
Guest-Transparent Prevention of Kernel
Rootkits with VMM-Based Memory Shadowing

Ryan Riley1, Xuxian Jiang2, and Dongyan Xu1

1 CERIAS and Department of Computer Science, Purdue University
{rileyrd,dxu}@cs.purdue.edu

2 Department of Computer Science, North Carolina State University
jiang@cs.ncsu.edu

Abstract. Kernel rootkits pose a significant threat to computer systems
as they run at the highest privilege level and have unrestricted access to
the resources of their victims. Many current efforts in kernel rootkit de-
fense focus on the detection of kernel rootkits – after a rootkit attack has
taken place, while the smaller number of efforts in kernel rootkit preven-
tion exhibit limitations in their capability or deployability. In this paper
we present a kernel rootkit prevention system called NICKLE which ad-
dresses a common, fundamental characteristic of most kernel rootkits: the
need for executing their own kernel code. NICKLE is a lightweight, vir-
tual machine monitor (VMM) based system that transparently prevents
unauthorized kernel code execution for unmodified commodity (guest)
OSes. NICKLE is based on a new scheme called memory shadowing,
wherein the trusted VMM maintains a shadow physical memory for a
running VM and performs real-time kernel code authentication so that
only authenticated kernel code will be stored in the shadow memory.
Further, NICKLE transparently routes guest kernel instruction fetches
to the shadow memory at runtime. By doing so, NICKLE guarantees
that only the authenticated kernel code will be executed, foiling the ker-
nel rootkit’s attempt to strike in the first place. We have implemented
NICKLE in three VMM platforms: QEMU+KQEMU, VirtualBox, and
VMware Workstation. Our experiments with 23 real-world kernel rootk-
its targeting the Linux or Windows OSes demonstrate NICKLE’s effec-
tiveness. Furthermore, our performance evaluation shows that NICKLE
introduces small overhead to the VMM platform.

1 Introduction

Kernel-level rootkits have proven to be a formidable threat to computer sys-
tems: By subverting the operating system (OS) kernel, a kernel rootkit embeds
itself into the compromised kernel and stealthily inflicts damages with full, un-
restricted access to the system’s resources. Effectively omnipotent in the com-
promised systems, kernel rootkits have increasingly been used by attackers to
hide their presence and prolong their control over their victims.

There have been a number of recent efforts in mitigating the threat of kernel
rootkits and they can mainly be classified into two categories: (1) detecting the

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 1–20, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 R. Riley, X. Jiang, and D. Xu

presence of kernel rootkits in a system [1, 2, 3, 4, 5] and (2) preventing the
compromise of OS kernel integrity [6, 7]. In the first category, Copilot [4] pro-
poses the use of a separate PCI card to periodically grab the memory image of
a running OS kernel and analyze it to determine if the kernel has been compro-
mised. The work which follows up Copilot [2] further extends that capability by
detecting the violation of kernel integrity using semantic specifications of static
and dynamic kernel data. SBCFI [3] reports violations of the kernel’s control
flow integrity using the kernel’s control-flow graph. One common attribute of
approaches in this category is the detection of a kernel rootkit’s presence based
on certain symptoms exhibited by the kernel after the kernel rootkit has already
struck. As a result, these approaches are, by design, not capable of preventing
kernel rootkit execution in the first place.

In the second category, Livewire [6], based on a virtual machine monitor
(VMM), aims at protecting the guest OS kernel code and critical kernel data
structures from being modified. However, without modifying the original ker-
nel code, an attacker may choose to load malicious rootkit code into the kernel
space by either exploiting kernel vulnerabilities or leveraging certain kernel fea-
tures (e.g., loadable kernel module support in modern OSes). More recently,
SecVisor [7] is proposed as a hypervisor-based solution to enforce the W⊕X
property of memory pages of the guest machine, with the goal of preventing
unauthorized code from running with kernel-level privileges. SecVisor requires
modifying kernel source code and needs the latest hardware-based virtualiza-
tion support and thus does not support closed-source OSes or legacy hardware
platforms. Moreover, SecVisor is not able to function if the OS kernel has mixed
pages that contain both code and data. Unfortunately, such mixed kernel pages
do exist in modern OSes (e.g., Linux and Windows as shown in Section 2.2).

To complement the existing approaches, we present NICKLE (“No Instruction
Creeping into Kernel Level Executed”)1, a lightweight, VMM-based system that
provides an important guarantee in kernel rootkit prevention: No unauthorized
code can be executed at the kernel level. NICKLE achieves this guarantee on top
of legacy hardware and without requiring guest OS kernel modification. As such,
NICKLE is readily deployable to protect unmodified guest OSes (e.g., Fedora
Core 3/4/5 and Windows 2K/XP) against kernel rootkits. NICKLE is based on
observing a common, fundamental characteristic of most modern kernel rootkits:
their ability to execute unauthorized instructions at the kernel level. By removing
this ability, NICKLE significantly raises the bar for successfully launching kernel
rootkit attacks.

To achieve the “NICKLE” guarantee, we first observe that a kernel rootkit
is able to access the entire physical address space of the victim machine. This
observation inspires us to impose restricted access to the instructions in the
kernel space: only authenticated kernel instructions can be fetched for execution.
Obviously, such a restriction cannot be enforced by the OS kernel itself. Instead,

1 With a slight abuse of terms, we use NICKLE to denote both the system itself and
the guarantee achieved by the system – when used in quotation marks.

Guest-Transparent Prevention of Kernel Rootkits 3

a natural strategy is to enforce such memory access restriction using the VMM,
which is at a privilege level higher than that of the (guest) OS kernel.

Our main challenge is to realize the above VMM-level kernel instruction fetch
restriction in a guest-transparent, real-time, and efficient manner. An intuitive
approach would be to impose W⊕X on kernel memory pages to protect existing
kernel code and prevent the execution of injected kernel code. However, due to
the existence of mixed kernel pages in commodity OSes, this approach is not
viable for guest-transparent protection. To address that, we propose a VMM-
based memory shadowing scheme for NICKLE that will work in the face of mixed
kernel pages. More specifically, for a virtual machine (VM), the VMM creates
two distinct physical memory regions: a standard memory and a shadow memory.
The VMM enforces that the guest OS kernel cannot access the shadow memory.
Upon the VM’s startup, the VMM performs kernel code authentication and
dynamically copies authenticated kernel instructions from the standard memory
to the shadow memory. At runtime, any instruction executed in the kernel space
must be fetched from the shadow memory instead of from the standard memory.
To enforce this while maintaining guest transparency, a lightweight guest memory
access indirection mechanism is added to the VMM. As such, a kernel rootkit
will never be able to execute any of its own code as the code injected into the
kernel space will not be able to reach the shadow memory.

We have implemented NICKLE in three VMMs: QEMU[8] with the KQEMU
accelerator, VirtualBox [9], and VMware Workstation. Our evaluation results
show that NICKLE incurs a reasonable impact on the VMM platform (e.g.,
1.01% on QEMU+KQEMU and 5.45% on VirtualBox when running UnixBench).
NICKLE is shown capable of transparently protecting a variety of commodity
OSes, including RedHat 8.0 (Linux 2.4.18 kernel), Fedora Core 3 (Linux 2.6.15
kernel), Windows 2000, and Windows XP. Our results show that NICKLE is
able to prevent and gracefully respond to 23 real-world kernel rootkits targeting
the above OSes, without requiring details of rootkit attack vectors. Finally, our
porting experience indicates that the NICKLE design is generic and realizable
in a variety of VMMs.

2 NICKLE Design

2.1 Design Goals and Threat Model

Goals and Challenges. NICKLE has the following three main design goals:
First, as its name indicates, NICKLE should prevent any unauthorized code
from being executed in the kernel space of the protected VM. The challenges
of realizing this goal come from the real-time requirement of prevention as well
as from the requirement that the guest OS kernel should not be trusted to
initiate any task of the prevention – the latter requirement is justified by the
kernel rootkit’s highest privilege level inside the VM and the possible existence
of zero-day vulnerabilities inside the guest OS kernel. NICKLE overcomes these
challenges using the VMM-based memory shadowing scheme (Section 2.2). We

4 R. Riley, X. Jiang, and D. Xu

VM

Guest OS

Standard Memory

Kernel code

Kernel code

Shadow Memory

Auth. kernel code

Auth. kernel code

VMM

Physical
Memory

NICKLE Module

Applications

Kernel code authentication and copying

(a) Kernel code authorization and copying

VM

Guest OS

VMM
NICKLE Module

Guest physical address

Physical
Memory

Standard Memory

Kernel code

Kernel code

Applications

Other memory accesses Guest kernel instruction fetch

Shadow Memory

Auth. kernel code

Auth. kernel code

(b) Guest physical address redirection

Fig. 1. Memory shadowing scheme in NICKLE

note that the scope of NICKLE is focused on preventing unauthorized kernel
code execution. The prevention of other types of attacks (e.g., data-only attacks)
is a non-goal and related solutions will be discussed in Section 5.

Second, NICKLE should not require modifications to the guest OS kernel.
This allows commodity OSes to be supported “as is” without recompilation and
reinstallation. Correspondingly, the challenge in realizing this goal is to make
the memory shadowing scheme transparent to the VM with respect to both the
VM’s function and performance.

Third, the design of NICKLE should be generically portable to a range of
VMMs. Given this, the challenge is to ensure that NICKLE has a small footprint
within the VMM and remains lightweight with respect to performance impact.
In this paper we focus on supporting NICKLE in software VMMs. However, we
expect that the exploitation of recent hardware-based virtualization extensions
[10, 11] will improve NICKLE’s performance even further.

In addition, it is also desirable that NICKLE facilitate various flexible response
mechanisms to be activated upon the detection of an unauthorized kernel code
execution attempt. A flexible response, for example, is to cause only the offending
process to fail without stopping the rest of the OS. The challenge in realizing
this is to initiate flexible responses entirely from outside the protected VM and
minimize the side-effects on the running OS.
Threat Model and System Assumption. We assume the following ad-
versary model when designing NICKLE: (1) The kernel rootkit has the highest
privilege level inside the victim VM (e.g., the root privilege in a UNIX system);
(2) The kernel rootkit has full access to the VM’s memory space (e.g., through
/dev/mem in Linux); (3) The kernel rootkit aims at stealthily maintaining and
hiding its presence in the VM and to do so, the rootkit will need to execute its
own (malicious) code in the kernel space. We note that such a need exists in
most kernel rootkits today, and we will discuss possible exceptions in Section 5.

Guest-Transparent Prevention of Kernel Rootkits 5

Meanwhile, we assume a trusted VMM that provides VM isolation. This as-
sumption is shared by many other VMM-based security research efforts [1, 6, 12,
13, 14, 15]. We will discuss possible attacks (e.g., VM fingerprinting) in Section
5. With this assumption, we consider the threat from DMA attacks launched
from physical hosts outside of the scope of this work.2

2.2 Enabling Scheme and Techniques

Memory Shadowing. The memory shadowing scheme enforces the “NICKLE”
property: For a VM, apart from its standard physical memory space, the VMM
also allocates a separate physical memory region as the VM’s shadow memory
(Figure 1) which is transparent to the VM and controlled by the VMM. Upon
the startup of the VM’s OS, all known-good, authenticated guest kernel instruc-
tions will be copied from the VM’s standard memory to the shadow memory
(Figure 1(a)). At runtime, when the VM is about to execute a kernel instruc-
tion, the VMM will transparently redirect the kernel instruction fetch to the
shadow memory (Figure 1(b)). All other memory accesses (to user code, user
data, and kernel data) will proceed unhindered in the standard memory.

The memory shadowing scheme is motivated by the observation that modern
computers define a single memory space for all code – both kernel code and user
code – and data. With the VMM running at a higher privilege level, we can now
“shadow” the guest kernel code space with elevated (VMM-level) privileges to
ensure that the guest OS kernel itself cannot access the shadowed kernel code
space containg the authenticated kernel instructions. By doing so, even if a kernel
rootkit is able to inject its own code into the VM’s standard memory, the VMM
will ensure that the malicious code never gets copied over to the shadow memory.
Moreover, an attempt to execute the malicious code can be caught immediately
due to the inconsistency between the standard and shadow memory contents.

The astute reader may be asking “How is NICKLE functionally different from
W⊕X?” In essence, W⊕X is a scheme that enforces the property, “A given
memory page will never be both writable and executable at the same time.”
The basic premise behind this scheme is that if a page cannot be written to
and later executed from, code injection becomes impossible. There are two main
reasons why this scheme is not adequate for stopping kernel level rootkits:

First, W⊕X is not able to protect mixed kernel pages with both code and
data, which do exist in current OSes. As a specific example, in a Fedora Core
3 VM (with the 32-bit 2.6.15 kernel and the NX protection), the Linux kernel
stores the main static kernel text in memory range [0xc0100000, 0xc02dea50]
and keeps the system call table starting from virtual address 0xc02e04a0. No-
tice that the Linux kernel uses a large page size (2MB) to manage the physical
memory,3 which means that the first two kernel pages cover memory ranges
2 There exists another type of DMA attack that is initiated from within a guest VM.

However, since the VMM itself virtualizes or mediates the guest DMA operations,
NICKLE can be easily extended to intercede and block them.

3 If the NX protection is disabled, those kernel pages containing static kernel text will
be of 4MB in size.

6 R. Riley, X. Jiang, and D. Xu

[0xc0000000, 0xc0200000) and [0xc0200000, 0xc0400000), respectively. As a re-
sult, the second kernel page contains both code and data, and thus must be
marked both writable and executable – This conflicts with the W⊕X scheme.
Mixed pages also exist for accommodating the code and data of Linux loadable
kernel modules (LKMs) – an example will be shown in Section 4.1. For the Win-
dows XP kernel (with SP2), our investigation has confirmed the existence of
mixed pages as well [16]. On the other hand, NICKLE is able to protect mixed
pages.4

Second, W⊕X assumes only one execution privilege level while kernel rootkit
prevention requires further distinction between user and kernel code pages. For
example, a page may be set executable in user mode but non-executable in
kernel mode. In other words, the sort of permission desired is not W⊕X, but
W⊕KX (i.e. not writable and kernel-executable at the same time.) Still, we point
out that the enforcement of W⊕KX is not effective for mixed kernel pages and,
regardless, not obvious to construct on current processors that do not allow such
fine-grained memory permissions.

Another question that may be asked is, “Why adopt memory shadowing when
one could simply guard kernel code by keeping track of the ranges of valid
kernel code addresses ?” Indeed, NICKLE is guided by the principle of kernel
code guarding, but does so differently from the brute-force approach of track-
ing/checking kernel code address ranges – mainly for performance reasons. More
specifically, the brute-force approach could store the address ranges of valid
kernel code in a data structure (e.g., tree) with O(logN) search time. On the
other hand, memory shadowing allows us to locate the valid kernel instruction
in the shadow memory in O(1) time thus significantly reducing the process-
ing overhead. In addition, memory shadowing makes it convenient to compare
the instructions in the shadow memory to those in the standard memory. If
they differ (indicating malicious kernel code injection or modification), a num-
ber of response actions can be implemented based on the difference (details in
Section 3).
Guest Memory Access Indirection. To realize the guest memory shadow-
ing scheme, two issues need to be resolved. First, how does NICKLE fill up
the guest shadow memory with authenticated kernel code? Second, how does
NICKLE fetch authenticated kernel instructions for execution while detecting
and preventing any attempt to execute unauthorized code in the kernel space?
We note that our solutions have to be transparent to the guest OS (and thus
to the kernel rootkits). We now present the guest memory access indirection
technique to address these issues.

4 We also considered the option of eliminating mixed kernel pages. However, doing so
would require kernel source code modification, which conflicts with our second design
goal. Even given source code access, mixed page elimination is still a complex task
(more than just page-aligning data). In fact, a kernel configuration option with a
similar purpose exists in the latest Linux kernel (version 2.6.23). But after we enabled
the option, we still found more than 700 mixed kernel pages. NICKLE instead simply
avoids such complexity and works even with mixed kernel pages.

Guest-Transparent Prevention of Kernel Rootkits 7

Guest memory access indirection is performed between the VM and its mem-
ory (standard and shadow) by a thin NICKLE module inside the VMM. It has
two main functions, kernel code authentication and copying at VM startup and
upon kernel module loading as well as guest physical address redirection at run-
time (Figure 1).
Kernel Code Authentication and Copying. To fill up the shadow memory with
authenticated kernel instructions, the NICKLE module inside the VMM needs to
first determine the accurate timing for kernel code authentication and copying.
To better articulate the problem, we will use the Linux kernel as an example.
There are two specific situations throughout the VM’s lifetime when kernel code
needs to be authorized and shadowed: One at the VM’s startup and one upon
the loading/unloading of loadable kernel modules (LKMs). When the VM is
starting up, the guest’s shadow memory is empty. The kernel bootstrap code
then decompresses the kernel. Right after the decompression and before any
processes are executed, NICKLE will use a cryptographic hash to verify the
integrity of the kernel code (this is very similar to level 4 in the secure bootstrap
procedure [17]) and then copy the authenticated kernel code from the standard
memory into the shadow memory (Figure 1(a)). As such, the protected VM will
start with a known clean kernel.

The LKM support in modern OSes complicates our design. From NICKLE’s
perspective, LKMs are considered injected kernel code and thus need to be au-
thenticated and shadowed before their execution. The challenge for NICKLE is
to externally monitor the guest OS and detect the kernel module loading/unload-
ing events in real-time. NICKLE achieves this by leveraging our earlier work on
non-intrusive VM monitoring and semantic event reconstruction [1, 14]. When
NICKLE detects the loading of a new kernel module, it intercepts the VM’s exe-
cution and performs kernel module code authentication and shadowing. The au-
thentication is performed by taking a cryptographic hash of the kernel module’s
code segment and comparing it with a known correct value, which is computed
a priori off-line and provided by the administrator or distribution maintainer.5

If the hash values don’t match, the kernel module’s code will not be copied to
the shadow memory.

Through kernel code authentication and copying, only authenticated kernel
code will be loaded into the shadow memory, thus blocking the copying of ma-
licious kernel rootkit code or any other code injected by exploiting kernel vul-
nerabilities, including zero-day vulnerabilities. It is important to note that nei-
ther kernel startup hashing nor kernel module hashing assumes trust in the
guest OS. Should the guest OS fail to cooperate, no code will be copied to the
shadow memory, and any execution attempts from that code will be detected and
refused.
Guest Physical Address Redirection. At runtime, the NICKLE module inside the
VMM intercepts the memory accesses of the VM after the “guest virtual address
→ guest physical address” translation. As such, NICKLE does not interfere
5 We have developed an off-line kernel module profiler that, given a legitimate kernel

module, will compute the corresponding hash value (Section 3.1).

8 R. Riley, X. Jiang, and D. Xu

with – and is therefore transparent to – the guest OS’s memory access handling
procedure and virtual memory mappings. Instead, it takes the guest physical
address, determines the type of the memory access (kernel, user; code, data;
etc.), and routes it to either the standard or shadow memory (Figure 1(b)).

We point out that the interception of VM memory accesses can be provided
by existing VMMs (e.g., QEMU+KQEMU, VirtualBox, and VMware). NICKLE
builds on this interception capability by adding the guest physical address redi-
rection logic. First, using a simple method to check the current privilege level
of the processor, NICKLE determines whether the current instruction fetch is
for kernel code or for user code: If the processor is in supervisor mode (CPL=0
on x86), we infer that the fetch is for kernel code and NICKLE will verify and
route the instruction fetch to the shadow memory. Otherwise, the processor is in
user mode and NICKLE will route the instruction fetch to the standard memory.
Data accesses of either type are always routed to the standard memory.

One might object that an attacker may strive to ensure that his injected
kernel code will run when the processor is in user mode. However, this creates a
significant challenge wherein the attacker would have to fundamentally change
a running kernel to operate in both supervisor and user mode without changing
any existing kernel code. The authors do not consider such a rootkit to be a
possibility without a severe loss of rootkit functionality.

Flexible Responses to Unauthorized Kernel Code Execution Attempts
If an unauthorized execution attempt is detected, a natural follow-up question
is, “How should NICKLE respond to an attempt to execute an unauthenticated
kernel instruction?” Given that NICKLE sits between the VM and its memory
and has a higher privilege level than the guest OS, it possesses a wide range of
options and capabilities to respond. We describe two response modes facilitated
by the current NICKLE system.
Rewrite mode: NICKLE will dynamically rewrite the malicious kernel code with
code of its own. The response code can range from OS-specific error handling
code to a well-crafted payload designed to clean up the impact of a rootkit
installation attempt. Note that this mode may require an understanding of the
guest OS to ensure that valid, sensible code is returned.
Break mode: NICKLE will take no action and route the instruction fetch to
the shadow memory. In the case where the attacker only modifies the origi-
nal kernel code, this mode will lead to the execution of the original code – a
desirable situation. However, in the case where new code is injected into the
kernel, this mode will lead to an instruction fetch from presumably null content
(containing 0s) in the shadow memory. As such, break mode prevents malicious
kernel code execution but may or may not be graceful depending on how the OS
handles invalid code execution faults.

3 NICKLE Implementation

To validate the portability of the NICKLE design, we have implemented
NICKLE in three VMMs: QEMU+KQEMU [8], VirtualBox [9], and VMware

Guest-Transparent Prevention of Kernel Rootkits 9

Workstation6. Since the open-source QEMU+KQEMU is the VMM platform
where we first implemented NICKLE, we use it as the representative VMM to
describe our implementation details. For most of this section, we choose RedHat
8.0 as the default guest OS. We will also discuss the limitations of our current
prototype in supporting Windows guest OSes.

3.1 Memory Shadowing and Guest Memory Access Indirection

To implement memory shadowing, we have considered two options: (1) NICKLE
could interfere as instructions are executed; or (2) NICKLE could interfere when
instructions are dynamically translated. Note that dynamic instruction transla-
tion is a key technique behind existing software-based VMMs, which transpar-
ently translates guest machine code into native code that will run in the physical
host. We favor the second option for performance reasons: By being part of the
translator, NICKLE can take advantage of the fact that translated code blocks are
cached. In QEMU+KQEMU, for example, guest kernel instructions are grouped
into “blocks” and are dynamically translated at runtime. After a block of code is
translated, it is stored in a cache to make it available for future execution. In terms
of NICKLE, this means that if we intercede during code translation we need not
intercede as often as we would if we did so during code execution, resulting in a
smaller impact on system performance.

The pseudo-code for memory shadowing and guest memory access indirection
is shown in Algorithm 1. Given the guest physical address of an instruction to
be executed by the VM, NICKLE first checks the current privilege level of the
processor (CPL). If the processor is in supervisor mode, NICKLE knows that it is
executing in kernel mode. Using the guest physical address, NICKLE compares
the content of the standard and shadow memories to determine whether the
kernel instruction to be executed is already in the shadow memory (namely
has been authenticated). If so, the kernel instruction is allowed to be fetched,
translated, and executed. If not, NICKLE will determine if the guest OS kernel
is being bootstrapped or a kernel module is being loaded. If either is the case,
the corresponding kernel text or kernel module code will be authenticated and,
if successful, shadowed into the shadow memory. Otherwise, NICKLE detects an
attempt to execute an unauthorized instruction in the kernel space and prevents
it by executing our response to the attempt.

In Algorithm 1, the way to determine whether the guest OS kernel is being
bootstrapped or a kernel module is being loaded requires OS-specific knowledge.
Using the Linux 2.4 kernel as an example, when the kernel’s startup 32 function,
located at physical address 0x00100000 or virtual address 0xc0100000 as
shown in the System.map file, is to be executed, we know that this is the first

6 We acknowledge the VMware Academic Program for providing the source code. Due
to space and licensing constraints, however, the VMware port is not further discussed
or evaluated in this work. Some additional discussion of the port is available in our
technical report [16].

10 R. Riley, X. Jiang, and D. Xu

Algorithm 1. Algorithm for Memory Shadowing and Guest Memory Access
Indirection
Input: (1) GuestPA: guest physical address of instruction to be executed; (2) ShadowMEM[]:

shadow memory; (3) StandardMEM[]: standard memory

if !IsUserMode(vcpu) AND ShadowMEM[GuestPA] != StandardMEM[GuestPA] then1
if (kernel is being bootstrapped) OR (module is being loaded) then2

Authenticate and shadow code;3
else4

Unauthorized execution attempt - Execute response;5
end6

end7
Fetch, translate, and cache code;8

instruction executed to load the kernel and we can intercede appropriately. For
kernel module loading, there is a specific system call to handle that. As such,
the NICKLE module inside the VMM can intercept the system call and perform
kernel module authentication and shadowing right before the module-specific
init module routine is executed.

In our implementation, the loading of LKMs requires special handling. More
specifically, providing a hash of a kernel module’s code space ends up being
slightly complicated in practice. This is due to the fact that kernel modules
are dynamically relocatable and hence some portions of the kernel module’s
code space may be modified by the module loading function. Accordingly, the
cryptographic hash of a loaded kernel module will be different depending on
where it is relocated to. To solve this problem, we perform an off-line, a priori
profiling of the legitimate kernel module binaries. For each known good module
we calculate the cryptographic hash by excluding the portions of the module that
will be changed during relocation. In addition, we store a list of bytes affected
by relocation so that the same procedure can be repeated by NICKLE during
runtime hash evaluation of the same module.

We point out that although the implementation of NICKLE requires certain
guest OS-specific information, it does not require modifications to the guest
OS itself. Still, for a closed-source guest OS (e.g., Windows), lack of information
about kernel bootstrapping and dynamic kernel code loading may lead to certain
limitations. For example, not knowing the timing and “signature” of dynamic
(legal) kernel code loading events in Windows, the current implementation of
NICKLE relies on the administrator to designate a time instance when all au-
thorized Windows kernel code has been loaded into the standard memory. Not
knowing the exact locations of the kernel code, NICKLE traverses the shadow
page table and copies those executable pages located in the kernel space from the
standard memory to the shadow memory, hence creating a “gold standard” to
compare future kernel code execution against. From this time on, NICKLE can
transparently protect the Windows OS kernel from executing any unauthorized
kernel code. Moreover, this limited implementation can be made complete when
the relevant information becomes available through vendor disclosure or reverse
engineering.

Guest-Transparent Prevention of Kernel Rootkits 11

3.2 Flexible Response

In response to an attempt to execute an unauthorized instruction in the kernel
space, NICKLE provides two response modes. Our initial implementation of
NICKLE simply re-routes the instruction fetch to the shadow memory for a
string of zeros (break mode). As to be shown in our experiments, this produces
some interesting outcomes: a Linux guest OS would react to this by triggering a
kernel fault and terminating the offending process. Windows, on the other hand,
reacts to the NICKLE response by immediately halting with a blue screen – a
less graceful outcome.

In search of a more flexible response mode, we find that by rewriting the
offending instructions at runtime (rewrite mode), NICKLE can respond in a less
disruptive way. We also observe that most kernel rootkits analyzed behave the
following way: They first insert a new chunk of malicious code into the kernel
space; then they somehow ensure their code is call’d as a function. With this
observation, we let NICKLE dynamically replace the code with return -1;,
which in assembly is: mov $0xffffffff, %eax; ret. The main kernel text or
the kernel module loading process will interpret this as an error and gracefully
handle it: Our experiments with Windows 2K/XP, Linux 2.4, and Linux 2.6 guest
OSes all confirm that NICKLE’s rewrite mode is able to handle the malicious
kernel code execution attempt by triggering the OS to terminate the offending
process without causing a fault in the OS.

3.3 Porting Experience

We have experienced no major difficulty in porting NICKLE to other VMMs. The
NICKLE implementations in both VMMs are lightweight: The SLOC (source
lines of code) added to implement NICKLE in QEMU+KQEMU, VirtualBox,
and VMware Workstation are 853, 762, and 1181 respectively. As mentioned
earlier, we first implemented NICKLE in QEMU+KQEMU. It then took less
than one week for one person to get NICKLE functional in VirtualBox 1.5.0
OSE, details of which can be found in our technical report [16].

4 NICKLE Evaluation

4.1 Effectiveness Against Kernel Rootkits

We have evaluated the effectiveness of NICKLE with 23 real-world kernel rootk-
its. They consist of nine Linux 2.4 rootkits, seven Linux 2.6 rootkits, and seven
Windows rootkits7 that can infect Windows 2000 and/or XP. The selected rootk-
its cover the main attack platforms and attack vectors thus providing a good
representation of the state-of-the-art kernel rootkit technology. Table 1 shows

7 There is a Windows rootkit named hxdef or Hacker Defender, which is usually clas-
sified as a user-level rootkit. However, since hxdef contains a device driver which will
be loaded into the kernel, we consider it a kernel rootkit in this paper.

12 R. Riley, X. Jiang, and D. Xu

Table 1. Effectiveness of NICKLE in detecting and preventing 23 real-world kernel
rootkits (DKOM† is a common rootkit technique which directly manipulates kernel
objects; “partial”‡ means the in-kernel component of the Hacker Defender rootkit fails;
BSOD§ stands for “Blue Screen Of Death”)

Outcome of NICKLE Response
Guest OS Rootkit Attack Vector Rewrite Mode Break Mode

Prevented? Outcome Prevented? Outcome

Linux 2.4

adore 0.42, 0.53 LKM � insmod fails � Seg. fault
adore-ng 0.56 LKM � insmod fails � Seg. fault

knark LKM � insmod fails � Seg. fault
rkit 1.01 LKM � insmod fails � Seg. fault
kbdv3 LKM � insmod fails � Seg. fault
allroot LKM � insmod fails � Seg. fault

rial LKM � insmod fails � Seg. fault
Phantasmagoria LKM � insmod fails � Seg. fault

SucKIT 1.3b /dev/kmem � Installation fails silently � Seg. fault

Linux 2.6

adore-ng 0.56 LKM � insmod fails � Seg. fault
eNYeLKM v1.2 LKM � insmod fails � Seg. fault

sk2rc2 /dev/kmem � Installation fails � Seg. fault
superkit /dev/kmem � Installation fails � Seg. fault

mood-nt 2.3 /dev/kmem � Installation fails � Seg. fault
override LKM � insmod fails � Seg. fault

Phalanx b6 /dev/mem � Installation crashes � Seg. fault

Windows 2K/XP

FU DKOM†
� Driver loading fails � BSOD§

FUTo DKOM � Driver loading fails � BSOD
he4hook 215b6 Driver � Driver loading fails � BSOD

hxdef 1.0.0 revisited Driver partial‡ Driver loading fails � BSOD
hkdoor11 Driver � Driver loading fails � BSOD
yyt hac Driver � Driver loading fails � BSOD

NT Rootkit Driver � Driver loading fails � BSOD

our experimental results: NICKLE is able to detect and prevent the execution of
malicious kernel code in all experiments using both rewrite and break response
modes. Finally, we note that NICKLE in all three VMMs is able to achieve the
same results. In the following, we present details of two representative experi-
ments. Some additional experiments are presented in [16].

SucKIT Rootkit Experiment. The SucKIT rootkit [18] for Linux 2.4 infects
the Linux kernel by directly modifying the kernel through the /dev/kmem inter-
face. During installation SucKIT first allocates memory within the kernel, injects
its code into the allocated memory, and then causes the code to run as a function.
Figure 2 shows NICKLE preventing the SucKIT installation. The window on the
left shows the VM running RedHat 8.0 (with 2.4.18 kernel), while the window on
the right shows the NICKLE output. Inside the VM, one can see that the SucKIT
installation program fails and returns an error message “Unable to handle ker-
nel NULL pointer dereference”. This occurs because NICKLE (operating in break
mode) foils the execution of injected kernel code by fetching a string of zeros from
the shadow memory, which causes the kernel to terminate the rootkit installation
program. Interestingly, when NICKLE operates in rewrite mode, it rewrites the
malicious code and forces it to return −1. However, it seems that SucKIT does not
bother to check the return value and so the rootkit installation just fails silently
and the kernel-level functionality does not work.

In the right-side window in Figure 2, NICKLE reports the authentication
and shadowing of sequences of kernel instructions starting from the initial BIOS

Guest-Transparent Prevention of Kernel Rootkits 13

Fig. 2. NICKLE/QEMU+KQEMU foils the SucKIT rootkit (guest OS: RedHat 8.0)

bootstrap code to the kernel text as well as its initialization code and finally to
various legitimate kernel modules. In this experiment, there are five legitimate
kernel modules, parport.o, parport pc.o, ieee1394.o, ohci1394, and autofs.o, all
authenticated and shadowed. The code portion of the kernel module begins with
an offset of 0x60 bytes in the first page. The first 0x60 bytes are for the kernel
module header, which stores pointers to information such as the module’s name,
size, and other entries linking to the global linked list of loaded kernel modules.
This is another example of mixed kernel pages with code and data in Linux
(Section 2.2).

FU Rootkit Experiment. The FU rootkit [19] is a Windows rootkit that
loads a kernel driver and proceeds to manipulate kernel data objects. The ma-
nipulation will allow the attacker to hide certain running processes or device
drivers loaded in the kernel. When running FU on NICKLE, the driver is unable
to load successfully as the driver-specific initialization code is considered unau-
thorized kernel code. Figure 3 compares NICKLE’s two response modes against
FU’s attempt to load its driver. Under break mode, the OS simply breaks with
a blue screen. Under rewrite mode, the FU installation program fails (“Failed to
initialize driver.”) but the OS does not crash.

4.2 Impact on Performance

To evaluate NICKLE’s impact on system performance we have performed
benchmark-based measurements on both VMMs – with and without NICKLE.
The physical host in our experiments has an Intel 2.40GHz processor and 3GB of
RAM running Ubuntu Linux 7.10. QEMU version 0.9.0 with KQEMU 1.3.0pre11
or VirtualBox 1.5.0 OSE is used where appropriate. The VM’s guest OS is
Redhat 8.0 with a custom compile of a vanilla Linux 2.4.18 kernel and is
started inuniprocessor mode with the default amount of memory (256MB for

14 R. Riley, X. Jiang, and D. Xu

(a) Under break mode (b) Under rewrite mode

Fig. 3. Comparison of NICKLE/QEMU+KQEMU’s response modes against the FU
rootkit (guest OS: Windows 2K)

Table 2. Software configuration for performance evaluation

Item Version Configuration Item Version Configuration
Redhat 8.0 Using Linux 2.4.18 Apache 2.0.59 Using the default high-performance

configuration file
Kernel 2.4.18 Standard kernel compilation ApacheBench 2.0.40-dev -c3 -t 60 <url/file>

Unixbench 4.1.0 -10 index

Table 3. Application benchmark results

QEMU+KQEMU VirtualBox
Benchmark w/o NICKLE w/NICKLE Overhead w/o NICKLE w/ NICKLE Overhead

Kernel Compiling 231.490s 233.529s 0.87% 156.482s 168.377s 7.06%
insmod 0.088s 0.095s 7.34% 0.035s 0.050s 30.00%
Apache 351.714 req/s 349.417 req/s 0.65% 463.140 req/s 375.024 req/s 19.03%

VirtualBox and 128MB for QEMU+KQEMU). Table 2 shows the software con-
figuration for the measurement. For the Apache benchmark, a separate ma-
chine connected to the host via a dedicated gigabit switch is used to launch
ApacheBench. When applicable, benchmarks are run 10 times and the results
are averaged.

Three application-level benchmarks (Table 3) and one micro-benchmark
(Table 4) are used to evaluate the system. The first application benchmark is
a kernel compilation test: A copy of the Linux 2.4.18 kernel is uncompressed,
configured, and compiled. The total time for these operations is recorded and
a lower number is better. Second, the insmod benchmark measures the amount
of time taken to insert a module (in this case, the ieee1394 module) into the
kernel and again lower is better. Third, the ApacheBench program is used to
measure the VM’s throughput when serving requests for a 16KB file. In this
case, higher is better. Finally, the UnixBench micro-benchmark is executed to
evaluate the more fine-grained performance impact of NICKLE. The numbers

Guest-Transparent Prevention of Kernel Rootkits 15

Table 4. UnixBench results (for the first two data columns, higher is better)

QEMU+KQEMU VirtualBox
Benchmark w/o NICKLE w/NICKLE Overhead w/o NICKLE w/ NICKLE Overhead
Dhrystone 659.3 660.0 -0.11% 1843.1 1768.6 4.04%
Whetstone 256.0 256.0 0.00% 605.8 543.0 10.37%

Execl 126.0 127.3 -1.03% 205.4 178.2 13.24%
File copy 256B 45.5 46 -1.10% 2511.8 2415.7 3.83%
File copy 1kB 67.6 68.2 -0.89% 4837.5 4646.9 3.94%
File copy 4kB 128.4 127.4 0.78% 7249.9 7134.3 1.59%

Pipe throughput 41.7 40.7 2.40% 4646.9 4590.9 1.21%
Process creation 124.7 118.2 5.21% 92.1 85.3 7.38%
Shell scripts (8) 198.3 196.7 0.81% 259.2 239.8 7.48%

System call 20.9 20.1 3.83% 2193.3 2179.9 0.61%
Overall 106.1 105.0 1.01% 1172.6 1108.7 5.45%

reported in Table 4 are an index where higher is better. It should be noted that
the benchmarks are meant primarily to compare a NICKLE-enhanced VMM
with the corresponding unmodified VMM. These numbers are not meant to
compare different VMMs (such as QEMU+KQEMU vs. VirtualBox).

QEMU+KQEMU. The QEMU+KQEMU implementation of NICKLE ex-
hibits very low overhead in most tests. In fact, a few of the benchmark tests show
a slight performance gain for the NICKLE implementation, but we consider these
results to signify that there is no noticeable slowdown due to NICKLE for that
test. From Table 3 it can be seen that both the kernel compilation and Apache
tests come in below 1% overheard. The insmod test has a modest overhead,
7.3%, primarily due to the fact that NICKLE must calculate and verify the hash
of the module prior to copying it into the shadow memory. Given how infre-
quently kernel module insertion occurs in a running system, this overhead is not
a concern. The UnixBench tests in Table 4 further testify to the efficiency of the
NICKLE implementation in QEMU+KQEMU, with the worst-case overhead of
any test being 5.21% and the overall overhead being 1.01%. The low overhead of
NICKLE is due to the fact that NICKLE’s modifications to the QEMU control
flow only take effect while executing kernel code (user-level code is executed by
the unmodified KQEMU accelerator).

VirtualBox. The VirtualBox implementation has a more noticeable overhead
than the QEMU+KQEMU implementation, but still runs below 10% for the
majority of the tests. The kernel compilation test, for example, exhibits about
7% overheard; while the UnixBench suite shows a little less than 6% overall.
The Apache test is the worst performer, showing a 19.03% slowdown. This can
be attributed to the heavy number of user/kernel mode switches that occur
while serving web requests. It is during the mode switches that the Virtual-
Box implementation does its work to ensure only verified code will be executed
directly [16], hence incurring overhead. The insmod test shows a large perfor-
mance degradation, coming in at 30.0%. This is due to the fact that module
insertion on the VirtualBox implementation entails the VMM leaving native
code execution as well as verifying the module. However, this is not a concern
as module insertion is an uncommon event at runtime. Table 4 shows that the

16 R. Riley, X. Jiang, and D. Xu

worst performing UnixBench test (Execl) results in an overhead of 13.24%. This
result is most likely due to a larger number of user/kernel mode switches that
occur during that test.

In summary, our benchmark experiments show that NICKLE incurs minimal
to moderate impact on system performance, relative to that of the respective
original VMMs.

5 Discussion

In this section, we discuss several issues related to NICKLE. First, the goal of
NICKLE is to prevent unauthorized code from executing in the kernel space,
but not to protect the integrity of kernel-level control flows. This means that
it is possible for an attacker to launch a “return-into-libc” style attack within
the kernel by leveraging only the existing authenticated kernel code. Recent
work by Shacham [20] builds a powerful attacker who can execute virtually
arbitrary code using only a carefully crafted stack that causes jumps and calls
into existing code. Fortunately, this approach cannot produce persistent code to
be called on demand from other portions of the kernel. And Petroni et al. [3]
found that 96% of the rootkits they surveyed require persistent code changes.
From another perspective, an attacker may also be able to directly or indirectly
influence the kernel-level control flow by manipulating certain non-control data
[21]. However, without its own kernel code, this type of attack tends to have
limited functionality. For example, all four stealth rootkit attacks described in
[22] need to execute their own code in the kernel space and hence will be defeated
by NICKLE. Meanwhile, solutions exist for protecting control flow integrity [3,
23, 24] and data flow integrity [25], which can be leveraged and extended to
complement NICKLE.

Second, the current NICKLE implementation does not support self-modifying
kernel code. This limitation can be removed by intercepting the self-modifying
behavior (e.g., based on the translation cache invalidation resulting from the
self-modification) and re-authenticating and shadowing the kernel code after the
modification.

Third, NICKLE currently does not support kernel page swapping. Linux does
not swap out kernel pages, but Windows does have this capability. To support
kernel page swapping in NICKLE, it would require implementing the introspec-
tion of swap-out and swap-in events and ensuring that the page being swapped
in has the same hash as when it was swapped out. Otherwise an attacker could
modify swapped out code pages without NICKLE noticing. This limitation has
not yet created any problem in our experiments, where we did not encounter
any kernel level page swapping.

Fourth, targeting kernel-level rootkits, NICKLE is ineffective against user-
level rootkits. However, NICKLE significantly elevates the trustworthiness of
the guest OS, on top of which anti-malware systems can be deployed to defend
against user-level rootkits more effectively.

Guest-Transparent Prevention of Kernel Rootkits 17

Fifth, the deployment of NICKLE increases the memory footprint for the
protected VM. In the worst case, memory shadowing will double the physical
memory usage. As our future work, we can explore the use of demand-paging
to effectively reduce the extra memory requirement to the actual amount of
memory needed. Overall, it is reasonable and practical to trade memory space
for elevated OS kernel security.

Finally, we point out that NICKLE assumes a trusted VMM to achieve the
“NICKLE” property. This assumption is needed because it essentially establishes
the root-of-trust of the entire system and secures the lowest-level system access.
We also acknowledge that a VM environment can potentially be fingerprinted
and detected [26, 27] by attackers so that their malware can exhibit different
behavior [28]. We can improve the fidelity of the VM environment (e.g., [29,
30]) to thwart some of the VM detection methods. Meanwhile, as virtualization
continues to gain popularity, the concern over VM detection may become less
significant as attackers’ incentive and motivation to target VMs increases.

6 Related Work

Rootkit Prevention Through Kernel Integrity Enforcement. The first
area of related work includes recent efforts in enforcing kernel integrity to thwart
kernel rootkit installation or execution. Livewire [6], based on a software-based
VMM, aims at protecting the guest OS kernel code and critical data structures
from being modified. However, an attacker may choose to load malicious rootkit
code into the kernel space without manipulating the original kernel code.

SecVisor [7] is a closely related work that leverages new hardware extensions to
enforce life-time kernel integrity and provide a guarantee similar to “NICKLE”.
However, there are two main differences between SecVisor and NICKLE: First,
the deployment of SecVisor requires modification to OS kernel source code as
well as the latest hardware support for MMU and IOMMU virtualization. In
comparison, NICKLE is a guest-transparent solution that supports guest OSes
“as is” on top of legacy hardware platforms. In particular, NICKLE does not rely
on the protection of any guest OS data structures (e.g., the GDT – global de-
scriptor table). Second, SecVisor is developed to enforce the W⊕X principle for
the protected VM kernel code. This principle intrinsically conflicts with mixed
kernel pages, which exist in current OSes (e.g., Linux and Windows). NICKLE
works in the presence of mixed kernel pages. OverShadow [31] adopts a similar
technique of memory shadowing at the VMM level with the goal of protecting
application memory pages from modification by even the OS itself. In compar-
ison, NICKLE has a different goal and aims at protecting the OS from kernel
rootkits.

To ensure kernel code integrity, techniques such as driver signing [32] as well
as various forms of driver verification [5, 33] have also been proposed. These
techniques are helpful in verifying the identity or integrity of the loaded driver.
However, a kernel-level vulnerability could potentially be exploited to bypass

18 R. Riley, X. Jiang, and D. Xu

these techniques. In comparison, NICKLE operates at the lower VMM level and
is capable of blocking zero-day kernel-level exploitations.

Symptom-Driven Kernel Rootkit Detection. The second area of related
work is the modeling and specification of symptoms of a rootkit-infected OS
kernel which can be used to detect kernel rootkits. Petroni et al. [4] and Zhang
et al. [34] propose the use of external hardware to grab the runtime OS memory
image and detect possible rootkit presence by spotting certain kernel code in-
tegrity violations (e.g., rootkit-inflicted kernel code manipulation). More recent
works further identify possible violations of semantic integrity of dynamic ker-
nel data [2] or state based control-flow integrity of kernel code [3]. Generalized
control-flow integrity [23] may have strong potential to be used as a prevention
technique, but as yet has not been applied to kernel integrity. Other solutions
such as Strider GhostBuster [35] and VMwatcher [1] target the self-hiding na-
ture of rootkits and infer rootkit presence by detecting discrepancies between the
views of the same system from different perspectives. All the above approaches
are, by design, for the detection of a kernel rootkit after it has infected a system.
Instead, NICKLE is for the prevention of kernel rootkit execution in the first
place.

Attestation-Based Rootkit Detection. The third area of related work
is the use of attestation techniques to verify the software running on a target
platform. Terra [13] and other code attestation schemes [36, 37, 38] are proposed
to verify software that is being located into the memory for execution. These
schemes are highly effective in providing the load-time attestation guarantee.
Unfortunately, they are not able to provide run-time kernel integrity.

7 Conclusion

We have presented the design, implementation, and evaluation of NICKLE, a
VMM-based approach that transparently detects and prevents the launching of
kernel rootkit attacks against guest VMs. NICKLE achieves the “NICKLE”
guarantee, which foils the common need of existing kernel rootkits to exe-
cute their own unauthorized code in the kernel space. NICKLE is enabled by
the scheme of memory shadowing, which achieves guest transparency through
the guest memory access indirection technique. NICKLE’s portability has been
demonstrated by its implementation in three VMM platforms. Our experiments
show that NICKLE is effective in preventing 23 representative real-world kernel
rootkits that target a variety of commodity OSes. Our measurement results show
that NICKLE adds only modest overhead to the VMM platform.

Acknowledgements. The authors would like to thank the anonymous review-
ers for their insightful comments that helped improve the presentation of this
paper. This work was supported in part by NSF Grants CNS-0716376, CNS-
0716444 and CNS-0546173.

Guest-Transparent Prevention of Kernel Rootkits 19

References

[1] Jiang, X., Wang, X., Xu, D.: Stealthy Malware Detection through VMM-Based
“Out-of-the-Box” Semantic View Reconstruction. In: Proceedings of the ACM Con-
ference on Computer and Communications Security (CCS 2007) (October 2007)

[2] Petroni Jr., N.L., Fraser, T., Walters, A., Arbaugh, W.A.: An Architecture for
Specification-based Detection of Semantic Integrity Violations in Kernel Dynamic
Data. In: Proceedings of the 15th USENIX Security Symposium (2006)

[3] Petroni Jr., N.L., Hicks, M.: Automated Detection of Persistent Kernel Control-
Flow Attacks. In: Proceedings of the ACM Conference on Computer and Com-
munications Security (CCS 2007) (October 2007)

[4] Petroni, N., Fraser, T., Molina, J., Arbaugh, W.: Copilot: A Coprocessor-based
Kernel Runtime Integrity Monitor. In: Proceedings of the 13th USENIX Security
Symposium, pp. 179–194 (2004)

[5] Wilhelm, J., Chiueh, T.-c.: A Forced Sampled Execution Approach to Kernel
Rootkit Identification. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID
2007. LNCS, vol. 4637, pp. 219–235. Springer, Heidelberg (2007)

[6] Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architec-
ture for Intrusion Detection. In: Proc. Network and Distributed Systems Security
Symposium (NDSS 2003) (February 2003)

[7] Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: A Tiny Hypervisor to Guar-
antee Lifetime Kernel Code Integrity for Commodity OSes. In: Proceedings of the
ACM Symposium on Operating Systems Principles (SOSP 2007) (October 2007)

[8] Bellard, F.: QEMU: A Fast and Portable Dynamic Translator. In: Proceedings of
the USENIX Annual Technical Conference, FREENIX Track, pp. 41–46 (2005)

[9] Innotek: Virtualbox (Last accessed, September 2007),
http://www.virtualbox.org/

[10] Intel: Vanderpool Technology (2005),
http://www.intel.com/technology/computing/vptech

[11] AMD: AMD64 Architecture Programmer’s Manual Volume 2: System Program-
ming, 3.12 edition (September 2006)

[12] Dunlap, G., King, S., Cinar, S., Basrai, M., Chen, P.: ReVirt: Enabling Intrusion
Analysis through Virtual Machine Logging and Replay. In: Proc. USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 2002) (2002)

[13] Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: A Virtual
Machine-Based Platform for Trusted Computing. In: Proc. of ACM Symposium
on Operating System Principles (SOSP 2003) (October 2003)

[14] Jiang, X., Wang, X.: “Out-of-the-Box” Monitoring of VM-Based High-Interaction
Honeypots. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS,
vol. 4637, pp. 198–218. Springer, Heidelberg (2007)

[15] Joshi, A., King, S., Dunlap, G., Chen, P.: Detecting Past and Present Intrusions
through Vulnerability-specific Predicates. In: Proc. ACM Symposium on Operat-
ing Systems Principles (SOSP 2005), pp. 91–104 (2005)

[16] Riley, R., Jiang, X., Xu, D.: Guest-Transparent Prevention of Kernel Rootkits
with VMM-based Memory Shadowing. Technical report CERIAS TR 2001-146,
Purdue University

[17] Arbaugh, W.A., Farber, D.J., Smith, J.M.: A Secure and Reliable Bootstrap Ar-
chitecture. In: Proceedings of IEEE Symposium on Security and Privacy, May
1997, pp. 65–71 (1997)

[18] sd, devik: Linux on-the-fly Kernel Patching without LKM. Phrack 11(58) Article 7
[19] fuzen op: Fu rootkit (Last accessed, September 2007), http://www.rootkit.

com/project.php?id=12

http://www.virtualbox.org/
http://www.intel.com/technology/computing/vptech
http://www.rootkit.
com/project.php?id=12

20 R. Riley, X. Jiang, and D. Xu

[20] Shacham, H.: The Geometry of Innocent Flesh on the Bone: Return-into-libc
without Function Calls (on the x86). In: Proceedings of the ACM Conference on
Computer and Communications Security (CCS 2007) (October 2007)

[21] Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.: Non-Control-Data Attacks
Are Realistic Threats. In: Proceedings of the 14th USENIX Security Symposium
(August 2005)

[22] Baliga, A., Kamat, P., Iftode, L.: Lurking in the Shadows: Identifying Systemic
Threats to Kernel Data. In: Proc. of IEEE Symposium on Security and Privacy
(Oakland 2007) (May 2007)

[23] Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control Flow Integrity: Princi-
ples, Implementations, and Applications. In: Proc. ACM Conference on Computer
and Communications Security (CCS 2005) (November 2005)

[24] Grizzard, J.B.: Towards Self-Healing Systems: Re-establishing Trust in Compro-
mised Systems. Ph.D. Thesis, Georgia Institute of Technology (May 2006)

[25] Castro, M., Costa, M., Harris, T.: Securing Software by Enforcing Data-Flow
Integrity. In: Proc. of USENIX Symposium on Operating Systems Design and
Implementation (OSDI 2006) (2006)

[26] Klein, T.: Scooby Doo - VMware Fingerprint Suite (2003),
http://www.trapkit.de/research/vmm/scoopydoo/index.html

[27] Rutkowska, J.: Red Pill: Detect VMM Using (Almost) One CPU Instruction (No-
vember 2004), http://invisiblethings.org/papers/redpill.html

[28] F-Secure Corporation: Agobot, http://www.f-secure.com/v-descs/agobot.shtml
[29] Kortchinsky, K.: Honeypots: Counter Measures to VMware Fingerprinting (Jan-

uary 2004), http://seclists.org/lists/honeypots/2004/Jan-Mar/0015.html
[30] Liston, T., Skoudis, E.: On the Cutting Edge: Thwarting Virtual Machine

Detection (2006), http://handlers.sans.org/tliston/ThwartingVMDetection
Liston Skoudis.pdf

[31] Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Waldspurger, C.A.,
Boneh, D., Dwoskin, J., Ports, D.R.K.: Overshadow: A Virtualization-Based Ap-
proach to Retrofitting Protection in Commodity Operating Systems. In: Proc. of
the 13th Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2008) (March 2008)

[32] Microsoft Corporation: Driver Signing for Windows,
http://www.microsoft.com/resources/documentation/windows/xp/all/
proddocs/en-us/code signing.mspx?mfr=true

[33] Kruegel, C., Robertson, W., Vigna, G.: Detecting Kernel-Level Rootkits Through
Binary Analysis. In: Yew, P.-C., Xue, J. (eds.) ACSAC 2004. LNCS, vol. 3189,
pp. 91–100. Springer, Heidelberg (2004)

[34] Zhang, X., van Doorn, L., Jaeger, T., Perez, R., Sailer, R.: Secure Coprocessor-
based Intrusion Detection. In: Proceedings of the 10th ACM SIGOPS European
Workshop, pp. 239–242 (2002)

[35] Wang, Y.M., Beck, D., Vo, B., Roussev, R., Verbowski, C.: Detecting Stealth
Software with Strider GhostBuster. In: Proc. IEEE International Conference on
Dependable Systems and Networks (DSN 2005), pp. 368–377 (2005)

[36] Kennell, R., Jamieson, L.H.: Establishing the Genuinity of Remote Computer
Systems. In: Proc. of the 12th USENIX Security Symposium (August 2003)

[37] Sailer, R., Jaeger, T., Zhang, X., van Doorn, L.: Attestation-based Policy En-
forcement for Remote Access. In: Proc. of ACM Conference on Computer and
Communications Security (CCS 2004) (October 2004)

[38] Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and Implementation of a
TCG-based Integrity Measurement Architecture. In: Proc. of the 13th USENIX
Security Symposium (August 2004)

http://www.trapkit.de/research/vmm/scoopydoo/index.html
http://invisiblethings.org/papers/redpill.html
http://www.f-secure.com/v-descs/agobot.shtml
http://seclists.org/lists/honeypots/2004/Jan-Mar/0015.html
http://handlers.sans.org/tliston/ThwartingVMDetection_
Liston_Skoudis.pdf
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/code_signing.mspx?mfr=true
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/code_signing.mspx?mfr=true

	Introduction
	NICKLE Design
	Design Goals and Threat Model
	Enabling Scheme and Techniques

	NICKLE Implementation
	Memory Shadowing and Guest Memory Access Indirection
	Flexible Response
	Porting Experience

	NICKLE Evaluation
	Effectiveness Against Kernel Rootkits
	Impact on Performance

	Discussion
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

