Riley, D. Xu, and X. Jiang, “Kernel malware analysis with
un-tampered and temporal views of dynamic kernel memory,” in Proc.
13th Int. Symp. RAID, Sep. 2010, pp. 178–197.

[40] J. Rhee and D. Xu, “LiveDM: Temporal mapping of dynamic kernel
memory for dynamic kernel malware analysis and debugging,” CERIAS,
West Lafayette, IN, USA, Tech. Rep. 2010-02, 2010.

[41] R. Riley, “A framework for prototyping and testing data-only rootkit
attacks,” Comput. Sec., vol. 37, pp. 62–71, Sep. 2013.

[42] R. Riley, X. Jiang, and D. Xu, “Guest-transparent prevention of kernel
rootkits with VMM-based memory shadowing,” in Proc. 11th Int. Symp.
RAID, 2008, pp. 1–20.

[43] R. Riley, X. Jiang, and D. Xu, “An architectural approach to preventing
code injection attacks,” IEEE Trans. Dependable Secure Comput., vol. 7,
no. 4, pp. 351–365, Dec. 2009.

[44] R. Riley, X. Jiang, and D. Xu, “Multi-aspect profiling of kernel rootkit
behavior,” in Proc. 4th ACM Eur. Conf. Comput. Syst., Apr. 2009,
pp. 47–60.

[45] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “SecVisor: A tiny hypervisor
to provide lifetime kernel code integrity for commodity OSes,” in Proc.
21st SOSP, Oct. 2007, pp. 1–17.

[46] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proc. 14th ACM Conf. CCS,
2007, pp. 1–30.

[47] M. Sharif, A. Lanzi, J. Giffin, and W. Lee, “Impeding malware analysis
using conditional code obfuscation,” in Proc. 15th Annu. NDSS, 2008,
pp. 65–88.

[48] M. Sharif, A. Lanzi, J. Giffin, and W. Lee, “Automatic reverse engi-
neering of malware emulators,” in Proc. 30th IEEE Symp. Sec. Privacy,
Mar. 2009, pp. 1–16.

[49] (2006). The Month of Kernel Bugs (MoKB) Archive [Online]. Available:
http://projects.info-pull.com/mokb/

[50] US-CERT, Washington, DC, USA. (2013). US-CERT Vulnerability Notes
Database [Online]. Available: http://www.kb.cert.org/vuls/

[51] (2011, May). Stack Shield: A ‘Stack Smashing’ Technique Pro-
tection Tool for Linux [Online]. Available: http://www.angelfire.
com/sk/stackshield/info.html

RHEE et al.: DATA-CENTRIC OS KERNEL MALWARE CHARACTERIZATION 87

[52] (2013, Sep.). VMware Workstation: Run Multiple OS, Linux,
Windows 8 & More [Online]. Available: http://www.vmware.
com/products/workstation/

[53] C. Wang, J. Hill, J. C. Knight, and J. W. Davidson, “Protection of
software-based survivability mechanisms,” in Proc. Int. Conf. DSN,
Jul. 2001, pp. 193–202.

[54] C. Xuan, J. A. Copeland, and R. A. Beyah, “Toward revealing kernel
malware behavior in virtual execution environments,” in Proc. 12th Int.
Symp. RAID, 2009, pp. 304–325.

Junghwan Rhee (M’11) received the B.S. degree
from Korea University, the master’s degree from
the University of Texas at Austin, and the Ph.D.
degree in computer science from Purdue University
in 2011. He is a Researcher at NEC Laboratories
America, Princeton, NJ, USA. His research interests
include malware analysis, system security, software
debugging, and cloud computing.

Ryan Riley (M’13) received the B.S. degree in
computer engineering and the Ph.D. degree in com-
puter science in 2009 from Purdue University. He
is an Assistant Professor of computer science with
Qatar University, Doha. His current research inter-
ests include virtualization technologies, malware,
and operating system security.

Zhiqiang Lin (M’12) is an Assistant Professor with
the Computer Science Department, University of
Texas at Dallas. He received the Ph.D. degree from
Purdue University in 2011. His current research
focuses on system and software security with an
emphasis on binary code reverse engineering, vul-
nerability discovery, malicious code analysis, and
OS kernel protection.

Xuxian Jiang is an Associate Professor with the
Computer Science Department and a Core Member
of the Cyber Defense Laboratory, North Carolina
State University. He received the Ph.D. degree in
computer science from Purdue University in 2006.
His research interests are mainly in smartphones,
hypervisors, and malware defense.

Dongyan Xu (M’03) received the B.S. degree from
Zhongshan (Sun Yat-Sen) University in 1994 and
the Ph.D. degree in computer science from the
University of Illinois at Urbana-Champaign in 2001.
He is a Professor of computer science with Purdue
University. His current research interests include vir-
tualization technologies, computer malware defense,
and cloud computing. He is a recipient of the U.S.
National Science Foundation CAREER Award.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

