
On Peer-to-Peer Media Streaming

Dongyan Xu, Mohamed Hefeeda, Susanne E. Hambrusch, Bharat Bhargava∗

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907, USA
dxu@cs.purdue.edu

Abstract

Although there have been significant research efforts in peer-to-peer systems, media streaming in peer-
to-peer systems has received less attention. In this paper, we study the following characteristics of a peer-
to-peer media streaming system: (1) the system capacity grows dynamically; (2) peers are not supposed to
exhibit server-like behavior; (3) peers are heterogeneous in bandwidth availability, and one peer may have
asymmetric in-bound/out-bound bandwidth; and (4) a peer-to-peer streaming session may involve multiple
supplying peers.

Based on these characteristics, we identify two new research issues and present novel solutions. The
first issue is the scheduling of media data transmission from multiple peers in a peer-to-peer streaming
session. Our solution is an optimal algorithm OTSp2p. For each peer-to-peer streaming session, OTSp2p

computes a transmission schedule that results in the minimum buffering delay. The second issue is the fast
amplification of the peer-to-peer system capacity. Our solution is a fully distributed differentiated admission
control protocol DACp2p. By differentiating between requesting peers with different out-bound bandwidth,
DACp2p (1) achieves fast system capacity amplification, (2) benefits all requesting peers in admission rate,
waiting time, and buffering delay, and (3) creates an incentive for peers to offer their truly available out-
bound bandwidth. Our simulation results show excellent performance of DACp2p.

1 Introduction

‘Peer-to-peer’ has become an attractive distributed computing paradigm, following the popularity of (and

perhaps the dispute in) current peer-to-peer applications such as Napster [3] and Gnutella [2]. In a purely

peer-to-peer system, there is no centralized entity or control mechanism. Every participating peer shares the

∗Submitted to IEEE International Conference on Distributed Computing Systems (ICDCS 2002), July 2-5, 2002 - Vienna,
Austria. Also as Computer Science Technical Report, Purdue University, November 2001.

1

same responsibility as well as benefit; and the peers directly communicate with each other for data sharing

and exchange, as shown in Figure 1(a).

Although there have been significant research efforts in general peer-to-peer systems during the past two

years [13, 14, 17, 12, 15], one special type of peer-to-peer system has so far received much less attention: the

peer-to-peer media streaming system. The major difference between a general peer-to-peer system and a

peer-to-peer media streaming system lies in the data sharing mode among peers: the former uses the ‘open-

after-downloading’ mode, while the latter uses the ‘play-while-downloading’ mode. More specifically, in a

peer-to-peer media streaming system, a subset of peers own a certain media file, and they stream the media

file to requesting peers. On the other hand, the requesting peers playback and store the media data during

the streaming session, and they become supplying peers of the media file after the streaming session.

��������

������

		
������

����

��������

��������

(a) General peer-to-peer system

�������
��

��

 !"�"#�#

$�$%&
&'

()*�*+

,�,-

.�./01

(b) Peer-to-peer media streaming system

Figure 1: General peer-to-peer system and peer-to-peer media streaming system: a comparison

In this paper, we identify new research issues that arise from peer-to-peer media streaming, and present

our novel solutions to these issues. We first describe the four characteristics of a peer-to-peer media stream-

ing system that we address in this paper - the first three are shared by all peer-to-peer systems, while the last

one is unique in peer-to-peer media streaming systems:

• First, a peer-to-peer media streaming system is self-growing. With requesting peers to become sup-

plying peers, the system’s total capacity will be amplified: the more number of peers it serves, the

larger the capacity it will have.

• Second, a peer-to-peer media streaming system is server-less. A peer is not supposed to exhibit

server-like behavior, such as opening a large number of simultaneous network connections. This

may in practice be very harmful to other hosts sharing the same network (such as a campus network).

2

Therefore, the power of a peer-to-peer streaming system should lie in the large number of participating

peers, rather than in the high capacity of certain individual peers.

• Third, peers in a peer-to-peer media streaming system are heterogeneous in their bandwidth avail-

ability and particularly, in their out-bound bandwidth availability. This heterogeneity may be due to

the different access networks (such as Ethernet, xDSL, cable modem, and ISDN) that connect peers

to the backbone; or due to the asymmetric in-bound/out-bound bandwidth of a peer. The asymmetry

in turn, is either due to the access network technology (such as in the case of ADSL), or due to the

asymmetric willingness of a peer: it is more willing to spend high in-bound bandwidth to receive the

peer-to-peer streaming service, than to offer the same amount of out-bound bandwidth to provide the

peer-to-peer streaming service.

• Finally, in a peer-to-peer media streaming session, the supplying-peer/requesting-peer relation is typ-

ically multiple-to-one, instead of one-to-one as in the general peer-to-peer system. This is due to (1)

the real-time nature of media streaming and (2) the peers’ heterogeneity in their out-bound bandwidth

offers. Suppose the out-bound bandwidth offered by each supplying peer is lower than the original

recording/playback rate of the media data1. In order to provide real-time streaming to the requesting

peer, it is necessary to involve multiple supplying peers in one peer-to-peer streaming session, whose

bandwidth offers add up to the original media data rate. As shown in Figure 1(b), each supplying peer

will transmit a subset of the media data; while the requesting peer will collect and synchronize the

data for real-time playback.

The above characteristics must be taken into consideration when building a peer-to-peer media streaming

system. In this paper, we identify two new issues which arise from the above characteristics2 . To the best

of our knowledge, this paper presents the first in-depth study on these issues in the context of peer-to-

peer media streaming:

• The first issue is the transmission scheduling of a peer-to-peer streaming session. More specifically,

given a requesting peer and a set of supplying peers with heterogeneous (out-bound) bandwidth offers,

we want to answer the following questions: For each supplying peer, how to determine the subset of

media data it will transmit? For the requesting peer, how to synchronize among the supplying peers

to ensure continuous playback, and how to minimize the initial media data buffering delay?

1We assume that a requesting peer is always willing and able to spend the amount of in-bound bandwidth equal to the original
media data rate.

2We realize that there are other important issues in peer-to-peer media streaming, such as media data storage and location.
However, they are not the focus of this paper.

3

• The second issue is the fast amplification of the peer-to-peer system capacity. For the supplying

peers, their contributions to the peer-to-peer system capacity vary, due to the heterogeneity in their

(out-bound) bandwidth offers. In order to quickly amplify the peer-to-peer system capacity, an in-

tuitive approach is a differentiated admission policy. More specifically, among multiple requesting

peers, service priority should be given to those with higher (out-bound) bandwidth offers, because

they will contribute more to the peer-to-peer system capacity after becoming supplying peers. The

questions are: Will fast capacity amplification ultimately benefit all peers? If so, What is an appropri-

ate differentiated admission policy, and how to implement this policy in a purely distributed fashion?

The first issue is from the angle of an individual peer-to-peer streaming session; while the second issue is

from the angle of the overall peer-to-peer streaming system. In this paper, we present our solutions to these

issues. More specifically:

• For the first issue, we propose an algorithm OTSp2p that computes the optimal transmission schedule

for a given set of supplying peers. The optimal schedule will result in the shortest buffering delay.

The requesting peer executes Algorithm OTSp2p before the peer-to-peer streaming session, and then

uses the computed transmission schedule to coordinate the supplying peers.

• For the second issue, we propose a distributed differentiated admission control protocol DACp2p, to

be executed by both supplying and requesting peers. Compared with the current non-differentiated ad-

mission control mechanism, Protocol DACp2p achieves (1) faster amplification of peer-to-peer system

capacity; (2) higher admission rate and fewer average number of rejections (before a peer is admitted)

among all requesting peers; and (3) shorter average buffering delay among all admitted requesting

peers. Furthermore, for (2) and (3), the protocol also differentiates between requesting peers with

different (out-bound) bandwidth offers, creating an incentive for them to offer their truly available

bandwidth.

The rest of the paper is organized as follows: we first define our peer-to-peer media streaming model in

Section 2. Based on this model, Section 3 presents our first solution to the issue of transmission scheduling;

while Section 4 presents our second solution to the issue of fast system capacity amplification. Section 5

evaluates the performance of the proposed protocol via extensive simulations. Section 6 compares our work

with related work. Finally, Section 7 concludes this paper.

4

2 A Peer-to-Peer Media Streaming Model

In this section, we define a peer-to-peer media streaming model, which captures the characteristics (Sec-

tion 1) of a peer-to-peer media streaming system. The model is specified in the following aspects:

(1) Roles of peers In a peer-to-peer streaming system, for each media file (such as a movie), there are

supplying peers and requesting peers. Requesting peers are the ones that request the streaming of the media

data. Once a requesting peer has received the peer-to-peer streaming service, it will become a supplying

peer.

On the other hand, supplying peers are the ones that provide the media data. Since supplying peers

are not supposed to be servers, we assume that each supplying peer can only participate in one peer-to-

peer streaming session at any time. A majority of the supplying peers obtain the media data from the

peer-to-peer streaming service they have received. However, at the beginning, there must be some ‘seed’

supplying peers, which obtain the media data from some external media source, such as a TV cable channel

or a DVD.

(2) Storage of peers In this model, we assume that each peer in the peer-to-peer streaming system has

sufficient storage to save the entire media file3.

(3) Bandwidth of peers Let R0 denote the original recording/playback rate of the media data. We

assume in this model that each requesting peer Pr is willing and able to spend an in-bound bandwidth of

Rin(Pr) = R0, in order to receive the streaming service.

On the other hand, due to the bandwidth heterogeneity and asymmetry, the out-bound bandwidth Rout(Ps)

offered by a supplying peer Ps can only be in one of the following amounts: R0

2 , R0

4 , R0

8 ... R0

2N
4. Therefore,

in our model, one peer-to-peer streaming session will be performed by two or more supplying peers. As will

be shown in Section 3, the values of R0

2n (1 ≤ n ≤ N) make it easier to solve the transmission scheduling

problem.

(4) Classes of peers We then classify all peers into N classes, according to the N possible amounts of

out-bound bandwidth they may offer after becoming supplying peers. More specifically, a peer willing to

offer an out-bound bandwidth of R0

2n (1 ≤ n ≤ N) is called a class-n peer. We also assume that the lower

the n, the higher the class.

(5) Capacity of the peer-to-peer streaming system We define the capacity of the peer-to-peer streaming

system as the total number of peer-to-peer streaming sessions that can be provided at the same time by all

3The problem of heterogeneity in peers’ storage is our on-going work. However, we believe that bandwidth heterogeneity is a
more imperative problem than storage heterogeneity, with the significant increase of disk volume in today’s personal PCs.

4We deliberately do not assume any supplying peers with out-bound bandwidth offer of R0, in order to highlight the asymmetric
in-bound/out-bound bandwidth.

5

current supplying peers. Since a peer-to-peer streaming session involves multiple supplying peers whose

Rout(Ps) add up to R0, the capacity of the system at time t can be computed as (suppose Ps(t) is the set of

supplying peers in the system at t):

Csys(t) = b

∑
Ps∈Ps(t)(Rout(Ps))

R0
c (1)

(6) Segments of media data We assume that the media data can be partitioned into small sequential

segments of equal sizes. We also assume that the media data are of Constant-Bit-Rate (CBR)5. Therefore,

the playback time of each segment is the same, and denoted as δt. δt is typically in the magnitude of seconds.

3 Optimal Transmission Scheduling of a Peer-to-Peer Streaming Session

In this section, we study the first issue: the transmission scheduling of an individual peer-to-peer media

streaming session. Based on the peer-to-peer media streaming model (Section 2), the problem can be stated

as follows: For a requesting peer Pr, suppose that the set of supplying peers have been determined as

P 1
s , P 2

s , ...P m
s . If the following condition is true:

R0 = Rin(Pr) =
m∑

i=1

Rout(P
i
s) (2)

how to determine (1) the media data segments to be transmitted by P i
s (1 ≤ i ≤ m); and (2) the transmission

start time for P i
s (1 ≤ i ≤ m) and the playback start time for Pr? The goal is to ensure a continuous playback

of full media data with minimum buffering delay at Pr.

3.1 Impact of Transmission Schedule on Buffering Delay

Different transmission schedules may lead to different buffering delays. This is illustrated by the example

in Figure 2. In this example, the set of supplying peers is P 1
s , P 2

s , P 3
s , P 4

s and the requesting peer is Pr. The

out-bound bandwidth offered by P 1
s , P 2

s , P 3
s , and P 4

s are R0

2 , R0

4 , R0

8 , and R0

8 , respectively. We define the

buffering delay as the time interval between the start of media data segment transmission from at least one of

the supplying peers and the start of continuous playback at Pr. We also suppose that a media data segment

is the minimum buffering unit, i.e. Pr cannot start the playback before at least one media data segment is

received.
5The CBR media data model has been used in earlier works on media broadcasting [7]. However, we plan to study the case of

Variable-Bit-Rate (VBR) media data in the future.

6

As shown in Figure 2, different media data assignments lead to different buffering delays. The requesting

peer is Pr; and the supplying peers are P 1
s , P 2

s , P 3
s , P 4

s with out-bound bandwidth of R0

2 , R0

4 , R0

8 , and R0

8 ,

respectively. In Assignment I, P 1
s is assigned media data segments 8k, 8k+1, 8k+2, 8k+3 (k = 0, 1, 2, 3...);

P 2
s is assigned segments 8k + 4, 8k + 5; P 3

s is assigned segments 8k + 6; and P 4
s is assigned segments

8k + 7. The start time of playback at Pr is 5δt. Therefore, the buffering delay achieved by Assignment I is

5δt. However, if Assignment II is used, the buffering delay will be reduced to 4δt.

3.2 An Algorithm for Computing Optimal Transmission Schedules

From the example in Figure 2, we realize that in order to achieve the minimum buffering delay, a faster

supplying peer (i.e. a peer of higher class) can start its transmission sooner than a slower supplying peer (i.e.

a peer of lower class), so that the latency of the latter can overlap with the playback of media data segments

with lower sequence numbers. Furthermore, the assignment of media data segments to each supplying peer

is crucial in achieving the earliest playback time, and there is no naive rule to determine the assignment.

We propose an algorithm OTSp2p, which computes the optimal media data assignment that leads to the

minimum buffering delay. The algorithm is executed by the requesting peer. After computing the media

data assignment, it will initiate the peer-to-peer streaming session by notifying each participating supplying

peer of the corresponding assignment. The supplying peer will then start the transmission of its assigned

media data segments.

The pseudo-code of Algorithm OTSp2p is shown in Figure 3. Suppose that the m supplying peers have

been sorted in descending order according to their out-bound bandwidth offers; and that the lowest class

among them is class-n. The algorithm computes the assignment of the first 2n segments; and the assignment

repeats itself every 2n segments for the rest of the media file. In fact, Assignment II in Figure 2 is computed

by OTSp2p: after the first ‘while’ iteration, segments 7, 6, 5, 4 are assigned to P 1
s , P 2

s , P 3
s , and P 4

s ,

respectively; and P 3
s and P 4

s are done with the assignment. After the second ‘while’ iteration, segment 3 is

assigned to P 1
s . During the third ‘while’ iteration, segments 2 and 1 are assigned to P 1

s and P 2
s , respectively;

and P 2
s is done. During the last ‘while’ iteration, segment 0 is assigned to P 1

s .

The optimality of Algorithm OTSp2p is stated in Theorem 1, which gives a (somewhat surprisingly)

simple form of the minimum buffering delay. The proof of Theorem 1 can be found in the Appendix.

Theorem 1 Given a set of m supplying peers {P 1
s , P 2

s ...P m
s } and a requesting peer Pr, if we have R0 =

Rin(Pr) =
∑m

i=1 Rout(P
i
s), then Algorithm OTSp2p will compute an optimal media data assignment, which

achieves the minimum buffering delay in the consequent peer-to-peer streaming session. The minimum

buffering delay is T min
buf = m ∗ δt.

7

3.3 Synchronizing the Supplying Peers

Algorithm OTSp2p is executed by the requesting peer. After computing the optimal transmission sched-

ule, it initiates the peer-to-peer streaming session by notifying the participating supplying peers of the

transmission schedule, i.e. the corresponding (1) media data segment assignment and (2) transmission start

time for each of them. We note that due to the distributed nature of peer-to-peer streaming, it is not possi-

ble to achieve a perfect synchronization among the supplying peers according to the transmission schedule.

Fortunately, Pr can absorb the media data arrival jitter by introducing an additional buffering time upon the

arrival of each segment. And this additional latency (typically in tens or hundreds of milliseconds) is trivial

compared with the buffering delay (in seconds) caused by the transmission schedule.

4 Fast Capacity Amplification of a Peer-to-Peer Streaming System

In the previous section, we present our solution to the issue of transmission scheduling. However, we

did not answer the question of how a requesting peer determines the set of supplying peers. In this section,

we will answer this question. Moreover, we will present our solution to the second issue of fast capacity

amplification of the entire peer-to-peer system. Our solution is a fully distributed protocol for differentiated

admission control for requesting peers.

4.1 The Need for a Differentiated Admission Policy

Recall that one of the most salient and exciting differences between a peer-to-peer streaming system

and a traditional client-server streaming system is that the capacity of the peer-to-peer system dynamically

grows: the more number of peers served, the greater capacity the peer-to-peer system will gain. However,

the issue of capacity amplification has not been fully addressed in the general peer-to-peer systems [13,

14, 17, 12, 15]. Furthermore, no previous work has identified the problem of capacity amplification in

peer-to-peer media streaming systems with bandwidth offer heterogeneity.

To illustrate the problem in peer-to-peer system capacity amplification, we study the following simple

scenario as shown in Figure 4: suppose at time t0, there are four supplying peers in the system: two class-2

peers P 1
s and P 2

s (i.e. each offering out-bound bandwidth of R0

4) and two class-1 peers P 3
s and P 4

s (i.e. each

offering out-bound bandwidth of R0

2). According to the system capacity definition in Section 2, the capacity

of the peer-to-peer streaming system at t0 is b(R0

4 + R0

4 + R0

2 + R0

2)/R0c = 1. This means that the system

can admit one requesting peer at t0. Now, suppose there are three requesting peers: two class-2 peers P 1
r and

P 2
r (i.e. each will offer an out-bound bandwidth of R0

4 after it becomes a supplying peer); and one class-1

8

peer P 3
r (i.e. will offer an out-bound bandwidth of R0

2).

Figure 4 shows that different admission decisions lead to different degree of capacity amplification. In

Figure 4(a), P 1
r is admitted at t0. At t0 + T (T denotes the duration of the peer-to-peer streaming session),

the capacity is still 1. P 2
r is admitted next, and at t0 + 2T , the capacity becomes 2. Finally, P 3

r is admitted.

By t0 + 3T , all three requesting peers are served. However, as shown in Figure 4(b), if P 3
r is admitted at t0,

then at t0 +T , the system capacity will grow to 2. Therefore, both P 1
r and P 2

r can be admitted at t0 +T . By

t0 + 2T , all three requesting peers are served. Moreover, we define the waiting time of a requesting peer as

the interval between its first streaming request time and the earliest time it can be admitted. Then in Figure

4(a), the average waiting time of P 1
r , P 2

r , and P 3
r is (0 + T + 2T)/3 = T ; while in Figure 4(b), the average

waiting time is (T + T + 0)/3 = 2T
3 .

The simple example in Figure 4 suggests that a differentiated admission policy which favors higher-class

requesting peers will lead to a faster amplification of the peer-to-peer system capacity, and will ultimately

benefit requesting peers of every class. This is reflected by the shorter average waiting time of all requesting

peers in the example. On the contrary, if the admission policy is non-differentiated, i.e. the admission of

a requesting peer is independent of its future bandwidth offer after it becomes a supplying peer, the entire

peer-to-peer system may suffer from slower capacity growth and longer average waiting time among all

requesting peers. In a large scale peer-to-peer streaming system with thousands of peers, the effect of the

admission policy will become more obvious, which is confirmed by our performance study in Section 5.

However, it is not easy to realize a differentiated admission policy in the peer-to-peer streaming system.

Such a policy should meet the following challenges:

• First, it should lead to fast amplification of the peer-to-peer streaming system capacity. In the long

term, this will benefit all requesting peers by allowing them to receive the streaming service earlier

than under a non-differentiated policy. However, in the short term, the policy should not completely

deny the admission of lower-class requesting peers.

• Second, it should be enforced in a purely distributed fashion. Due to the distributed nature of peer-to-

peer systems, it is not desirable to assume any centralized entity which enforces the admission policy.

Although centralized directory servers may exist in some peer-to-peer systems such as Napster [3],

we do not assume that they will perform the admission control. Otherwise, our solution would not be

applicable to other purely distributed peer-to-peer systems [2, 5, 12].

• Third, it should be differentiating in the following sense: the higher the out-bound bandwidth to be

offered by a requesting peer, the greater the possibility that it will be admitted, and the shorter the

9

waiting time as well as buffering delay it will experience. In some sense, this differentiation creates

an incentive to encourage requesting peers to contribute its truly available out-bound bandwidth to

the peer-to-peer streaming system6.

• Finally, it should be adaptive to different request/supply situations. The admission preference should

be dynamically adjusted according to the current requesting/supplying condition. For example, when

the arrival rate of class-1 requesting peers is low and the system has relatively sufficient capacity, the

preferences to the lower-class requesting peers should be properly elevated.

4.2 A Distributed Admission Control Protocol

As a solution to the challenges in the previous sub-section, we present a novel distributed admission

control protocol DACp2p, to be executed by every supplying peer and every requesting peer. Protocol

DACp2p has two key features: (1) Each supplying peer individually decides whether or not to participate

in a streaming session requested by a requesting peer. The decision is made in a probabilistic fashion, with

different probability values applied to different classes of requesting peers. Furthermore, the probabilities

are dynamically adjusted. (2) We propose a new technique called reminder: under certain conditions (to be

detailed shortly), a requesting peer Pr may send a ‘reminder’ to a busy supplying peer Ps, reminding Ps not

to elevate its admission preferences to requesting peers of classes lower than that of Pr.

Protocol DACp2p can be described from the angles of a supplying peer and a requesting peer:

(1) Each supplying peer Ps maintains an admission probability vector < Pr[1], P r[2]..., P r[N] >.

Pr[i] (1 ≤ i ≤ N) will be applied to class-i requesting peers: if a class-i requesting peer contacts Ps for

streaming service and Ps is not busy participating in another streaming session, Ps will grant the request

with probability Pr[i]. Suppose Ps itself is a class-k peer, then the values in the probability vector of Ps is

determined as follows:

• (a) Initially, when Ps becomes a supplying peer, its probability vector is initialized as follows:

– For 1 ≤ i ≤ k, we initialize Pr[i] = 1.0;

– For k < i ≤ N , we initialize Pr[i] = 1
2i−k .

The intuition behind this initialization is: since Ps is a class-k peer itself, it will favor requesting peers

of class-k and higher by always granting their streaming requests. However, for requesting peers
6There is, however, an important assumption here: since the bandwidth offer commitment is made when the requesting peer

requests streaming service, there must be a mechanism to enforce the bandwidth offer commitment when the requesting peer
becomes a supplying peer. It is expected that the enforcement mechanism be implemented in the peer-to-peer system software
installed in each peer with proper trust and authentication. Since this is outside the scope of this paper, we simply assume that the
enforcement mechanism exists.

10

of lower classes, it will exponentially decrease the admission probability. We call class i a favored

class of Ps, if Ps currently has Pr[i] = 1.0. For example, for a class-2 supplying peer (and suppose

N = 4), its initial admission probability vector is < 1.0, 1.0, 0.5, 0.25 >, and its initial favored

classes are classes 1 and 2.

• (b) If Ps has been idle, then its probability vector will be updated after a timeout period of Tout. The

update is performed as follows: for each k < i ≤ N , Pr[i] = Pr[i] ∗ 2. This means that Ps will

‘elevate’ the admission probabilities of lower-class requesting peers, if it has not been serving any

requesting peer in the past period of Tout. If Ps remains idle, the update will be performed after every

period of Tout, until every probability in its probability vector is 1.0, i.e. every class is Ps’s favored

class.

• (c) If Ps has just finished serving in a peer-to-peer streaming session, Ps will update its probability

vector as follows:

– If during the streaming session, it did not receive any request from a requesting peer of its favored

class, Ps will elevate the admission probability of the lower classes, similar to the update in (b):

for each k < i ≤ N , Pr[i] = Pr[i] ∗ 2.

– If during the session, it received at least one request from a requesting peer of its favored class,

the request was not granted because Ps was busy. Under a certain condition (to be described later

from the angle of each requesting peer), the requesting peer left a ‘reminder’ to Ps. Suppose k̂

is the highest favored class of requesting peer(s) which left a ‘reminder’, then for 1 ≤ i ≤ k̂,

Pr[i] = 1.0; and for k̂ < i ≤ N , Pr[i] = 1

2i−k̂
.

In the first case, Ps ‘relaxes’ the admission preference, because it has not been requested by any peer

of its current favored classes. In the second case, Ps ‘tightens’ the admission preference, because there

have been ‘reminders’ from requesting peers of its favored classes which should have been served,

had Ps not been busy.

(2) Each requesting peer Pr first obtains a list of M randomly selected candidate supplying peers via

some peer-to-peer service lookup/discovery mechanism7. We assume that the class of each candidate is also

obtained. Pr then directly contacts the candidate supplying peers - from high to low classes:

• Pr will be admitted, if Pr is able to obtain permissions from enough supplying peers (among the M

candidates) such that: (1) they are neither down nor busy with another streaming session; (2) they are
7For example, by querying a centralized directory server as in Napster [3], by using a distributed lookup service such as Chord

[14], or by broadcasting the query as in [6]. However, peer-to-peer service lookup/discovery is outside the scope of this paper.

11

willing to provide the streaming service (i.e. having passed the probabilistic admission test); and (3)

their aggregated out-bound bandwidth offer is Rsum = R0. Pr will then execute Algorithm OTSp2p

to compute the transmission schedule (Section 3.2), triggers the participating supplying peers, and the

peer-to-peer streaming session will begin.

• Pr will be rejected, if Pr is not able to get permission from enough supplying peers that satisfy all

three conditions above. However, Pr will leave a ‘reminder’ to a subset W of the busy candidates. W

is determined as follows: from high-class to low-class busy candidates, the first few that satisfy the

following conditions will belong to W : (1) the candidate currently favors the class of Pr; and (2) the

aggregated out-bound bandwidth offer of the candidates in W is equal to (R0 − Rsum). Each (busy)

candidate in W keeps the ‘reminder’; and when its current streaming session is over, it will use this

reminder to update its probability vector, as described earlier from the angle of each supplying peer.

We note that in the reminder technique, a reminded supplying peer may not in the future serve exactly

the same requesting peer which left the reminder. Instead, we propose reminder as a distributed

mechanism to realize differentiated and adaptive admission control, based on the current and overall

request/supply situation in the peer-to-peer streaming system.

• If Pr is admitted, when the streaming session is over, it will become a supplying peer. If Pr is rejected,

it will backoff for at least a period of Tbkf before making the request again. Furthermore, its backoff

period will become Tbkf × Ex−1
bkf after the xth rejection.

As to be demonstrated in Section 5, Protocol DACp2p achieves differentiation toward different classes

of requesting peers - not only in their admission probabilities, but also in the waiting time and buffering

delay they experience. Moreover, the degree of differentiation is adaptive: it changes according to current

request/supply situation in the system. More specifically, the ‘elevate-after-timeout’ technique is employed

to relax the differentiation; while the ‘reminder’ technique is used to tighten the differentiation. Protocol

DACp2p has the following configurable system parameters: M - the number of candidate supplying peers

probed by a requesting peer; Tout - the time-out period for the elevation of lower-class admission probability;

and Tbkf and Ebkf - the initial value and exponential factor to determine the back-off period for a rejected

requesting peer. We will study the impact of these parameters on the protocol’s performance in Section 5.

12

5 Performance Study

In this section, we study the performance of Protocol DACp2p using extensive simulation results. We

show that Protocol DACp2p achieves the desired differentiation toward different classes of requesting peers.

Furthermore, by comparing with a non-differentiated admission protocol, we show that DACp2p achieves

faster system capacity amplification, as well as shorter average waiting time and buffering delay for all

requesting peers.

5.1 Simulation Setup

We simulate a peer-to-peer media streaming system with a total of 50,100 peers. Initially, there are only

100 ‘seed’ supplying peers, while the other 50,000 peers are requesting peers. Each ‘seed’ supplying peer

is a class-1 peer, and it possesses a copy of a popular video file. The show time of the video is 60 minutes.

The 50,000 requesting peers belong to classes 1, 2, 3, and 4, and their distribution is 10%, 10%, 40%, and

40%, respectively. This peer population distribution reflects the fact that the majority of the peer population

do not have high out-bound bandwidth8 .

For Protocol DACp2p, its parameters are set as follows: M = 8 - each requesting peer probes 8 ran-

domly selected candidate supplying peers; Tout = 20min - each idle supplying peer elevates the admission

probabilities of lower-class requesting peers every 20 minutes; and Tbkf = 10min,Ebkf = 2 - after the

ith rejection, a requesting peer will backoff for 10 ∗ 2i−1 minutes before retry. We will later adjust these

parameters to study their impact on performance. For comparison, we also simulate a non-differentiated

admission control protocol NDACp2p, in which the admission probability vector of each supplying peer is

always < 1.0, 1.0, 1.0, 1.0 >. NDACp2p also have the same values for parameters M,Tbkf , and Ebkf .

We simulate a video sharing period of 144 hours. During the first 72 hours, the 50,000 peers make their

first streaming requests. We simulate four different arrival patterns of first-time streaming requests, as shown

in Figure 59. Among the request arrivals in every hour, the class distribution of the corresponding peers is

the same as the overall population distribution.

5.2 Simulation Results

(1) System capacity amplification We first compare the system capacity amplification achieved by

DACp2p and NDACp2p. Figure 6 shows the growth of the peer-to-peer system capacity with the elapse

8This is reported in a recent measurement study of real-world peer-to-peer systems [13].
9As an initial effort to understand the peer-to-peer system capacity amplification, we do not simulate the on-line/off-line state

changes of the peers.

13

of time, under the four different (first-time) streaming request arrival patterns. Protocol DACp2p achieves

significantly faster system capacity growth than NDACp2p, especially during the first 72 hours when the

requesting peers make their first streaming requests. By the end of the 144-hour period, the system capacity

achieved by DACp2p has reached at least 95% of the maximum capacity if all 50,100 peers become sup-

plying peers. We also observe that after the first 72 hours, the system capacity growth slows down (under

both protocols), because all requests are now ‘retry’ requests, and no new requesting peers are coming. In

addition, the performance difference between DACp2p and NDACp2p is the most significant under arrival

pattern 3, because this bursty pattern is the most ‘stressful’ among the four patterns, making the need for

admission differentiation more critical.

(2) Request admission rate Figure 7 shows the per-class request admission rate (accumulative over

time) achieved by DACp2p and NDACp2p, under arrival patterns 2 and 4, respectively. We first observe

that by using DACp2p, different classes of requesting peers have different admission rates (Figures 7(a)

and 7(c)): the higher the class, the higher the admission rate. This admission differentiation leads to the fast

system capacity amplification shown in Figure 6. On the contrary, Protocol NDACp2p does not differentiate

between classes (Figures 7(b) and 7(d)), resulting in much slower capacity amplification. Furthermore, we

also observe that for requesting peers of classes 1, 2, and 3, their request admission rates in Figure 7(a) (7(c))

are constantly higher than those in Figure 7(b) (7(d)). Even for the class-4 requesting peers, this is also true

except for the first few hours. This observation indicates that DACp2p benefits all classes of requesting

peers.

(3) Average buffering delay Similar to (2), DACp2p also achieves both differentiation and overall ben-

efit, in the buffering delay experienced by requesting peers of different classes. The results are shown in

Figure 8. Recall that the buffering delay of a peer-to-peer streaming session is equal to δt multiplied by

the number of participating supplying peers (Theorem 1 in Section 3). On the other hand, in DACp2p, if

a requesting peer is admitted, it is likely that the higher the class it belongs to, the higher the classes the

participating supplying peers belong to, due to the rule each supplying peer determines its favored classes.

We can then infer that in DACp2p, the higher the class of an admitted requesting peer, the fewer the number

of participating supplying peers, and therefore, the lower the buffering delay experienced by the requesting

peer. Furthermore, the average buffering delay of each class in Figure 8(a) (8(c)) is constantly lower than

that in Figure 8(b) (8(d)), indicating that DACp2p benefits all classes of requesting peers.

(4) Average waiting time Similar to (2) and (3), DACp2p also achieves both differentiation and overall

benefit, in the average waiting time experienced by requesting peers of different classes. To save space,

we only show in Table 1 the average (over the entire period of 144 hours) number of rejections before

14

admission experienced by each class of requesting peers, under the four arrival patterns. Given an average

number of rejections x, the average waiting time can be computed as Tbkf ∗ Ex−1
bkf . Again, we observe that

the higher the class of admitted requesting peers, the fewer the average number of rejections each of them

experiences. Furthermore, for each class, the average number of rejections achieved by DACp2p is fewer

than that achieved by NDACp2p.

DACp2p/NDACp2p class 1 class 2 class 3 class 4

Arrival pattern 1 1.48/3.28 1.69/3.41 2.06/3.31 2.55/3.34
Arrival pattern 2 1.77/3.73 1.93/3.75 2.40/3.72 3.15/3.74
Arrival pattern 3 2.67/4.82 3.33/4.85 3.81/4.82 4.23/4.84
Arrival pattern 4 1.93/3.45 2.19/3.46 2.59/3.42 3.16/3.46

Table 1: Per-class average number of rejections before admission (over the 144-hour period), achieved by
DACp2p and NDACp2p

(5) Adaptivity of differentiation We now take a closer look at DACp2p’s adaptivity of admission differ-

entiation, according to the dynamic request/supply situation in the peer-to-peer system. Recall that DACp2p

uses the ‘elevate-after-timeout’ technique to relax the differentiation; while it uses the ‘reminder’ technique

to tighten the differentiation. In Figure 9, we show that supplying peers use these techniques to dynami-

cally adjust their favored classes of requesting peers, in response to the request arrival rate changes (under

arrival patterns 2 and 4). The y-axis represents the lowest class of requesting peers, favored by each class of

supplying peers. We observe that for each class of supplying peers, the degree of admission differentiation

changes over time, roughly following the changes in the (first-time) request arrival rate. More specifically,

the higher the class of supplying peers, the more sensitive they are to the changes in request arrival rate.

Finally, when there are not new request arrivals, and the system capacity has grown significantly, all classes

of supplying peers relax their admission preferences to all classes of requesting peers, i.e. the lowest favored

class of requesting peers is 4, for all classes of supplying peers.

(6) Impact of parameters on performance Finally, we study the impact of parameters M,Tout, and

Ebkf on the performance of DACp2p: Figure 10 shows the impact of M and Tout on the system capacity

amplification; while Figure 11 shows the impact of the backoff exponential factor Ebkf on the request

admission rate. In each study, the parameters except the one being studied remain the same as before.

In Figure 10(a), the number of candidate supplying peers probed by a requesting peer is set to 4, 8, 16, and

32, respectively. The system capacity grows significantly slower when M = 4, because four candidates are

too few to identify sufficient number of qualified supplying peers to serve the requesting peer. If we increase

M , the system capacity will grow much faster. However, when M is greater than 8, the impact of M quickly

15

decreases. Therefore, having a large M does not improve the system capacity growth significantly. On the

other hand, it may increase the probing overhead and traffic.

In Figure 10(b), different time-out periods to relax the admission differentiation of an idle supplying peer

is tried. The results indicate that Tout should not be too short. The explanation is: having a short time-out

period may make an idle supplying peer relax its admission preferences too soon to lower-class requesting

peers. Therefore, it may miss the chance to serve the ones of higher classes, when both lower-class and

higher-class requesting peers are present.

In Figure 11, the backoff exponential factor Ebkf is set to 1, 2, 3, and 4, respectively. It is interesting to

observe that exponential backoff of requesting peers does not help to increase the request admission rate.

On the contrary, the higher the Ebkf , the lower the overall admission rate. In fact, the constant backoff

(Ebkf = 1) scheme achieves significantly higher admission rate. Although not yet fully explored, one

possible explanation is: The capacity of a peer-to-peer system is self-growing instead of fixed. Therefore, a

more aggressive retry policy may actually help to increase the system capacity faster, and hence improve the

overall admission rate. On the other hand, in a system with fixed capacity (such as a traditional client-server

system), clients may have to perform conservative backoff, in order to achieve a high overall admission rate.

6 Related Work

Peer-to-peer file sharing systems have gained great popularity in recent years. Representative peer-to-

peer systems on the Internet include Napster [3], OpenNap [4], Gnutella [2], and Freenet [5]. These systems

share the same goal of de-centralized data exchange and dynamic growth of system capacity. However,

they differ in their data lookup/discovery schemes. For example, Napster and OpenNap employ central-

ized directory servers, while Gnutella [2] uses controlled query flooding. The data sharing mode of most

current peer-to-peer systems is the ‘open-after-downloading’ mode, not the ‘play-while-downloading’ (or

streaming) mode as studied in this paper (however, there are exceptions, such as C-star [1] to be described

later).

In the past two years, peer-to-peer systems have also attracted tremendous attention from the research

community. First, there have been measurement based studies of the existing peer-to-peer systems. In [13],

a detailed measurement study of Napster and Gnutella is presented, covering the bottleneck bandwidth,

latency, availability, and file sharing patterns of the peers in these systems. Especially, the study reveals

significant degree of heterogeneity in the peers’ bandwidth availability; and it suggests that future peer-

to-peer systems must have built-in incentive for peers to tell the truth about their bandwidth information.

These observations have partly motivated our peer-to-peer streaming model and solutions in this paper. In

16

[15], based on a measurement study of OpenNap, a probabilistic model is proposed to capture the query

characteristics of peer-to-peer systems with centralized directory servers.

Besides measurement studies of current peer-to-peer systems, new peer-to-peer architectures have also

been proposed. These architectures focus on different aspects of a fully distributed and scalable peer-to-

peer system. For example, CAN [10], Chord [14], Pastry [11], and Tapestry [17] are various distributed

schemes for the lookup or location of data content in peer-to-peer systems. PAST [12] and OceanStore [8]

are persistent storage services for peer-to-peer systems. Especially, they provide the management of widely

replicated data, which are intrinsic in peer-to-peer systems. Our work on peer-to-peer media streaming

complements these results: on one hand, we do not study the issues of peer-to-peer data lookup and storage

management; on the other hand, the existing results do not address the two new issues in this paper.

Finally, several schemes of multi-source streaming have been proposed, which are perhaps more closely

related to our work. In [9], a distributed video streaming framework is proposed. The scheme involves

multiple replicated video senders and a single receiver. During the video streaming session, the receiver

dynamically determines the sending rate of each sender; while each sender dynamically decides which

packets to send. The goal is to achieve higher throughput and lower packet loss. However, their framework

does not deal with the out-bound bandwidth heterogeneity among senders. Furthermore, it does not consider

the issue of system capacity amplification, because the roles of sender and receiver are fixed in their system.

C-star [1] is a commercial multi-source streaming service. Similar to our work, the capacity of the C-star

distribution network grows over time. However, C-star does not differentiate between suppliers of different

out-bound bandwidth capability. In addition, the available technical information about C-star does not

elaborate how to determine the transmission schedule of each multi-source streaming session. In [16], an

architecture called SpreadIt is proposed for streaming live media over a peer-to-peer network. It focuses

on the dynamic construction of a multicast tree among peers requesting a live media. However, SpreadIt

is not intended for the asynchronous streaming of stored media data. Also it does not deal with bandwidth

heterogeneity and admission differentiation.

7 Conclusion

Peer-to-peer media streaming systems are expected to become as popular as the peer-to-peer file sharing

systems. However, media streaming imposes a more stringent bandwidth requirement on participating peers.

On the other hand, current peers on the Internet exhibit significant heterogeneity in their bandwidth availabil-

ity. Furthermore, each peer may have (or be willing to offer) asymmetric in-bound and out-bound bandwidth.

In this paper, we study two key issues which arise from these characteristics of peer-to-peer media streaming

17

systems: the first issue is the scheduling of media data transmission from multiple supplying peers involved

in a peer-to-peer streaming session; while the second issue is the fast capacity amplification of the entire

peer-to-peer streaming system. Our solution to the first issue is Algorithm OTSp2p, which computes opti-

mal transmission schedules for peer-to-peer streaming sessions. Our solution to the second issue is the fully

distributed DACp2p protocol. By differentiating between requesting peers according their classes, DACp2p

(1) achieves fast system capacity amplification, (2) benefits all requesting peers in admission rate, wait-

ing time, and buffering delay, and (3) creates an incentive for peers to offer their truly available out-bound

bandwidth. Our extensive simulation results demonstrate the excellent performance of DACp2p.

References

[1] C-star. http://www.centerspan.com/.

[2] Gnutella. http://gnutella.wego.com.

[3] Napster. http://www.napster.com.

[4] OpenNap. http://opennap.sourceforge.net.

[5] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A Distributed Anonymous Information Storage
and Retrieval System. Proceedings of Workshop on Design Issues in Anonymous and Unobservability,
July 2000.

[6] H. Deshpande, M. Bawa, and H. Garcia-Molina. Streaming Live Media over a Peer-to-Peer Network.
Stanford Database Group Technical Report (2001-30), August 2001.

[7] K. Hua and S. Sheu. Skyscraper Broadcasting: A New Broadcasting Scheme for Metropolitan Video-
on-Demand Systems. Proceedings of ACM SIGCOMM ’97, September 1997.

[8] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. Oceanstore: An Architecture for Global-State
Persistent Store. Proceedings of International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2000), November 2000.

[9] T. Nguyen and A. Zakhor. Distributed Video Streaming Over Internet. Proceedings of SPIE/ACM
Multimedia Computing and Networking (MMCN2002), January 2002.

[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable Content-Addressable
Network. Proceedings of ACM SIGCOMM 2001, August 2001.

[11] A. Rowstron and P. Druschel. Pastry: Scalable Distributed Object Location and Routing for Large-
Scale Peer-to-Peer Systems. Proceedings of IFIP/ACM Middleware 2001, November 2001.

[12] A. Rowstron and P. Druschel. Storage Management and Caching in PAST, a Large-Scale, Persistent
Peer-to-Peer Storage Utility. Proceedings of ACM Symposium on Operating Systems Principles (SOSP
2001), October 2001.

18

[13] S. Saroiu, P. Gummadi, and S. Gribble. A Measurement Study of Peer-to-Peer File Sharing Systems.
Proceedings of SPIE/ACM Multimedia Computing and Networking (MMCN2002), January 2002.

[14] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A Scalable Peer-to-Peer
Lookup Service for Internet Applications. Proceedings of ACM SIGCOMM 2001, August 2001.

[15] B. Yang and H. Garcia-Molina. Comparing Hybrid Peer-to-Peer Systems. Proceedings of Very Large
Databases (VLDB 2001), September 2001.

[16] B. Yang and H. Garcia-Molina. Efficient Search in Peer-to-Peer Networks. Stanford Database Group
Technical Report (2001-30), October 2001.

[17] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An Infrastructure for Fault-Resilient Wide-Area
Location and Routing. UC Berkeley Computer Science Technical Report (CSD-01-1141), April 2001.

8 Appendix: Proof of Theorem 1

Proof. We use induction on m - the number of participating supplying peers (or simply ‘peers’ for the
rest of the proof) in each session.

Basis For m = 2, according to the peer-to-peer streaming model, the only possibility is that Rout(P
1
s) =

Rout(P
2
s) = R0

2 . The data assignment computed by the algorithm is: starting from time t = 0, P 1
s transmits

media data segments 0, 2, 4, 6, 8...; while P 2
s transmits segments 1, 3, 5, 7... It takes each peer 2∗ δt amount

of time to transmit one segment. The earliest media playback time is therefore 2 ∗ δt.
Induction Suppose for m = (k − 1) (k > 2), Theorem 1 is true.
Now let m = k. Suppose among the k peers, the highest class is class n. We claim that there must be at

least two class-n peers P i
s and P j

s among the m peers. Otherwise, if there is only one class-n peer, the sum
of the other m− 1 peers will be R0 ∗ (1− 1

2n) = R0 ∗
2n

−1
2n . On the other hand, since all other m− 1 peers

are of class n − 1 or lower, their sum can be expressed as R0 ∗
x

2n−1 = R0 ∗
2x
2n , where x is an integer. This

leads to 2x = 2n − 1, a contradiction.
Let the two class n peers be P i

s and P j
s , respectively. According to the algorithm, they will be assigned

segments 2n − k and 2n − k + 1, respectively. We ‘merge’ P i
s and P j

s , and create a new class-(n − 1) peer
P u

s with bandwidth R0

2n−1 . P u
s also takes over segments 2n − k and 2n − k + 1 originally assigned to P i

s and
P j

s .
We now get a new set of k − 1 peers. According to the induction hypothesis, the algorithm will compute

the optimal data assignments to play back the following segment sequence S, with minimum buffering delay
(k − 1) ∗ δt.

0, 1, ...(2n−1 − k), (2n − k), (2n−1 − k + 1), ...(2n − k − 1), (2n − k + 1), ...(2n − 1)
Sequence S is the same as sequence 0, 1, 2, ...2n − 1, except that segment 2n − k is moved from its

original position and placed between 2n−1 − k and 2n−1 − k + 1. We now ‘restore’ P i
s and P j

s . If we
make the following change to S, it will become exactly the same transmission sequence as computed by the
algorithm for the k peers: segment 2n − k will be transmitted by P i

s , and will arrive at time 2n ∗ δt, while
data assignments and arrival times of other peers remaining the same as in S. This assignment leads to a
minimum buffering delay of k ∗ δt, because the last k segments 2n − k, ...2n − 1 all arrive at 2n ∗ δt. And
the first 2n − k segments will arrive before their respective playback time during [0, 2n ∗ δt).

By now, we have shown that the statement in Theorem 1 is true for m = k. Therefore, Theorem 1 is true
for any m ≥ 2. Q.E.D.

19

P s
1

P s
2

P s
3

P s
4

P r

0 1 2 3

6

7

4 5

Transmission of segments

Time0 5 δ t

0 1 2 3 4 5 6 7

Playback of segments by

(a) Assignment I

P s
1

P s
2

P s
3

P s
4

P r

0 2

Time0

3

4 δ t

0 1 2 3 4 5 6 7

Playback of segments by

Transmission of segments

7

6

5

4

1

(b) Assignment II

Figure 2: Two different transmission schedules for a peer-to-peer streaming session (It only shows the first
period of data segment transmission (i.e. k = 0). It also shows that to ensure continuous playback, any
media data segment must be completely received by Pr before the corresponding playback.)

20

OTSp2p(Pr, {P
1
s , P 2

s ...P m
s }) {

i = 2n − 1;
D = 2n;
for j = 1 to m {

d[j] = 2n;
c[j] = class of P j

s ;
}
while (i ≥ 0) {

for j = 1 to m
if (d[j] = D) {

Assign segment i to P j
s ;

i = i − 1;
d[j] = d[j] − 2c[j];

}
D = max(d[1], d[2], ... d[m]);

}
}

Figure 3: Algorithm OTSp2p

21

P 1
s

P s
2

P s
3

P s
4P 3

r
P 1

s
P s

2

P s
3

P s
4

P 1
r

P r
2

P 3
r

P 1
s

P s
2

P s
3

P s
4

P r
2

P 3
r

0t0t 0t 0t

System capacity

1

2

0
+ T + 2T + 3T Time

(a) Admitting P
1

r → P
2

r → P
3

r

0t0t 0t

P 1
s

P s
2

P s
3

P s
4

P 1
r

P r
2

P 1
s

P s
2

P s
3

P s
4

P 1
r

P r
2

P 3
r

System capacity

1

2

0
+ T + 2T Time

(b) Admitting P
3

r → (P 1

r + P
2

r)

Figure 4: Different admission decisions leading to different degree of capacity amplification

22

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70

S
tr

ea
m

in
g

re
qu

es
t a

rr
iv

al
 r

at
e

(r
eq

.s
/h

ou
r)

Time (hour)

(a) Arrival Pattern 1

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70

S
tr

ea
m

in
g

re
qu

es
t a

rr
iv

al
 r

at
e

(r
eq

.s
/h

ou
r)

Time (hour)

(b) Arrival Pattern 2

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70

S
tr

ea
m

in
g

re
qu

es
t a

rr
iv

al
 r

at
e

(r
eq

.s
/h

ou
r)

Time (hour)

(c) Arrival Pattern 3

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70

S
tr

ea
m

in
g

re
qu

es
t a

rr
iv

al
 r

at
e

(r
eq

.s
/h

ou
r)

Time (hour)

(d) Arrival Pattern 4

Figure 5: Four different arrival patterns of first-time streaming requests: Pattern 1 is ‘constant arrival rate’
(in requests/hour); Pattern 2 is ‘gradually increasing, then gradually decreasing arrival rate’; Pattern 3 is
‘bursty and high arrival rate’; Pattern 4 is ‘periodic bursty-and-high arrival rate’

23

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 20 40 60 80 100 120 140

T
ot

al
 s

ys
te

m
 c

ap
ac

ity

Time (hour)

DAC_p2p
NDAC_p2p

(a) Arrival pattern 1

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 20 40 60 80 100 120 140
T

ot
al

 s
ys

te
m

 c
ap

ac
ity

Time (hour)

DAC_p2p
NDAC_p2p

(b) Arrival pattern 2

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 20 40 60 80 100 120 140

T
ot

al
 s

ys
te

m
 c

ap
ac

ity

Time (hour)

DAC_p2p
NDAC_p2p

(c) Arrival pattern 3

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 20 40 60 80 100 120 140

T
ot

al
 s

ys
te

m
 c

ap
ac

ity

Time (hour)

DAC_p2p
NDAC_p2p

(d) Arrival pattern 4

Figure 6: Capacity amplification of the peer-to-peer streaming system under different first-time request
arrival patterns

24

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

A
cc

um
ul

at
iv

e
ad

m
is

si
on

 r
at

e
(%

)

Time (hour)

class 1
class 2
class 3
class 4

(a) Arrival pattern 2, using DACp2p

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

A
cc

um
ul

at
iv

e
ad

m
is

si
on

 r
at

e
(%

)

Time (hour)

class 1
class 2
class 3
class 4

(b) Arrival pattern 2, using NDACp2p

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

A
cc

um
ul

at
iv

e
ad

m
is

si
on

 r
at

e
(%

)

Time (hour)

class 1
class 2
class 3
class 4

(c) Arrival pattern 4, using DACp2p

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

A
cc

um
ul

at
iv

e
ad

m
is

si
on

 r
at

e
(%

)

Time (hour)

class 1
class 2
class 3
class 4

(d) Arrival pattern 4, using NDACp2p

Figure 7: Per-class accumulative request admission rate achieved by DACp2p and NDACp2p, under arrival
patterns 2 and 4

25

2

2.5

3

3.5

4

4.5

5

5.5

0 20 40 60 80 100 120 140

A
cc

um
ul

at
iv

e
av

er
ag

e
bu

ffe
rin

g
de

la
y

(y
 *

 d
el

ta
 t)

Time (hour)

class 1
class 2
class 3
class 4

(a) Arrival pattern 2, using DACp2p

2

2.5

3

3.5

4

4.5

5

5.5

0 20 40 60 80 100 120 140

A
cc

um
ul

at
iv

e
av

er
ag

e
bu

ffe
rin

g
de

la
y

(y
 *

 d
el

ta
 t)

Time (hour)

class 1
class 2
class 3
class 4

(b) Arrival pattern 2, using NDACp2p

2

2.5

3

3.5

4

4.5

5

5.5

0 20 40 60 80 100 120 140

A
cc

um
ul

at
iv

e
av

er
ag

e
bu

ffe
rin

g
de

la
y

(y
 *

 d
el

ta
 t)

Time (hour)

class 1
class 2
class 3
class 4

(c) Arrival pattern 4, using DACp2p

2

2.5

3

3.5

4

4.5

5

5.5

0 20 40 60 80 100 120 140

A
cc

um
ul

at
iv

e
av

er
ag

e
bu

ffe
rin

g
de

la
y

(y
 *

 d
el

ta
 t)

Time (hour)

class 1
class 2
class 3
class 4

(d) Arrival pattern 4, using NDACp2p

Figure 8: Per-class accumulative average buffering delay achieved by DACp2p and NDACp2p, under arrival
patterns 2 and 4 (the actual delay is y ∗ δt)

0

1

2

3

4

5

0 20 40 60 80 100 120 140

Lo
w

es
t f

av
or

ed
 c

la
ss

 (
av

er
ag

e)

Time (hour)

class 1
class 2
class 3
class 4

(a) Arrival pattern 2

0

1

2

3

4

5

0 20 40 60 80 100 120 140

Lo
w

es
t f

av
or

ed
 c

la
ss

 (
av

er
ag

e)

Time (hour)

class 1
class 2
class 3
class 4

(b) Arrival pattern 4

Figure 9: Lowest class of requesting peers, favored by each class of supplying peers (non-accumulative,
averaged every 3 hours; the higher the y value, the lower the class)

26

0

2000

4000

6000

8000

10000

0 20 40 60 80 100 120 140

T
ot

al
 s

ys
te

m
 c

ap
ac

ity

Time (hour)

M = 4
M = 8

M = 16
M = 32

(a) Impact of M

0

2000

4000

6000

8000

10000

0 20 40 60 80 100 120 140

T
ot

al
 s

ys
te

m
 c

ap
ac

ity

Time (hour)

T_out = 1 min
T_out = 2 min

T_out = 20 min
T_out = 60 min

T_out = 120 min

(b) Impact of Tout

Figure 10: Impact of M and Tout on system capacity amplification

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

A
cc

um
ul

at
iv

e
ov

er
al

l a
dm

is
si

on
 r

at
e

(%
)

Time (hour)

E_bkf = 1
E_bkf = 2
E_bkf = 3
E_bkf = 4

Figure 11: Impact of Ebkf on overall request admission rate

27

