
vMocity: Traveling VMs across Heterogeneous Clouds

Cheng Cheng∗, Zhui Deng†, Zhongshu Gu‡, Dongyan Xu§
∗§Department of Computer Science, Purdue University

†Apple Inc.
‡IBM T.J. Watson Research Center

Email: {∗chengcheng,§dxu}@cs.purdue.edu, †dengd03@gmail.com, ‡gzs715@gmail.com

Abstract—Current IaaS cloud providers typically adopt dif-
ferent underlying cloud infrastructures and are reluctant to
provide consistent interfaces to facilitate cross-cloud interop-
erability. Such status quo significantly complicates inter-cloud
virtual machine relocation and impedes the adoption of cloud
services for more enterprises and individual users. In this
paper, we propose vMocity, a middleware framework enabling
VM relocation across heterogeneous IaaS clouds. vMocity
extends the principles of cold migration and decouples VM’s
storage stack from their underlying virtualization platforms,
which presents a homogeneous view of storage to cloud users.
We deploy our prototype system across three representative
commercial cloud platforms — Amazon EC2, Google Compute
Engine, and VMware vSphere-based private cloud. Compared
to existing approaches on both synthetic and real-world work-
loads, vMocity can significantly reduce the disruption time, up
to 27 times shorter, of relocated services and boost the recovery
time, up to 1.8 times faster, to pre-relocation performance
level. Our results demonstrate that vMocity is efficient and
convenient for relocating VMs across clouds, offering freedom
of choice to customers when facing a market of IaaS clouds
to align with business objectives (cost, performance, service
availability, etc.)

1. Introduction

Infrastructure as a Service (IaaS) clouds provide signif-
icant flexibility and versatility of resource provisioning to
help organizations manage their IT infrastructures at a low
cost. Due to such technical and economic benefits, increas-
ing number of enterprises and individual users are migrating
their in-house applications to public/private cloud infrastruc-
tures (e.g., Amazon EC2, Google Compute Engine, VMware
vCloud Air, IBM SoftLayer, Rackspace, OpenStack, and
Microsoft Azure). According to a cloud computing market
report, by 2017 the value of cloud services will increase to
$127 billion (compared to $37.8 billion in 2010).

IaaS clouds typically use a pay-as-you-go business
model to ensure customers pay for the computing resources
they consume. However, such standard IaaS model binds
each virtual machine (VM) instance tightly with a specific

Deng and Gu contributed to the work while at Purdue University.

cloud provider, which may lead to several dependability and
flexibility problems. For example, a sudden service disrup-
tion (caused by natural disasters, malicious cyber-attacks,
system mis-configurations, etc.) may cause its tenants to
lose accesses to their already-paid resources. This eventually
interrupts the business continuity of tenants’ online services.
Moreover, customers wish to benefit from being able to
relocate workloads across multiple cloud providers to:

a) Avoid Vendor Lock-in. Since application stack cus-
tomized for a specific cloud infrastructure is typically locked
into its cloud provider, rebuilding the same application stack
for a different cloud takes non-trivial engineering efforts,
even if the administrator leverages some predefined image
as a starting point. Therefore, enterprise users are interested
in better inter-cloud application portability to assuage their
fears of cloud lock-in. When deploying applications on
clouds, being able to relocate VMs among cloud providers
grants users the flexibility to switch to the most appropriate
cloud providers with respect to reliability, functionality,
performance, and cost at any time.

b) Support Cloud Brokerage. While there exist many
IaaS cloud providers on the market, none offers a common
platform for cooperative inter-cloud usage. Cloud broker ser-
vice [1] [2] [3] is introduced for mediating between different
cloud providers to facilitate the use of cross-provider cloud
offerings in accordance with service-level agreement (SLA)
and in alignment with business objectives (e.g., cost, service
availability, etc.). The capability to relocate VMs rapidly
among competitive cloud providers is the key enabling
mechanism so that the cloud broker service can execute its
decision and relocate VMs seamlessly among different cloud
providers.

Unfortunately, it is difficult, if ever possible, to enable
such desired inter-cloud relocation under current technolo-
gies due to following challenges:

a) Limited Cloud User Privilege. In current IaaS clouds,
users only have restricted operation privileges and are not
able to directly manipulate or relocate their VM image files,
making the process of exporting or importing VM images to
arbitrary destinations difficult. A few IaaS cloud providers,
such as Amazon EC2 and Google Compute Engine, provide
APIs/tools for users to import/export VMs, but those APIs
are cloud-specific and fundamentally limited, resulting in
non-trivial administrative efforts when users decide to relo-

2016 IEEE 35th Symposium on Reliable Distributed Systems

1060-9857/16 $31.00 © 2016 IEEE

DOI 10.1109/SRDS.2016.20

101

cate their VMs to a different cloud provider.
b) Lack of Interoperability. IaaS clouds are not inter-

operable. The significant differences in VM abstractions or
underlying hypervisor services make it infeasible to trans-
parently relocate a VM (or a set of VMs) between competing
public clouds, or between a private cloud and a public cloud.
Depending on the underlying virtualization techniques (e.g.,
Amazon EC2 is based on Xen [4]; while Google Cloud uses
KVM [5]), VM images are stored and accessed in different
ways. At the same time, standardization, or provider-centric
homogenization is unlikely to be adopted by all clouds.
For instance, Amazon Elastic Block Store (EBS) offers
persistent block level storage volumes to serve Amazon EC2
instances, while Google provides several types of data disks
that can be used as persistent storage for VM instances in
the Google Compute Engine.

c) Relocation Efficiency. In a local-area network, relocat-
ing a VM does not necessarily require relocating VM images
because hosts can be configured to share storage devices.
However, remotely mounting and sharing storage over wide-
area network cannot achieve satisfactory I/O performance
[6]. Moreover, VMs created by users are highly customized
and may be extremely heavy-weight. Relocating a whole
VM from the source cloud to the destination cloud may
incur significant service disruption time, especially when
VM image transportation is performed over the wide-area
network with limited bandwidth and high latency. Such
service disruption time severely impacts the feasibility of
inter-cloud VM relocation. It is necessary to develop new
techniques to move VMs efficiently, while minimizing ap-
plication performance degradation.

There exist some research efforts to facilitate workload
relocation across cloud providers. Nested virtualization tech-
niques, such as HVX [7] and Xen-Blanket [8], use a second-
layer virtualization to provide a homogeneous virtual plat-
form interface. However, they limit the choice of virtualiza-
tion platforms and impose non-trivial performance overhead.
Lightweight (OS-level) virtualization technologies, such as
Linux Containers [9], provide workload relocation at the
process level. However current available techniques are
mostly Linux based and they heavily rely on the kernel ver-
sion of the operating system that hosts the containers, thus
greatly limiting their flexibility. Moreover, it is infeasible to
use a VM image across different cloud providers without in-
depth adaptation due to their different image formats, which
eventually leads to a high administrative and monetary cost.
Some other efforts (e.g., OpenStack) are also trying to create
homogeneity for various cloud services, such as alerting,
API, authentication, and billing.

To complement the above solutions, we propose vMoc-
ity, a novel VM persistent storage hosting framework, to
support seamless inter-cloud VM relocation. Instead of
leveraging live migration techniques, vMocity extends the
principles of cold migration. By decoupling VM’s persistent
storage access interface from the underlying virtualization
platform, vMocity enables cloud users to switch VM hosting
platforms instantly and transparently, which opens a novel
operating paradigm in the cloud era. Instead of relying

vMocity I/O Node

0110
0100

0111
1000

0111
0101

VM

V2BD V2BD

VM

Cloud
Provider B

vMocity I/O Node

0110
0100

0111
1000

0111
0101

VM

V2BD

VM

V2BD

Cloud
Provider A

vMocity
Controller Node

WAN

Cloud Provider
Storage Solution

Booting
Image

Virtual
Disk Image

Figure 1: Architecture of vMocity Framework.

on cloud providers to build a homogeneous storage ac-
cess infrastructure, we advocate a customer-centric view of
storage homogenization by deploying vMocity framework
as a lightweight middleware layer, allowing users to run
their VMs on any cloud platform without complex storage
adaptation. Our evaluation demonstrates the effectiveness of
vMocity in both controlled and real environments. For exam-
ple, using vMocity to relocate a MySQL server VM reduces
service disruption time by a factor of 27 and resumes the
VM to offer stable performance 1.8 times faster than state-
of-the-art approaches.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the design of vMocity framework. The im-
plementation details are in Section 3. Detailed performance
evaluation in both controlled and real cloud environments
using diverse sets of workloads is presented in Section
4. Finally, Section 5 surveys related work and Section 6
concludes the paper.

2. Design of vMocity

We begin with an architectural overview of vMocity.
Next, we examine the internals of the vMocity I/O Node
with various design supports for efficient relocation and the
virtual block driver used for connecting VMs to vMocity.

2.1. Architecture Overview

Figure 1 depicts the overall architecture of the vMocity
framework, which mainly consists of three components:
vMocity Controller Node, vMocity I/O Node, and vMocity
Virtual Block Driver (V2BD). The Controller Node, the
central control point, keeps disk mapping and I/O Nodes
topology information. The I/O Nodes running in different
clouds form a virtual disk image store and expose a unified
block interface to V2BD for accessing virtual disk image. On
a VM instantiation, V2BD queries the Controller Node and
establishes connections with appropriate I/O Node. V2BD
can also switch its backing storage transparently.

Under vMocity, a VM is composed of two types of
images: a vMocity Booting Image and one or more vMocity
Virtual Disk Images. The Booting Image is a provider-
specific VM image, which contains a bootloader, a kernel,
and a customized init ramdisk. It gets deployed to a specific
cloud and is used for instantiating an individual VM. The
Virtual Disk Image, hosted in the image store exposed by
I/O Nodes, is a user-centric virtual disk image populated

102

(d) Completion

I/O Node
Src Cloud Dest Cloud

(a) Initialization (b) Preparation (c) Relocation

Booting
Image

Shadow
Image

VM

V2BD

I/O Node

0111
0101

Src Cloud
I/O Node

Dest Cloud

0111
0101

VM

V2BD

I/O Node

0111

Dest Cloud

Virtual
Disk Image

VM

V2BD

I/O Node

0111
0101

VM

V2BD

0111
0101

provider
storage
solution

Non-migration

Figure 2: Different Phases of Migrating a VM with vMocity.

by vMocity, which stores the actual VM data, such as the
root file system. A Virtual Disk Image is composed of an
array of fixed-sized blocks. Those blocks are stored as object
files and managed by the underlying object store [10] [11]
expanding through all I/O Nodes. Using object stores sig-
nificantly simplifies managing and accessing objects across
I/O Nodes.

Figure 2 illustrates a concrete example of VM reloca-
tion across two clouds using vMocity framework. In the
non-migration phase, users can directly use virtual disks
offered by the cloud provider without introducing additional
monetary and performance cost. vMocity framework is only
required during the relocation phases. Starting from the
initialization phase, the VM to be relocated is running
in the source cloud, within which the VM’s virtual disk
image is hosted on the corresponding I/O Node. Once the
user issues a request to the Controller Node for initiating
the VM relocation, the running VM is going to be termi-
nated safely on the source cloud. In the preparation phase,
The Controller Node extracts VM configuration metadata
(number of vCPUs, memory size, network capacity, etc.)
of the original VM from the source cloud, and prepares
a new Booting Image along with a set of empty shadow
virtual disk images, which are going to be filled with the
content from its peer in the source cloud, in the destina-
tion cloud for the new VM. The VM can be powered on
instantly in the relocation phase. It loads V2BD module
during the initialization process from the attached Booting
Image, generates contextual information, and sends queries
to the Controller Node for connecting the appropriate I/O
Node. The contextual information includes the hosting cloud
provider and location (e.g., regions, zones) details of the
VM instance. Based on the contextual information, the
Controller Node directs V2BD to establish iSCSI connection
with an appropriate I/O Node for accessing virtual disk
image. The content from the source virtual disk image are
relocated and filled to the shadow virtual disk image in
the destination cloud. Once the relocation process finishes
(completion phase), the virtual disk image on the I/O Node
of the source cloud can be safely destroyed without incurring
extra storage for duplicated virtual disks. Thanks to the
flexibility offered by V2BD, the backing storage device of
the VM can be transparently switched between vMocity and
native provider’s storage solutions.

2.2. Internals of vMocity I/O Node

vMocity I/O Node, the building block of vMocity frame-
work, is deployed within the same availability zone and
exposes virtual disks to VMs for connections. vMocity I/O

Source Site Destination Site

I/O Reader

Coordinating

01100100
01111000
01110101

Block Buffer

Intelligent
Relocation

Thread

I/O Fetching

Coordinating

I/O Layering

01100100
01111000

VM I/Os

Figure 3: Components of vMocity I/O Handling Subsystem.

Nodes hide the heterogeneity of diversified IaaS cloud stor-
age solutions. On one hand, vMocity I/O Nodes decouple the
dependency between the storage virtualization stack and the
underlying hypervisor platform by providing a unified block
interface for accessing VM virtual disk image. On the other
hand, to be compatible with various cloud providers, vMoc-
ity I/O Nodes still utilize cloud providers’ native storage
solutions as the backing storage devices for hosting image
stores. For instance, a vMocity I/O Node running in Amazon
EC2 is configured to use EBS volume as the storage backing
device, whereas a vMocity I/O Node running in Google
Compute Engine adopts Google’s version of persistent block
storage. Hosting and accessing virtual disk images within
vMocity framework allows users to manage and relocate
virtual disk images conveniently. In addition, vMocity I/O
Nodes also collect performance metrics for the hosted virtual
disks and send to a vMocity Controller Node, allowing cloud
users to monitor their virtual disk status from a central point.

When a VM tries to access the data in its virtual disk
image, if the data is already on the local vMocity I/O
node, all I/O accesses are served locally. Otherwise, vMocity
framework relocates the content of the virtual disk image
from the source site, as shown in Figure 2(c). Intuitively,
this can be achieved by setting up a copy-on-write shadow
image on the destination site. However, all read I/Os to not-
yet-written blocks would have to be naively forwarded to the
source site, causing significant performance overhead. For a
better relocation efficiency, vMocity I/O Node employs I/O
handling subsystem with various design supports to handle
virtual disk image relocation transparently.

2.2.1. I/O handling Subsystem. The I/O handling subsys-
tem running in the vMocity I/O Node is responsible for
handling all I/Os during the entire relocation phase. Figure 3
shows the main components involved in the inter-cloud relo-
cation for both source and destination sites. When receiving
a relocation request, the Coordinating Module first sets up
an empty shadow virtual disk image on the destination site,
and launches the Intelligent Relocation Thread. The Intelli-
gent Relocation Thread enqueues requests of bulk fetching
remote blocks to the Block Buffer in background. All blocks
fetched from the remote site are stored temporarily in Block
Buffer before being committed into the shadow virtual disk
image. The I/O Layering module interposes on all accepted
virtual disk I/Os and remaps these I/Os to the corresponding
blocks on the shadow virtual disk image.

An I/O can be served immediately if the corresponding
blocks have already been relocated from the source site. Oth-

103

erwise, this I/O will be passed to the I/O Fetching Module
for further handling. For a read I/O, the I/O Fetching Module
first checks whether the Block Buffer contains blocks with
the requested bytes. If not, the I/O Fetching Module immedi-
ately fetches the requested bytes from the source site so they
can be accessed as soon as possible; In the meantime, it also
enqueues requests to relocate the whole blocks that contain
the requested bytes for this specific read I/O. Such not-
yet-relocated blocks will be relocated asynchronously based
on bandwidth availability. The I/O Fetching Module is also
responsible for building and managing a byte-map for each
individual block to be relocated, ensuring no duplicate byte
is transmitted from source site. A block is reassembled in the
Block Buffer once all its bytes are successfully transmitted
to the destination site. For a write I/O, I/O Fetching Module
first fetches all requesting blocks to the Block Buffer, and
then applies changes to these blocks before committing to
the shadow virtual disk image. As a result, in vMocity I/O
handling subsystem, access to any byte in a not-yet-relocated
block always triggers the relocation of the whole block.

Intelligent Relocation Thread Although fetching bytes in
an on-demand manner from the remote site can immediately
serve the requesting I/O, such mechanism still incurs signif-
icant delay, especially when bytes are transferred over the
wide-area-network. To reduce such delay, we designed the
Intelligent Relocation Thread to accurately relocate blocks
in advance by leveraging the block access locality prediction
information.

vMocity Intelligent Relocation Thread uses the VM’s
virtual disk accessing order from previous run on the source
site to predict the first-time block-accessing order on the
destination site. Based on our observation, instantiating and
bootstrapping the VM on the destination reloads blocks
following the similar order to previous run.

vMocity Intelligent Relocation Thread traces the virtual
disk accesses, records the order of the first access to each
block to an accessing order list, and saves this list as
metadata into virtual disk image header. The maximum
length of the accessing order list is equivalent to the total
number of blocks of a virtual disk image. Once slots in the
accessing order list are completely filled or the virtual disk
image is disconnected from accessing, vMocity Intelligent
Relocation Thread stops tracing the virtual disk accesses.
vMocity Intelligent Relocation Thread also differentiates
relocation I/O requests from normal I/O requests and does
not record relocation I/O requests in the access ordering
list. When setting up the shadow virtual disk image on the
destination site, the ordered list is copied from the source
virtual disk image along with other metadata.

Divergence of accessing virtual disk blocks from the
VM’s execution during previous run is unavoidable. It is
possible for some blocks, which are not accessed during
the previous run, to be accessed on the destination site. As
the accessing order list does not have such accessing order
information, we use block address space locality to predict
accessing locality. This technique assumes that if block X
and Y are adjacent in the block address space, then a block

access to block X or Y is a good predictor that the VM will
also access the other block.

vMocity I/O handling subsystem enforces priority guar-
antee between on-demand I/Os and background relocation
I/Os. On-demand I/Os are associated with higher priority
compared to background relocation I/Os. Without such en-
forcement, on-demand I/Os may be severely starved by
intensive background relocation I/Os because the amount
of data transferred for relocating the whole block is larger
than that of serving individual bytes for an on-demand I/O.

Memory Caching When hosting and providing accesses
to virtual disk images, the image store, running as a user
space service, does not provide an extra layer of memory
caching. Accepted I/Os are directly mapped to blocks and
then processed upon corresponding object files by the lower
object store layer. This greatly simplifies the system design
while still guarantees the efficiency. On the other hand, the
file system containing object files can still take advantage
of Linux page cache. When an object is first read from or
written to the storage backing devices, Linux kernel also
stores the object data in unused areas of memory, which acts
as a cache. If this object is read again later, it can be quickly
read from this cache in memory. vMocity inherits both ben-
efits and drawbacks from Linux page cache. It improves I/O
performance if the blocks accessed can fit into I/O Node’s
available memory and aggregates I/Os to save operating cost
as some cloud providers also charge per I/O usage. At the
same time, it also suffers from data inconsistency due to
reasons such as sudden hardware failures. Whether to enable
memory caching for vMocity can be decided by users based
on their specific requirements.

Other Optimizations To improve proficiency of VM re-
location, vMocity framework also employs other common
optimization mechanisms in the I/O handling subsystem,
which include compression, skipping zero block relocation,
and skipping zero writes.

2.3. vMocity Virtual Block Driver (V2BD)

vMocity brings VM mobility to cloud users, as they
can flexibly relocate VMs among any clouds. However,
using vMocity also introduces additional monetary cost and
performance degradation after relocation is done, which
may dilute the gained advantage. In particular, if a user
prefers to settle down on a particular cloud provider for
a foreseeable period after relocation, directly using virtual
disks offered by the cloud provider would be the best option.
Therefore, we design a virtual block driver called V2BD
in vMocity framework which allows users to transparently
choose storage services best fitting their needs.

Figure 4 depicts the internal of V2BD and its placement
in Linux storage stack. V2BD populates a special virtual
block device upwards, which can be used similar to a
regular disk. V2BD has two operating modes: vMocity mode
and native mode. In vMocity mode, all I/Os are handled
through iSCSI driver for accessing vMocity disk image.
When operating in the native mode, V2BD is mapped to
the virtual hard disk exported by the underlying hypervisor.

104

syscall I/F

VFS

file system

Linux

vMocity virtual block driver
coordination module

I/O mirroring module

iSCSI driver SCSI driver
sync

Provider Storage
SolutionvMocity Framework

Figure 4: vMocity virtual block
driver and its placement in Linux
architecture.

iSCSI Target

vMocity Image Store

RADOS Object Store

Linux
Kernel

BtrfsZFSext4

vMocity I/O Node

Figure 5: I/O Node in-
ternal architecture

To enable seamless backing device switchover between
vMocity and native modes, the coordination module and the
I/O mirroring module work collaboratively to synchronize
blocks from one side to another. To initiate the backing
device switchover, the coordination module synchronizes the
two backing devices block by block. In the meantime, the
I/O mirroring module interposes all write I/Os and mirrors
those I/Os to the destination device synchronously. When the
two backing devices have identical content, the coordination
module redirects the I/O path to the target backing device.

Fairness during Switchover. Within V2BD, there are two
types of in-flight I/Os during the switchover stage: normal
I/Os accepted from upper layer and synchronization I/Os
generated by coordination module. V2BD employs a queue
to hold all in-flight I/Os. To provide fairness between I/Os,
this queue is split into two portions, one for holding normal
I/Os and the other portion for synchronization I/Os. Such
queue is drained in a weighted round-robin fashion. Without
this, two types of I/Os can severely impact one another when
one is more intense than the other.

3. Implementation

The vMocity image store builds on the scalable RADOS
architecture [10]. We added around 5200 lines of code
to boost the VM relocation capability without introducing
new bottlenecks. Our prototype implementation of V2BD
is built upon Linux RAID-0 and open-iscsi [12] projects,
which involve about 600 lines of code change. The control
protocol communicating between vMocity Controller Node
and V2BD is extended from iSNS [13]. We implement
our control logic in iSNS project with 500 lines of code
change. Although the prototype implementation of V2BD
and vMocity Booting Image are developed for Linux, they
can be adopted for Windows as well, making vMocity an
OS-agnostic solution.

3.1. vMocity I/O Node Stack

Figure 5 depicts the internal stack of vMocity I/O Node.
I/O Node is built upon a Linux based VM, exposing a unified
block interface to V2BD for accessing virtual disk image. In

our prototype, virtual disk images are populated as storage
targets of iSCSI protocol, which is a block-level protocol
that encapsulates SCSI commands into TCP/IP packets. By
placing VMs and I/O Nodes within the same availability
zone, iSCSI protocol can achieve performance close to local
disk access [14]. Another reason for adopting iSCSI in our
prototype system is its compatibility among a wide range
of operating systems.

We modified RADOS Block Devices (RBD) [15] for
building our image store. Since a vMocity Virtual Disk
Image is composed of object files, which are retrievable
from any endpoint within the object store, relocating an
image can be accomplished by migrating all corresponding
object files. Various underlying file systems can be used as
backend file systems, leaving opportunities for exploiting
more advanced functionalities such as file system level
encryption, deduplication, and compression.

3.2. vMocity Booting Image

A VM is instantiated from its corresponding vMocity
Booting Image, which is derived from the predefiend VM
templates specific to each cloud provider. In our prototype
system, we implement a Linux version of Booting Image
(as shown in Figure 6), consisting of a Linux kernel, a cus-
tomized init ramdisk and a bootloader to be compatible with
both full virtualization and para-virtualization hypervisor.
Although vMocity does not require any specific modification
to the Linux kernel, the Linux kernel does have to be “vir-
tualization friendly” by satisfying two prerequisites: 1) the
kernel should contain necessary device drivers for popular
hypervisors; 2) the kernel is patched for allowing operation
in a para-virtualized guest VM. Fortunately, mainline Linux
kernels since version 3.0 satisfy the above two prerequisites.
The init ramdisk contains the V2BD with metadata, which
includes the unique ID to identify vMocity virtual disk
image and the associated authentication key. During the
booting process, the V2BD generates contextual information
by trying to query cloud providers’ specific APIs for deter-
mining the current cloud provider and location. Based on the
contextual information and metadata, the V2BD can initiate
the iSCSI connection with appropriate I/O Node thereafter.

4. Evaluation and Analysis

We evaluated vMocity using an I/O tester micro-
benchmark and two application benchmarks. Fio [16] is
a versatile I/O workload generator which has fine-grained
control over I/O workload. Sysbench OLTP benchmark is
a database benchmark for MySQL server. CloudStone is a
Web 2.0 benchmark that includes a Web 2.0 social-events
application (Apache Olio) and a client implemented using
the Faban workload generator.

To evaluate the performance of vMocity framework and
the benefits of various relocation optimizations, we first
deployed vMocity in our local private cloud environment
and conducted micro-benchmark and sysbench OLTP bench-
mark in this controlled environment. We also demonstrated

105

the practical usability of vMocity framework by relocating
an Olio server from our local private cloud to Google
Compute Engine, from Google Compute Engine to Amazon
EC2, and from Amazon EC2 back to our local private cloud.

Local Experimental Testbed. As shown in Figure 7, our
local cluster consists of four Dell R210 servers running
VMware ESX 5.5. Each server had a quad-core 3.2 GHz
Intel Xeon E3-1230 processor, 16 GB of RAM, a dual port
Broadcom 1GbE network adapter and two 7200 RPM hard
disks. We placed these servers onto two separate racks, and
deliberately configured the network to emulate wide-area-
network environment. In the following set of experiments,
the inter-rack network latency and bandwidth were set to
around 40 ms and 200 Mb/s, while the intra-rack network
latency and bandwidth were set to sub-millisecond and 1
Gb/s, respectively. The intuition for this network configura-
tion is based on the iperf measurement between our local
datacenter and Amazon datacenter in West Virginia.

In a VM’s lifecycle, the time spending on relocation
is much less than the time settled for normal operations.
For convenience, we differentiate the VM lifecycle into
relocation phase and non-relocation phase.

We evaluated the efficiency of vMocity relocation mech-
anism on our local testbed with three relocation strategies.
The first strategy, serving as the baseline, relocates the whole
VM image to the destination site before cold starting the
VM. This strategy simulates the performance of relocating
a VM without using vMocity framework. Vanilla, the second
strategy, demonstrates the performance of using vMocity
framework without vMocity Relocating Subsystem. Under
this scenario, the relocation is handled by the copy-on-write
mechanism of the RBD image store. The last optimized
strategy makes use of vMocity Relocation Subsystem and
employs various optimizations. This configuration shows the
total relocation performance benefits of vMocity framework.

4.1. Micro-benchmark

VM workloads tend to be very complex, making it
difficult to pinpoint the source of performance differences.
We chose fio as the benchmark tool because it has control
over every aspect of I/O workload.

Performance during Relocation Phase. To compare the
performance of different relocation strategies, we ran the
fio application in the client VM on the destination site to
access a 10GB VM image, which was being relocated from
the source site. In this experiment, the fio client VM and
vMocity I/O Nodes were all configured with 2 vCPUs and
4 GB memory. The results of six types of I/O workloads
were collected.

As shown in Figure 8, compared with vanilla relocation
strategy, using optimized relocation strategy always achieves
higher IOPS and lower latency during relocation for all
I/O types. For sequential and random read I/O workloads,
it increases IOPS by 180% and reduces latency by 60%,
which are the largest improvements among all six types.
Such significant improvements are mainly attributed to the

vMocity Booting Image

Boot
Loader

Linux
Kernel

Init
Ramdisk

V2BD

Metadata

Figure 6: Booting Image
Components

�40ms

Host C

H
os

t
D

Rack 2

<
1m

s

Workload
VM

I/O Node

0111
0101

Host A

H
os

t
B

Rack 1

<
1m

s

I/O Node

Workload
VM

0111

Figure 7: Experiment Deploy-
ment of vMocity framework

following facts: (1) accessing any byte in a not-yet-relocated
image block triggers the relocation of the whole block,
causing subsequent reading of the bytes in the same block to
be served locally after the block is relocated from the source
site; (2) relocated blocks are also cached in the I/O Node,
which further improves the IOPS and reduces the latency
as some portion of subsequent I/Os are served directly
from cache without hitting hard disk; (3) the intelligent
background relocation process can accurately predict and
prefetch blocks that are going to be accessed, resulting in
higher probability of serving I/O requests from local I/O
Node.

For sequential and random write I/O workloads, the I/O
paths of the optimized relocation strategy are similar to
the vanilla relocation strategy. However, we still observe
improvements of IOPS and latency due to the compression
and the intelligent background relocation mechanism.

Performance during Non-Relocation Phase. In current
public cloud environments, VM images are directly backed
by cloud provider’s specific solution. In vMocity, we add
one additional layer of storage abstraction. To evaluate the
performance implication of hosting VM images on vMocity
framework during the non-relocation phase, we conducted
an experiment on our local cluster. In the vMocity setup, the
I/O Node was connected with a 7200 RPM HDD for backing
VM images, and populated the VM image to fio client VM
via iSCSI protocol. In the non-vMocity setup, the same
HDD was directly attached to the VM running fio client. In
both setups, the HDD was connected to the corresponding
VM via raw device mapping (RDM) [17], allowing a VM
to directly access and use the physical storage device.

Figure 9 shows the normalized IOPS and latency of
vMocity setup with respect to non-vMocity setup. For se-
quential types of I/O workloads, hosting VM images on
vMocity framework incurs some performance degradation
due to the overheads of object store and accessing via iSCSI
protocol. Once the VM has “settled down” in the destina-
tion cloud, the user can switch to provider’s native storage
solution with V2BD to avoid this temporary overhead. The
performance will get back to the original level without using
vMocity when the switching is done. The user can choose
to turn off vMocity I/O Nodes to avoid additional cost after-
wards. On the other hand, the encouraging result shows that
using vMocity achieves improved IOPS and reduced latency
for I/O workload involving random access. This is mainly
due to the benefits from extra caching layer provided by

106

0

50

100

150

200

IO
PS

 I
m

pr
ov

em
en

t
(%

)

(a) IOPS Improvement

0
10
20
30
40
50
60
70

L
at

en
cy

 R
ed

uc
tio

n
(%

)

(b) Latency Reduction
Figure 8: IOPS improvement and latency reduction of opti-
mized relocation strategy with respect to vanilla relocation
strategy during relocation phase for fio benchmark (the
higher the better).

the I/O node outweighs the overhead introduced by vMocity
framework, as long as the blocks of a VM image can fit into
the cache. Moreover, I/O workload involving write performs
worse than read-only I/O workload in vMocity framework.
This is because a single write I/O request issued by fio has
to be accomplished by a series of read/write operations in
an I/O Node due to the use of object store.

4.2. Application Benchmark

In addition to the I/O tester micro-benchmark, we also
evaluated the performance of vMocity framework for two
representative application benchmarks — Sysbench OLTP
benchmark and CloudStone. Sysbench is a system per-
formance benchmark that includes an OnLine Transaction
Processing (OLTP) test profile. CloudStone [18] is a Web
2.0 benchmark to evaluate the suitability, functionality, and
performance of Web technologies.

4.2.1. OLTP Workload. To understand the performance of
vMocity framework, we conducted sysbench OLTP test both
for relocation phase and non-relocation phase. Unlike some
synthetic OLTP tests, the OLTP test included in the sys-
bench is a practical database-backed benchmark conducting
transactional queries to an instance of a MySQL server. To
simulate database workload in real-world scenarios, we ran
the test in a complex R/W mode with various query types.

Performance during Relocation Phase. We created a
MySQL server VM on our local cluster. The VM was config-
ured with 2 vCPUs, 4 GB memory, and 20 GB virtual hard
disk. Hard disks were attached to vMocity I/O Nodes via
RDM for hosting the vMocity image store. The vMocity I/O
Nodes were configured with 2 vCPUs and 4 GB memory. In
this experiment, we defined 30 tables (each with 1 million
rows), resulting in a 7.5 GB database of 30 million entries.
We ran the sysbench OLTP workload generator in a separate
physical host on the same rack as the server hosting the
MySQL server VM. The evaluation was performed under
three relocation strategies: baseline, vanilla, and optimized.

Figure 10 shows the trend of transaction rate during the
first 1500 seconds under different relocation strategies with
detailed service disruption time breakdown. All relocation
technologies strive to achieve minimal service disruption
time. In this experiment, the service disruption time is the
duration of time before the newly relocated MySQL server
VM responding to the first query on the destination site. As

0
50

100
150
200
250
300

N
or

m
al

iz
ed

 I
O

PS
 (

%
)

(a) Normalized IOPS

0

50

100

150

200

N
or

m
al

iz
ed

 L
at

en
cy

 (
%

)

(b) Normalized Latency
Figure 9: Normalized IOPS and latency of vMocity setup
with respect to non-vMocity setup for fio benchmark (the
higher the better).

shown in Figure 10a, with the baseline relocation strategy,
the MySQL server requires 1206 seconds to respond to
the first query. Using vMocity framework, the first query
is responded in 84 seconds for the vanilla relocation strat-
egy, and 44 seconds for the optimized relocation strategy.
Optimized relocation strategy significantly reduces the ser-
vice disruption time by a factor of 27 compared to the
baseline relocation strategy, and a factor of 1.9 compared
to the vanilla relocation strategy. On the other hand, both
vanilla and optimized relocation strategies suffer non-trivial
performance degradation at the beginning. This performance
degradation is acceptable as blocks are transfered from
remote site. Once the migration of blocks is finished, the
performance will resume to the previous level. For optimized
strategy, the duration of this performance degradation only
lasts 700 seconds, while vanilla strategy takes 1200 seconds.

Figure 10b further shows the breakdowns of service
disruption time in four phases. For the baseline relocation
strategy, the whole VM virtual disk image has to be first
copied from the source site, which is a time-consuming
process. In comparison, the vanilla and optimized relocation
strategies do not require such a step, thus the VM on the
destination site can start instantly. The instance provisioning
and kernel loading phase denotes creating, initializing and
powering of a VM instance. This phase takes 7 seconds on
average in our local testbed. After being powered on, the
VM instance loads kernel and init ramdisk into memory, as
well as performs kernel initialization to load various system
modules and supporting libraries into memory. We call this
phase the kernel initialization phase. In this phase, the V2BD
retrieves connection metadata from the controller node and
connects to the designated I/O Node to mount the root file
system. This phase takes 19.5 seconds for the vanilla reloca-
tion strategy, while using the optimized strategy reduces the
time to 5.8 seconds. As system modules and libraries reside
on non-contiguous blocks, the optimized strategy can relo-
cate needed blocks more accurately, thus the initialization
phase is less likely to be blocked by storage accessing. The
final phase is the userspace initialization phase, in which the
bootstrap process loads modules and libraries from the root
file system, and starts various userspace services thereafter.
For the baseline relocation strategy, since all image blocks
have been relocated over and are hereby accessed locally,
this userspace initialization phase only takes 8.4 seconds.
The optimized and vanilla relocation strategies, however,
require 31 seconds and 58 seconds to complete this phase,
respectively.

107

0

10

20

30

40

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Tr
an

sa
ct

io
n

R
at

e
(tp

s)

Time (seconds)

Baseline
Vanilla
Optimized

(a) Transaction rate trend during relocation.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

Optimized
Vanilla

Baseline

Time (seconds)

Copy Disk Provision Instance + Load Kernel Kernel Userspace

(b) Service disruption time breakdowns.
Figure 10: Performance results of relocating MySQL server in local testbed.

Another important metric in VM relocation is the
time required to resume stable performance. As shown in
Figure 10a, by applying various optimization techniques,
MySQL server VM is capable of serving queries stably in
760 seconds. The optimized relocation strategy reduces the
time duration before resuming normal transaction rate by a
factor of 1.8 compared with the baseline relocation strategy,
and a factor of 1.7 compared with the vanilla relocation
strategy. One of the main reasons for such a reduction is
that the intelligent background relocation thread can locate
blocks that will be accessed by the workload and relocate
those blocks with high priority from the remote site.
Performance during Non-Relocation Phase. We also eval-
uated the performance of hosting VM images on vMoc-
ity framework with OLTP workload during non-relocation
phase. We used the setups similar to the ones in Section
4.1. The MySQL server VM was configured with 2 vCPUs
and 2 GB memory. For the non-vMocity setup, the virtual
disk of the VM was backed by a physical HDD via RDM;
for the vMocity setup, the virtual disk was populated to
the VM by an I/O Node, which was also configured with
2 vCPUs. We configured the I/O Node with varying sizes
of memory to limit the availability of Linux page cache. In
this experiment, we defined 120 tables (each with 1 million
rows), resulting in a 30 GB database of 120 million entries.

For OLTP workloads during non-relocation phase, the
transaction rates for hosting VM’s virtual disk on vMocity
framework incur about 7% to 12% performance degradation,
with I/O Node memory configured to various sizes (4 GB,
2GB and 1GB). This degradation is as expected due to
the extra complexity (e.g., object store and iSCSI protocol
overhead) introduced by the additional layer of storage ab-
straction. With the flexibility of V2BD, such degradation can
be mitigated by switching to the provider’s native storage
solution. We also notice that increasing I/O Node memory
size from 1 GB to 4 GB, which in turn increases the avail-
able Linux page cache size, only improves the transaction
rate by 5%. The reason for such a small improvement is due
to the I/O randomness of the benchmark workload.

Performance during Switchover Phase. V2BD enables
users to transparently choose storage services best fitting
their needs. During the switchover phase, it limits the back-
ground synchronization rate between two sources of backing
block devices and strives to minimize the negative perfor-
mance impact on the running workload. To demonstrate the
effectiveness of our design, we conducted an experiment

using a running MySQL server VM on our local test bed
to switch the backing storage device from the virtual disk
populated by vMocity I/O Node to HDD connected via
RDM. The VM was configured with 2 vCPUs and 2 GB
memory, and the size of the block device is 30 GB. We
limited V2BD to only use 1/3 of overall bandwidth for
background synchronization during switchover phase.

Figure 11 presents the OLTP workload transaction rate in
a duration of 6000 seconds. The graph shows the impact on
the MySQL server throughput during switchover phase. In
the first 1000 seconds, the MySQL server VM used virtual
disk populated from vMocity I/O Node as backing storage
device, and can achieve the throughput of 53 transactions
per second. When starting switching backing storage device,
the transaction rate dropped to 40 transactions per second
and the switchover phase lasted for 3250 seconds, during
which the two sources of backing storage devices were being
synchronized at a rate around 10 MB/s. Once the switchover
was done, the throughput increased to 60 tps since the native
HDD does not introduce performance overhead as vMocity
does.

4.2.2. Apache Olio. Web serving is one of the fundamen-
tal applications for IaaS cloud. CloudStone includes Olio,
which implements a social-event calendar web application
that provides representative functionality of Web 2.0 ap-
plications prevalent in clouds — user-generated metadata,
social networking functions, and rich AJAX-based GUI.

To demonstrate the application of vMocity framework
in the real environment, we conducted an experiment to
relocate an Olio server VM among three different clouds.
More specifically, the steps for relocating the VM are as
follows: (1) we first relocate the VM running in our private
cloud (located at our university) to Google Compute Engine;
(2) from Google Compute Engine, the VM is relocated

20
25
30
35
40
45
50
55
60
65
70

T
ra

ns
ac

tio
n

R
at

e
(t

ps
)

Time (seconds)

switching over

native modevMocity mode

Figure 11: Transaction Rate during switchover phase for
OLTP workloads

108

0

50

100

150

200

R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

) Baseline
Vanilla
Optimized

(a) Local Private Cloud to Google Cloud Compute Engine

0

50

100

150

200

R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

) Baseline
Vanilla
Optimized

(b) Google Cloud Compute Engine to Amazon EC2

0

50

100

150

200

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

)

Time (seconds)

Baseline
Vanilla
Optimized

(c) Amazon EC2 to Local Private Cloud
Figure 12: Response time of the Olio server when relocating between different clouds.

to Amazon EC2; (3) finally we relocate the VM from
Amazon EC2 back to our private cloud. The evaluation was
still performed under three relocation strategies: baseline,
vanilla, and optimized.

In this experiment, we adopted the PHP version of
CloudStone and built an Olio server VM containing three
components: (1) a web server to process user requests; (2)
a MySQL database instance to store user information; (3)
and an NFS server to store images and documents. On each
cloud, the Olio server VM was configured with 2 vCPUs, 7.5
GB memory, and 20 GB virtual disk populated by vMocity
framework. In our private cloud, the user requests were sent
from the workload generator running in a separate physical
host. In Google Compute Engine and Amazon EC2, we ran
the workload generator in a separate VM residing in the
same availability zone as Olio server. We configured the
workload generator to simulate 800 concurrent users. Each
user sent one request every five seconds. The peak CPU
utilization of the Olio server is about 70%, which is very
close to the CPU load in real-world cloud environments.

Since there are various types of requests sent to the
Olio server, we use the weighted mean to represent the
mean response time of the seven presented requests. Fig-
ure 12 shows the mean response time during the first
3000 seconds when relocating the Olio server VM between
different clouds along the itinerary. Although the source
site cloud and destination site cloud vary in each section
of the itinerary, relocating the Olio server VM with the
same strategy exhibits similar trends. Using the baseline
relocation strategy to relocate the Olio server VM always
suffers long service disruption time. Once the relocation
finishes, however, the Olio server VM achieves stably low
response time to subsequent requests. With the vanilla re-
location strategy, although the Olio server is capable of
starting serving requests in around 100 seconds, the re-
sponse time is high and unstable during a very long period
of time. The main reason for such an unstable response
time is that the vanilla relocation strategy forwards all read
I/Os over the wide-area-network connecting the two clouds.
The optimized relocation strategy always outperforms the

baseline and vanilla relocation strategies. On one hand,
the optimized relocation strategy can achieve the shortest
service disruption time; on the other hand, it also allows
the response time to drop more rapidly and smoothly. As
VM image blocks can be relocated more efficiently with
the optimized relocation strategy, more I/Os can be served
locally, significantly reducing the response time.

5. Related Work

Live Migration. Clark et al. [19] and Nelson et al. [20]
proposed live VM migration in Xen and VMware ESX.
With recent advance in storage migration [21], Live VM
migration has been extended over WAN [22]. Although live
migration enables minimized downtime, all existing live
migration approaches require the same hypervisor on the
source and destination ends, which does not meet our goal
of enabling VM relocation across diversified IaaS.

Nested Virtualization. Nested virtualization employs vir-
tualization on already virtualized resources. This is partic-
ularly useful when users cannot directly control the first-
layer hypervisor, while a second layer of virtualization offers
control, isolation, and homogeneity [23] [24]. However,
nested virtualization [25] [8] [7] is a heavy-weight approach
and does impose some overhead depending on the operation.

Lightweight Virtualization. Lightweight virtualization
technologies [9] have been available for many years. They
are getting a fair amount of attention these days [26]
[27]. Container provides an abstraction layer between the
application and the underlying cloud infrastructure. Once
an application is built within a container, users are able
to move it between cloud providers. However lightweight
virtualization heavily relies on the underlying operating
system, which limits its capability to avoid vendor lock-
in and the flexibility of choosing operation systems. In
comparison, vMocity framework is an OS-agnostic solution.
The block level abstraction exposed by vMocity I/O Node
can be adopted by both Linux and Windows VMs.

109

Cloud Storage Middleware. Raghavan et al. [28] proposed
Tiera, a storage framework that enables the provision of
flexible and easy-to-use multi-tiered cloud storage instances
for better performance and manageability. Some commercial
products, such as Zadara Storage [29] and SoftNAS [30],
use special storage instances for delivering enhanced storage
services to cloud users.

6. Conclusion

In this paper, we present vMocity, a novel framework
to enable efficient VM relocation across different cloud
providers. By decoupling the dependency between stor-
age virtualization stacks and their underlying hypervisors,
vMocity framework exposes a unified block interface for
accessing VM virtual disk images, and hosts virtual disk
images on user-maintained VMs to advocate a user-centric
view of storage homogenization. Our experiments show that
vMocity can significantly reduce the service disruption time
during VM relocation and resume stable performance much
faster than existing approaches.

7. Acknowledgement

We thank the anonymous reviewers for their insightful
comments. This work was supported in part by NSF under
Award 1219004.

References

[1] N. Grozev and R. Buyya, “Inter-cloud architectures and application
brokering: taxonomy and survey,” Software: Practice and Experience,
vol. 44, no. 3, pp. 369–390, March 2014.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Kon-
winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A view of
cloud computing,” Communications of the ACM, vol. 53, no. 4, pp.
50–58, April 2010.

[3] D. Petcu, C. Craciun, and M. Rak, “Towards a cross platform cloud
api,” in 1st International Conference on Cloud Computing and Ser-
vices Science, 2011.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of vir-
tualization,” in Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles. ACM, 2003, pp. 164–177.

[5] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm:
the linux virtual machine monitor,” in Proceedings of the Linux
Symposium, vol. 1, 2007, pp. 225–230.

[6] Y. Lu and D. Du, “Performance study of iscsi-based storage subsys-
tems,” Communications Magazine, vol. 41, no. 8, pp. 76–82, August
2003.

[7] A. Fishman, M. Rapoport, E. Budilovsky, I. Eidus et al., “Hvx:
Virtualizing the cloud,” in Proceedings of the 5th USENIX Workshop
on Hot Topics in Cloud Computing, June 2013.

[8] D. Williams, H. Jamjoom, and H. Weatherspoon, “The xen-blanket:
virtualize once, run everywhere,” in Proceedings of the 7th ACM
european conference on Computer Systems. ACM, April 2012, pp.
113–126.

[9] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
“Container-based operating system virtualization: A scalable, high-
performance alternative to hypervisors,” in Proceedings of the 2Nd
ACM SIGOPS/EuroSys European Conference on Computer Systems
2007. ACM, March 2007, pp. 275–287.

[10] S. A. Weil, A. W. Leung, S. A. Brandt, and C. Maltzahn, “Rados: A
scalable, reliable storage service for petabyte-scale storage clusters,”
in Proceedings of the 2Nd International Workshop on Petascale Data
Storage: Held in Conjunction with Supercomputing ’07. ACM, 2007,
pp. 35–44.

[11] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in
Proceedings of the 7th Symposium on Operating Systems Design and
Implementation. USENIX Association, 2006, pp. 307–320.

[12] “Open-iscsi,” http://www.open-iscsi.org/.

[13] “Rfc 4171: Internet storage name service (isns),” http://tools.ietf.org/
html/rfc4171.

[14] P. Radkov, L. Yin, P. Goyal, P. Sarkar, and P. J. Shenoy, “A per-
formance comparison of nfs and iscsi for ip-networked storage.” in
Proceedings of the 3rd USENIX Conference on File and Storage
Technologies. USENIX Association, 2004, pp. 102–114.

[15] “Rados block devices,” http://ceph.com/docs/master/rbd/rbd/.

[16] “fio - flexible io tester,” http://freecode.com/projects/fio/.

[17] “Vmware raw disk mapping,” https://pubs.vmware.com/
vsphere-55/index.jsp#com.vmware.vsphere.storage.doc/
GUID-9E206B41-4B2D-48F0-85A3-B8715D78E846.html.

[18] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong,
A. Klepchukov, S. Patil, A. Fox, and D. Patterson, “Cloudstone:
Multi-platform, multi-language benchmark and measurement tools for
web 2.0,” in Proceedings of cloud computing and its applications,
2008.

[19] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines,” in
Proceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation-Volume 2. USENIX Association,
2005, pp. 273–286.

[20] M. Nelson, B.-H. Lim, G. Hutchins et al., “Fast transparent migration
for virtual machines,” in USENIX Annual Technical Conference,
General Track. USENIX Association, 2005, pp. 391–394.

[21] K. Haselhorst, M. Schmidt, R. Schwarzkopf, N. Fallenbeck, and
B. Freisleben, “Efficient storage synchronization for live migration
in cloud infrastructures,” in Parallel, Distributed and Network-Based
Processing (PDP), 2011 19th Euromicro International Conference on.
IEEE, 2011, pp. 511–518.

[22] A. J. Mashtizadeh, M. Cai, G. Tarasuk-Levin, R. Koller, T. Garfinkel,
and S. Setty, “Xvmotion: unified virtual machine migration over long
distance,” in Proceedings of the 2014 USENIX conference on USENIX
Annual Technical Conference. USENIX Association, 2014, pp. 97–
108.

[23] D. Williams, E. Elnikety, M. Eldehiry, H. Jamjoom, H. Huang, and
H. Weatherspoon, “Unshackle the cloud,” in Proceedings of the 3th
USENIX Workshop on Hot Topics in Cloud Computing. USENIX
Association, June 2011.

[24] Z. Pan, Q. He, W. Jiang, Y. Chen, and Y. Dong, “Nestcloud: Towards
practical nested virtualization,” in Cloud and Service Computing
(CSC), 2011 International Conference on. IEEE, 2011, pp. 321–
329.

[25] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El,
A. Gordon, A. Liguori, O. Wasserman, and B.-A. Yassour, “The
turtles project: Design and implementation of nested virtualization.”
in Proceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation. USENIX Association, 2010, pp. 423–
436.

[26] “docker,” https://www.docker.com/.

[27] “Flocker,” https://clusterhq.com/.

[28] A. Raghavan, A. Chandra, and J. B. Weissman, “Tiera: Towards
flexible multi-tiered cloud storage instances,” in Proceedings of the
15th International Middleware Conference. ACM, 2014, pp. 1–12.

[29] “Zadara storage,” https://www.zadarastorage.com/.

[30] “Softnas,” https://www.zadarastorage.com/.

110

