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Abstract

We design a Tree-based Forward Digest Protocol (TFDP) to verify data integrity in distributed media
streaming for content distribution. Several challenges arise, including the timing constraint of streaming ses-
sions, the involvement of multiple senders, and the untrustworthiness of these senders. A comprehensive com-
parison is presented on the performance of existing protocols and TFDP, with respect to communication and
computation overhead. Both simulation and Internet-based experimental results are presented to demonstrate
the effectiveness of TFDP.
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I. INTRODUCTION

Consider the following media data distribution scenario: a source content server called “Hollywood”

first starts streaming a movie to its clients. When sufficient number of clients have been served and have

agreed to serve as re-distributors, they will begin streaming the movie to other clients in the system. The

distribution is supervised by the server: it authenticates requesting clients and gives them credentials

to be served by the supplying clients, who will perform distributed media streaming only if proper

credentials are presented. One key property of such distributed media streaming is that each streaming

session involves multiple supplying clients, due to the limited bandwidth contributed to the session by

each of them. We note that, unlike traditional file sharing systems, a media streaming session allows

continuous playback of media data during the session.

In such a “many-to-one” media streaming session, an untrustworthy supplying client (or “supplier”)

may corrupt any block of the media data. The verification of media data integrity thus becomes a

critical task and poses a number of challenges. First, unlike authentication for multicast streaming [1],

[11], [8], the suppliers cannot be assumed as trusted. In distributed media streaming, packets signed by
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one client may not be acceptable to other clients. Therefore, a client needs a point of reference to verify

the media data it receives. Second, due to the real-time constraint of media streaming, data integrity

verification needs to be performed in real-time. Third, the objective of verifying data integrity is not

only to verify that the data are not corrupted, but also to validate that the media file is really what the

client has requested. We note that other security problems exist in distributed media streaming, such as

how to prevent the disclosure of copyright-protected media data to unauthorized parties. These issues

are outside the scope of this paper.

By presenting a comprehensive survey of existing protocols for data integrity verification, we show

that they are either inapplicable or too expensive for distributed media streaming. We adopt the method

of message digest, and propose a Tree-based Forward Digest Protocol (TFDP). TFDP uses Merkle

tree [7], and distributes data digest delivery overhead over the duration of a streaming session. The

protocol works well with unreliable transport protocols. This is achieved by using Forward Error

Correction (FEC) codes, especially for data digests. Our experiments show that TFDP is able to verify

media data integrity with low communication and computation overhead.

TFDP is also applicable to Bittorrent-like file sharing applications that adopt the “multiple senders

and single receiver” model similar to distributed media streaming. In addition, users are required

to perform simultaneous uploads and downloads. By using TFDP, a receiver can verify data received

from multiple suppliers block by block during a download session, and thus, it can become an uploading

supplier at the same time.

The rest of the paper is organized as follows: Section II surveys related work. Section III presents

TFDP. A comprehensive comparison among different solutions is presented in Section IV. Section V

presents experimental results. Section VI concludes this paper.

II. RELATED WORK

To the best of our knowledge, there has been no prior study on data integrity verification for many-

to-one distributed media streaming. In this section, we survey current related solutions and identify
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their limitations in supporting distributed media streaming.

Digital signature. A straightforward method to verify data integrity is to let the source server sign

every packet (packet indicates the minimum unit of media transport, not an IP packet) or the hash of

each packet with its private key using digital signature. A client can then verify the signed data using

the server’s public key. The RSA signature [14] verification has high computation overhead and is not

suitable for real-time applications. Unlike RSA, one-time signature schemes such as [5], [9], [13] incur

low verification overhead and latency. These schemes are usually used to sign multicast or broadcast

streams. Rohatgi [15] proposed a k-time signature scheme which is more efficient than the one-time

signature schemes. Still, the scheme generates 300 bytes for each signature.

Signature chain. Gennaro and Rohatgi [2] introduced techniques to sign off-line and on-line digital

streams. The first packet of an off-line stream is signed and the hash of each packet is embedded in

the next packet. The on-line scheme signs the initial packet and embeds the public key of a one-time

signature in each packet, which is used to sign the subsequent packet. Although an elegant solution, it

does not tolerate packet losses and it incurs high communication overhead.

Perrig et al. [11], [10] proposed TESLA and EMSS for efficient and secure multicast. TESLA

embeds the signature of packet pi and the key to verify packet pi−1 in packet pi. The key of packet pi

is sent in packet pi+1. The adversary will see the key but it is too late to forge the signature. TESLA

requires strict ordering of packets by the sender, which cannot be guaranteed in distributed many-to-

one streaming. Furthermore, if the supplying clients generate keys and sign the digests as in TESLA,

they may not be acceptable to other clients because clients are not assumed to be trustworthy.

Signature tree. Wong and Lam [16] studied data authenticity and integrity for lossy multicast

streams. They proposed using Merkle signature tree to sign multicast streams. In their scheme, the

root is signed to amortize one signature over multiple messages. Each packet contains the digests of all

nodes necessary to compute the digest of the root and the signature of the root. As a result, the space

requirement is rather high: 200 bytes in each packet using 1024-bit RSA for a tree of 16 packets. The
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protocol we propose also uses Merkle tree. However, we significantly reduce the overhead by sending

the digests of one subtree before sending any data. Thus, a packet does not need to carry all the digests

that are required to verify its integrity.

Park et al. [8] proposed SAIDA that leverages erasure codes to amortize a single signature operation

over multiple packets. In SAIDA, a block—a series of contiguous packets—of a packets carries the

encoded digests and signature of the block. The signature and digests are recoverable, if the receiver

gets any b ≤ a packets. This digest encoding is robust against bursty packet losses to a certain level.

To reduce overhead, FEC is used to encode only digests, not data.

Both signature tree and SAIDA are designed for multicast where the sender signs packets and the

receivers trust the sender. In our protocol, a receiver does not have to trust the suppliers. Unlike

signature tree and SAIDA, we choose not to use digital signature to further reduce overhead.

Erasure codes and homomorphic hash function. Krohn et al. [4] use homomorphic hash function

to verify erasure codes during a many-to-one bulk file transfer session. A client can verify each block

on the fly while downloading a large file such as Linux ISO from multiple suppliers. Thus, the client

does not have to wait until the end of the transfer to verify the entire file. While effective for file

downloading, this verification scheme is not applicable to real-time media streaming because the client

has to wait until the end of the file transfer to decode all blocks.

III. PROTOCOL DESCRIPTION

In our protocol, we assume the existence of a trusted authority denoted as the Authentication Server

(or “server”) S0. To request a distributed streaming session, a client will first authenticate itself with S0

and obtain a point of reference to be used for data integrity verification during the streaming session.

In our protocol, the reference data is only 20 bytes long for each requesting client. We first define the

distributed media streaming model and then describe our protocol.
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Streaming model. Client P0 requests a media streaming session to be served by a set of supplying

clients P = {P1, P2, . . . , Pm}. The set of suppliers is determined by a certain lookup and selection

mechanism. The requested media file has a size of F bytes and is divided into a set of M blocks

B = {b1, b2, . . . , bM}. Each block consists of l packets. We denote a block as bi = {pi1, pi2, . . . , pil}

where pij is the j-th packet of i-th block. Finally, a sequence of blocks is referred to as a group. During

a streaming session, different suppliers transmit different packets of each block to the client, which will

re-construct the block. Details on packet assignment to suppliers can be found in [3].

Tree-based Forward Digest Protocol (TFDP). As in Tree Chaining proposed by Wong and Lam for

multicast flows [16], we use Merkle tree to design TFDP. Merkle tree [7] generates one-time signature

using one-way function tree and hash function. Each message to be signed corresponds to a node in the

tree. Each node consists of verification parameters that are used to sign a message and to authenticate

the verification parameters of subsequent nodes. The root of the tree is the public key for signature

verification. We note that the idea of constructing one-way function tree has also been applied to key

management in secure group communications [12], [6]. In fact, such tree construction is common in

a number of application scenarios, but for different purposes: Rafaeli and Hutchison [12] as well as

McGrew and Sherman [6] use it for key management, Merkle [7] uses it to generate signatures, while

we (TFDP) as well as Wong and Lam (Tree Chaining) use it to authenticate data streams.

In Tree Chaining, a file is divided into a number of blocks, with each block containing a set of

packets. A signature tree is then constructed for each block with all packets of the block as leaves. The

root of the tree is signed by a digital signature. In TFDP, however, we do not sign the root of every

subtree that belongs to each block. Instead, we only compute digests to build a Merkle tree. The main

difference between Tree Chaining and TFDP is that the former is designed for multicast flows (one-to-

many) where each packet carries the necessary information for its authentication and thus incurs high

overhead, while the latter is designed for many-to-one streaming where the overhead is amortized over

a group of data blocks.
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In TFDP, server S0 generates the Merkle tree for a media file. The leaves of the tree are packets in

the file. Each non-leaf node of the tree represents the digest of its children. The server enforces that a

supplier keeps a minimum number of digests, so that the overhead of sending digests is amortized over

a group of data blocks. During a streaming session, Nmin digests are transmitted before transmitting

the media data blocks. A higher Nmin will reduce the block verification overhead. However, it will

incur longer delay in the streaming session.
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1615141312111098765431 2

H4H3H2H1

P1 P3P2

H7H5

3126252221191817 3230292827242320
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Fig. 1. A Merkle tree with 32 packets that belong to 8 blocks. P1, P2, and P3 are suppliers. P1 will provide digests H1, H2, H10, and

H14 that are required to verify the first two blocks. Similarly, P2 will provide digests for the next four blocks and P3 will provide digests

for the last two blocks.

Figure 1 shows a simple example with 32 packets that belong to 8 blocks. Each non-leaf node Hi

represents the digest of its children. P1, P2, and P3 are suppliers involved in the same streaming session.

Let P1 be assigned to provide digests for the first two blocks, P2 for the next four blocks, and P3 for

the last two blocks. In this example, the digests provided by P1 are H1, H2, H10, and H14. P0 then

computes H9 from H1 and H2, H13 from H9 and H10, and H15 from H13 and H14, and compares H15

against the digest supplied by server S0. If there is a match, the belief in H15 is transferred to all digests

provided by P1 because of the property of collision-free hash function. During the streaming session,

media data sent by the three suppliers can be verified block by block using H1 and H2 provided by P1.

P2 and P3 operate in a similar fashion. We now describe the steps of TFDP:

• Step 1: Client P0 authenticates itself with server S0 by sending ES0
(DP0

(M0)), where the request

message M0 is signed by P0 for non-repudiation. Then, it is encrypted with the public key of S0.
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• Step 2: The server sends EP0
(DS0

(Hroot, T )) to P0, where the digest of the root of the Merkle tree

is Hroot which is encrypted with the public key of P0 and signed by the private key of the server.

T is a timestamped ticket that needs to be presented to each supplier to prevent a user from using

the same ticket beyond a specific time period.

• Step 3: P0 tells supplier Pi in P to provide the digests needed to verify Nmin blocks. If more than

one supplier has all the digests, P0 randomly selects one of them.

• Step 4: Supplier Pi provides to P0 all required digests to verify Nmin data blocks.

• Step 5: If the root digest computed by P0 matches the root digest obtained from the server, P0 will

trust the digests provided by Pi and use them for data integrity verification during the streaming

session. Otherwise, the protocol goes to Step 3 and obtains digests from a different supplier.

• Step 6: P0 signals the suppliers in P to send media data.

• Step 7: The suppliers start the streaming session. Using the digests obtained in Step 4, P0 verifies

every media data block re-constructed from packets transmitted by the suppliers. Once the stream-

ing of Nmin blocks is done, the protocol goes to Step 3 to repeat the process for the next Nmin

blocks.

Figure 1 is a binary tree if we exclude the leaves. Especially, a parent node of the leaves represents

the digest of the block to which the packets belong. The size of a block needs to be chosen carefully to

ensure that it does not introduce delay to collect all packets in it. If the tree is a d-ary tree, the height

of the tree will be logd
F
l
, where F is the size of the media file. The number of extra digests required

to verify each block depends on the height of the tree. TFDP requires (d − 1)
⌈

logd
F

Nminl

⌉

digests to

verify Nmin blocks. It can be easily shown that the number of extra digests to verify Nmin blocks is

minimized when d = 2.
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IV. COMPARISON AND EVALUATION

In [8], the authors show that SAIDA performs better than both EMSS [11] and Tree Chaining [16]

in tolerating bursty packet losses. Therefore, we only compare TFDP with SAIDA and Tree Chaining.

We compare the three protocols in terms of communication and computation overhead. The commu-

nication overhead is the extra bytes per packet client P0 needs to receive from the suppliers and S0

for data integrity verification. The computation overhead at P0 is due to hash computation, signature

verification, and FEC decoding.

Communication overhead. Tree Chaining requires P0 to obtain the public key (usually 128 bytes

long) of the server to verify the signature. P0 needs to receive l log l digests for each block, where l is

the size of a block in number of packets. Each packet carries one 1024-bit signature. Thus, for each

block, P0 needs to receive 20l log l + 128l bytes. TFDP requires only one digest (20 bytes) from the

server. However, it needs 1 + 1
Nmin

log( M
Nmin

) extra digests for each block. The digest of each block is

encoded using FEC. We define α, the overhead factor of FEC, as:

α =
total packets sent per block

packets required to re-construct the block
. (1)

Thus, the total communication overhead of TFDP is 20(lα + 1 + 1
Nmin

log( M
Nmin

)) bytes per block.

SAIDA requires one signature per block, and it uses FEC. Thus, it incurs (20l+128)α bytes of overhead

for each block. Table I summarizes the comparison results.

TABLE I

COMPARISON OF DATA INTEGRITY VERIFICATION PROTOCOLS. M IS THE TOTAL NUMBER OF BLOCKS OF A FILE, l IS THE SIZE OF

ONE BLOCK IN NUMBER OF PACKETS, α IS THE FEC OVERHEAD FACTOR.

Allow Overhead: Overhead: # of hash # of hash Sign by Verify FEC
packet server →P0 P→P0 computation computation server signature decode
loss (Bytes) (Bytes) by server by P0 by P0 by P0

Tree Chaining YES 0 20Ml log l + 128Ml M(2l − 1) M(2l − 1) M M —
SAIDA YES 0 (20l + 128)Mα M(l + 1) M(l + 1) M M M
TFDP YES 20 20Mlα + 20[M+ 2M − 1 Ml + M/Nmin[(Nmin — — M

M

Nmin

log( M

Nmin

)] −1) + log(M/Nmin)]

We demonstrate the communication overhead of the three protocols using the trace of The Matrix
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movie. Figure 2(a) shows that the communication overhead of SAIDA and TFDP is both low, because

FEC is used to encode digests and signatures. On the other hand, Tree Chaining does not use FEC and

incurs much higher communication overhead (208 bytes per packet, for l=16, not shown in Figure 2(a)).

TFDP incurs less overhead than SAIDA and Tree Chaining because TFDP verifies digests of every

Nmin data blocks as a group, which reduces the height of the Merkle tree from log M to log M
Nmin

. The

difference in communication overhead between TFDP and SAIDA narrows when the block size gets

larger. However, a large block size can cause delay during a streaming session, because the client would

need all packets in a block before it can re-construct the block.
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Fig. 2. Overhead of Tree Chaining, TFDP, and SAIDA for The Matrix movie (size: 1.3 GB). The communication overhead is per packet

while the computation overhead is for the entire file. Tree Chaining has 208 bytes overhead per packet (not shown in the figure).

Computation overhead. In Tree Chaining, M subtrees are created for M blocks, and each tree

requires 2l − 1 hash computation. SAIDA needs to decode digests for each packet and verify one

signature for each block. Thus, the computation overhead of SAIDA is due to M(l + 1) digests and M

signatures. TFDP needs to compute extra digests for every Nmin blocks. The number of extra digests is

M/Nmin[(Nmin − 1) + log(M/Nmin)], and every block is verified during the streaming session. Thus,

the total client-side computation overhead of TFDP is Ml + M/Nmin[(Nmin − 1) + log(M/Nmin)].

We use openSSL crypto library to calculate SHA-1 hash, RSA signature, and RSA verification.

Cauchy-based Reed-Solomon code is used to encode digests. In Figure 2(b), we compare the compu-

tation overhead of the protocols using The Matrix movie. The computation overhead of Tree Chaining

can be reduced by caching digests carried by previous packets. The cached digests are used to verify
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upcoming packets of a block. SAIDA incurs higher computation overhead than TFDP because SAIDA

has to verify the signature of every block, which is more computation-intensive than verifying digests.

V. STREAMING EXPERIMENT RESULTS

We have conducted both streaming simulations and real-world experiments. In our simulations, one

client requests and receives streaming media from five suppliers. Like in SAIDA, we use the two-state

Markov loss model to introduce bursty packet losses. The parameters of the Markov loss model are

Pr{no loss}=0.95 and Pr{loss}=0.05. The model characterizes the loss of every underlying network

link connecting the five suppliers and the client. We define data block verification rate as the fraction

of data blocks that can be verified during a certain time interval.

The simulation results of SAIDA and TFDP are shown in Figure 3. In both protocols, the digests and

signatures are FEC-encoded to tolerate 37.5% packet loss rate. We observe that due to bursty packet

losses, some blocks cannot be verified. The reason why TFDP performs better is that TFDP incurs

slightly less communication overhead than SAIDA, which requires RSA signature for each block.
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Fig. 3. Data block verification rate of SAIDA and TFDP (simulations).

We have also developed a distributed media streaming system called PROMISE [3]. The system

monitors network dynamics, quality of connections from multiple suppliers to a receiver, as well as

supplier availability, to maintain full media playback quality on the client side. Particularly, the set of

suppliers in a streaming session may change dynamically, so that the fluctuation of network and supplier

conditions will not affect the client-side aggregated media streaming rate. TFDP can be integrated
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into PROMISE. We evaluate TFDP by conducting experiments in the wide-area PlanetLab testbed

(www.planet-lab.org).
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Fig. 4. Data block verification rate of TFDP (PlanetLab-based experiments).

Figure 4 shows the results from two streaming sessions using TFDP in PlanetLab. Both sessions can

tolerate up to 20% packet loss due to FEC. In Session 1, TFDP is able to verify almost all the blocks

during the first 300 seconds of the session. At the 50th second, the network loss rate goes up to 40%

and the block verification rate temporarily drops to 0.9. Session 2 experiences a few more glitches

than Session 1. Still, in both sessions, the overall block verification rate achieved by TFDP remains

high. The main reason is that PROMISE has dynamic supplier switching capability. The suppliers in

a streaming session can be dynamically replaced when significant packet loss is experienced, in order

to avoid the congested network links. Our experiments show that TFDP works well in the event of a

dynamic supplier switch.

VI. CONCLUSION

We study the problem of data integrity verification in distributed media streaming sessions. We pro-

pose a simple and efficient Tree-based Forward Digest Protocol (TFDP) as our solution. TFDP incurs

low communication and computation overhead, compared with existing data integrity verification pro-

tocols. More importantly, TFDP relieves the source server from supplying the digest of every data block

in a streaming session. Instead, this load is distributed among the multiple supplying clients serving

in the streaming session, enabling data integrity verification even if the suppliers are not trustworthy.
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Both simulation and Internet experiments demonstrate the effectiveness and practicality of TFDP.
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