
iFlow: Middleware-assisted Rendezvous-based Information Access
for Mobile Ad Hoc Applications

Zongpeng Li, Baochun Li, Dongyan Xu, Xin Zhou ∗

Abstract
Due to node mobility and limitations on bandwidth
availability in wireless channels, there exist unique chal-
lenges towards achieving efficient and effective infor-
mation access in wireless ad hoc networks with mo-
bile nodes. In this paper, we address two critical ques-
tions: (1) How may information be accessed with the
highest degree of bandwidth efficiency? and (2) How
should algorithms be designed so that node mobility
contributes positively towards high performance and ef-
ficiency? We present iFlow, a middleware-based frame-
work for bandwidth-efficient and delay-aware informa-
tion access for mobile ad hoc applications. We present
the case of information rendezvous, where the demands
for information are satisfied by the supplies in a fully
distributed fashion, across third-party nodes beyond in-
formation suppliers and consumers. Such rendezvous
is achieved via controlled diffusion of information from
the suppliers, matched by the gleaning process on the
consumers. We validate our claims using simulation and
experimental results.

1 Introduction

The driving force and technology push for next-
generation wireless networks are, and will always re-
main to be, the applications. A better understanding
of the needs of emerging applications and wireless ser-
vices leads to better designs of network protocols. On
the other hand, the behavior of applications are diverse
and often unpredictable. We may need to exert influ-
ence and control over such behavior, so that their needs
are better understood and, in some cases, mathemati-
cally tractable. Particularly, information access is ubiq-
uitously required in most of such applications. The in-
formation flow across wireless networks may exhibit
specific patterns. From the point of view of resource
utilization, we may prefer the patterns that may achieve

∗Zongpeng Li, Baochun Li and Xin Zhou are affili-
ated with the Department of Electrical and Computer Engi-
neering, University of Toronto. Their email addresses are
{arcane,bli,zhoux}@iqua.ece.toronto.edu. Dongyan Xu is affili-
ated with Department of Computer Sciences, Purdue University. His
email address is dxu@cs.purdue.edu. This work is sponsored in part
by Bell Canada University Laboratories.

the optimal bandwidth efficiency, as long as the require-
ments of applications are satisfied. This is especially
the case in hybrid wireless networks that include ad hoc
networks, where bandwidth efficiency is critical to their
operations [1].

In this paper, we seek to design a middleware framework
and middleware-based algorithms to achieve bandwidth-
efficient information access, tailored to the needs of dis-
tributed applications on mobile ad hoc networks (which
we refer to as mobile ad hoc applications). Particu-
larly, we consider the case where application compo-
nents on a subset of the nodes are information suppliers,
while other components may be the consumers. Specific
scenarios include: (1) ad hoc sensor networks where a
subset of nodes are “sensors” that supply environmen-
tal data, and others are “reporters” that deliver sensor
data to the users [2, 3]; and (2) hybrid wireless networks
with a subset of “gateway” nodes to the Internet that sup-
ply information from the web to the regular nodes [4].
Such a case of suppliers and consumers does not limit
its generality: with any applications, a node may either
be a supplier or a consumer (or both) at any given time,
constituting a web of supplier-consumer relationships.
Without loss of generality, we use the example of hybrid
wireless networks with gateway nodes as an example in
this paper.

In such hybrid wireless networks, we present iFlow1, a
middleware architecture and a set of distributed algo-
rithms to control the behavior of information access in
mobile ad hoc applications, so that the goal of maxi-
mizing bandwidth efficiency with the presence of node
mobility may be achieved. We identify the advantages
of information rendezvous, where the demands for in-
formation are satisfied by the supplies in a fully dis-
tributed fashion, across third-party peer nodes beyond
information suppliers and consumers. Such rendezvous
is achieved via controlled diffusion of information from
the suppliers, matched by the gleaning process on the
consumers. In other words, requests are satisfied by re-
sults on third-party nodes in between suppliers and con-
sumers. Beyond information rendezvous, we propose to

1iFlow stands for information flow. Our goal is the efficient flow of
information across the network in mobile ad hoc applications.

1



apply network coding on third-party nodes, so that they
may transmit recoded data to achieve even higher band-
width efficiency.
The original contributions brought forth by the iFlow ar-
chitecture are the following: (1) We have analyzed the
case of activating controlled diffusion compared with
separate information access from individual nodes, and
show that in most cases iFlow contributes to achieving
better bandwidth efficiency. (2) In iFlow, we have iden-
tified the relationship between the delay tolerance of ap-
plications and achievable bandwidth efficiency, so that
for more delay-insensitive applications, bandwidth effi-
ciency may be further improved. (3) Unlike some of
the previous work, we explicitly consider node mobility
in iFlow, and design adaptive algorithms such that the
degree of node mobility contributes positively towards
high performance and efficiency. (4) To further exploit
available bandwidth and increase the efficiency of infor-
mation access, we introduce the extensive application
of coding in iFlow, starting from erasure codes (such
as Tornado codes) used in information suppliers, com-
plemented by network coding used in third-party peer
nodes. Since both Tornado codes and network coding
use efficient linear codes (e.g., the basic exclusive-or op-
eration), the computational overhead introduced is mini-
mal compared with the bandwidth efficiency gained with
such coding processes.
In addition to analytical contributions supported by sim-
ulations, we have realized the architecture by imple-
menting iFlow as a layer of middleware components
with the Microsoft Component Object Model (COM)
technology. The iFlow COM-based middleware exposes
interfaces for the applications to invoke, as a wrapper
around OS system calls. On the other hand, the ap-
plication needs to implement event handlers to handle
iFlow-specific events delivered by the middleware. Us-
ing standard Rapid Application Development tools such
as Microsoft Visual Basic, customized event handlers
are straightforward to implement and add to existing ap-
plication functions.
The remainder of this paper is organized as follows.
Sec. 2 presents the architecture and algorithms of iFlow,
Sec. 3 presents the case of using network coding to fur-
ther improve bandwidth efficiency. Sec. 4 presents sim-
ulation results. Sec. 5 presents a prototype implementa-
tion of the iFlow middleware framework to control mo-
bile ad hoc applications. Finally, Sec. 6 and Sec. 7 com-
pare iFlow with related work and conclude the paper.

2 iFlow: Algorithms and Analysis
The iFlow architecture is designed to serve as a middle-
ware framework to support mobile ad hoc applications,
whose components are distributed on different nodes in
a mobile wireless ad hoc network. The iFlow architec-

ture may be presented and analyzed from two different
aspects. From the horizontal point of view, iFlow has
included a set of fully-distributed algorithms for differ-
ent application components residing on different nodes
to interact with each other. Information flows from the
suppliers and satisfies requests from consumers at ren-
dezvous points, which usually are third-party peer nodes
beyond the original suppliers. From the vertical point
of view, iFlow is a middleware architecture designed to
control the pattern of requesting and diffusing informa-
tion in mobile ad hoc applications. In our implemen-
tation, such middleware components are implemented
with Microsoft COM. Fig. 1 illustrates the iFlow archi-
tecture from both the horizontal and the vertical points
of view.
In this section, we present and analyze the design of the
distributed algorithms in the iFlow architecture, includ-
ing the aspects of information rendezvous and source
erasure codes such as Tornado codes. For the purpose
of simplifying analysis and presentation of algorithms,
we first focus on the single-supplier case, where there
is a unique information supplier in the network. Based
on insights and conclusions derived from the single sup-
plier case, we then extend our discussions to include
the multiple-supplier case, where multiple suppliers ex-
ist when the controlled diffusion process is activated.

2.1 iFlow Overview: the Single-Supplier Case
For the remainder of the paper, we consider mobile ad
hoc applications deployed in a wireless ad hoc network
with m mobile nodes, some of which are suppliers or
consumers of a certain piece of information, referred to
as a data item.
In the single-supplier case, we consider the availability
of a unique information supplier, who resides on one of
the nodes in the network, and possesses complete infor-
mation of α, the data item of interest. In the example of
hybrid wireless networks, such a node may be the “gate-
way” node to the Internet via dual network interfaces.
We propose to activate a controlled diffusion process so
that the data item may be diffused to a subset of third-
party nodes referred to as reservoir nodes. Each of the
reservoir nodes holds a certain subset of the data item,
and they collectively achieve a certain degree of satura-
tion of the data item in the entire wireless network. Once
a certain level of saturation is reached, a consumer of the
data item that moves around within the network may use
the gleaning process to gather the requested segments of
data from neighbors who are reservoir nodes of this par-
ticular item. We argue that, for data items of moderate
and high popularity, it is more bandwidth efficient to use
the strategy of controlled diffusion and gleaning, rather
than directly sending individual requests to the suppliers.
This general idea of taking advantage of third-party peer
nodes in the process of information access is referred to



    mobile ad hoc
application component

iFlow controlled diffusion algorithm

iFlow middleware layer

OS and network 
  protocol stack

application layer
public information
to be shared/diffused

wireless broadcast
in the local
neighborhood

unicast transmission
to consumers

ad hoc routing protocol

iFlow third-party reservoir algorithm

iFlow middleware layer

OS and network 
  protocol stack

application layer 
(application component may or may not exist)

    wireless broadcast
in the local neighborhood

received broadcast
  from neighbors

    mobile ad hoc
application component

iFlow consumer gleaning algorithm

iFlow middleware layer

OS and network 
  protocol stack

application
    layer

requested
information

wireless broadcast of
requests in the local 
neighborhood

unicast transmission
of requests

ad hoc routing protocol

information suppliers information consumers

third-party peer nodes
(middleware implemented in all nodes)

requested (coded)
  information

information request

Figure 1: The iFlow architecture

as information rendezvous, since the requests for infor-
mation are satisfied by peer nodes beyond the suppliers
and consumers. The iFlow architecture is illustrated in
Fig. 1.

2.2 The Controlled Diffusion Process
Assume that α is the data item of interests, and qα is its
popularity, i.e., the percentage of nodes in the network
that are consumers of α. When qα is estimated to be
beyond a threshold value, the supplier initiates the con-
trolled diffusion process. The first step is to encode α
into coded symbols using Tornado coding. The digital
fountain approach proposed by Byers et al. [5] has in-
cluded a detailed presentation of Tornado codes and their
applications. We include a brief introduction as follows.
The Tornado coding scheme generates kn coded sym-
bols out of n uncoded data segments using the bitwise
exclusive-or operation (⊕). Coded symbols and uncoded
segments are of equal sizes. The number k is referred
to as the stretch factor. The coding scheme is designed
such that a node that collects n + ε symbols is expected
to be able to recover the uncoded data segments by ap-
plying substitutions and ⊕ operations, where n + ε is
a number slightly larger than n. The ratio 1 + ε/n is
referred to as the decoding inefficiency. Well designed
Tornado coding schemes may achieve decoding ineffi-
ciency that is less than 1.05. Compared to other erasure
codes such as Reed-Solomon codes, Tornado codes are
designed to be computationally efficient for both encod-
ing and decoding processes.
The advantages of diffusing encoded symbols are two
fold. First, it provides higher robustness for the sys-
tem; second, it helps the gleaning process to complete
in a timely fashion. We briefly illustrate the second
point with an example below. Consider two alterna-
tive approaches of diffusing kn segments/symbols of a
data item containing n data segments: (1) cyclic rep-
etition, in which the n original data segments are dif-
fused in order, and this procedure is repeated for k
times, and (2) the n original data segments are first

coded into kn encoded symbols using Tornado coding,
which are then diffused into the network. For simplic-
ity, assume that each diffused segment/symbol is held
by a distinct node in the network. In the first alterna-
tive, to obtain the first segment, a consumer needs to
contact one of the kn reservoir nodes; for the second
through the last segments, the number of nodes that can
provide A with useful segments decreases as follows:
(n−1)k, (n−2)k, . . . , 2k, k. Considering that k is usu-
ally a small number (e.g., 3), and the total number of
nodes present in the network is usually large, the op-
portunity of encountering one of the k nodes is small,
therefore the last few of the segments are exceedingly
hard to collect. On the other hand, when erasure codes
are used, the number of nodes that can provide A with
useful (coded) symbols decreases in a much more grace-
ful manner: kn, kn − 1, kn − 2, . . . , (k − 1)n + 1. In
this case, (k − 1)n + 1 nodes are able to provide the
final symbol to A. In comparison, (k − 1)n + 1 is a
much larger number than k, except for extreme cases,
e.g., n = 1. Such extreme cases correspond to data items
of very small sizes, which are not what Tornado coding
targets for. The information rendezvous approach can
still be applied, but with stricter requirements on data
popularity and delay tolerance. In the remainder of this
paper, we focus on relatively large data items for which
Tornado coding can be applied to facilitate information
gleaning; after all, disseminating larger data items con-
sumes more bandwidth.

After coding the n segments in α into kn coded symbols,
the supplier subsequently broadcasts these kn symbols
in their original order, one after the other. The algorithm
for the controlled diffusion process is shown in Table 1.

There exists a random pause between consecutive broad-
casts (represented by a random variable Tx) conforming
to the uniform distribution, the expected length of which,
E[Tx] = tx, is a parameter dependent on the degree of
node mobility. Such a random pause is introduced to
diversify the set of nodes covered by the diffusion pro-



Table 1: The controlled diffusion process
On information supplier: controlled diffusion algorithm

consider a data item α on the supplier:
if popularity qα reaches threshold value

apply Tornado coding on α to generate symbols of α
for each coded symbol x

pause for a random time period Tx

(a random variable), s.t. E[Tx] = ts

broadcast x to neighbors
end

end
On reservoir nodes: third-party reservoir algorithm

Upon receiving a diffused symbol x:
if x is a fresh symbol not previously received

buffer x
if predefined reach has not been exceeded

compute relay probability p
if probability test on p succeeds

broadcast x to neighbors
end

end
end

Upon receiving a probe from a consumer:
if able to provide requested symbols

advertise requested symbols in possession
if confirmation received from consumer

transfer advertised symbols
end

end

cess. Ideally, the broadcasting node is located within a
relatively different neighborhood during each individual
broadcast session. This way, with the same overhead
of bandwidth, the diffused symbols are distributed onto
a larger number of reservoir nodes within a larger geo-
graphical area, which helps the diffused information sat-
urate the network more uniformly. Uniform saturation
is desirable in iFlow, since it eliminates the existence
of “information void” — a large network area without
reservoir nodes holding diffused symbols, which may
lead to prolonged gleaning time for consumers residing
within the area.
Note that in this paper, we use the term “broadcast” to
refer to local broadcasts within the immediate neigh-
borhood of the transmitting node, which can be accom-
plished using only a single transmission due to the local
broadcast nature of wireless transmissions using omni-
directional antennas. Such an observation is sometimes
referred to as the wireless broadcast advantage [6].
In the controlled diffusion process, each diffused sym-
bol is accompanied by two control parameters: the reach
of diffusion, which is the maximum number of wireless
hops that a symbol may be relayed during the diffusion

process by reservoir nodes, and the relay probability p,
which is the probability that a reservoir node receiving a
diffused symbol will re-broadcast the symbol. A reser-
voir node always buffers a fresh symbol received in the
diffusion process, regardless of its decision on whether
to relay that particular symbol. The reach and the re-
lay probability are used to control the bandwidth con-
sumption of diffusion, as well as the expected number of
reservoir nodes that receive each symbol being diffused,
which we refer to as the coverage of diffusion (denoted
as c). In comparison, we define the degree of saturation,
s, of α in a network as the ratio of the average number of
symbols received by a node over the number of uncoded
segments in α. For example, for a 300-node network
and a diffusion process targeting 100 data segments of
α, with a stretch factor of 3, 300 symbols are produced
by Tornado codes. If we simply assume that, on average,
10 copies of each symbol have been buffered at reservoir
nodes, 3000 symbols may then exist in the network. The
average number of symbols received by each node is,
therefore, 10. In this example, the degree of saturation
s is 10/100 = 0.1. The extreme case is when s = 1,
where no gleaning process is required — all nodes may
reconstruct original copies of α.
The coverage of diffusion is an increasing function of
both the reach and the relay probability p. However, for
the same coverage, we have the choice of using a smaller
reach with larger relay probabilities, and the alternative
of using a larger reach with smaller relay probabilities,
as illustrated in Fig. 2. The latter approach is more de-
sirable for two reasons. First, it introduces less overlap
among different broadcasts, and is therefore more band-
width efficient (i.e., for the same bandwidth more reser-
voir nodes are reached). Second, it spreads symbols over
a larger range of geographical area in a sparser fashion,
which, aided by node mobility, is helpful to achieve uni-
form saturation more promptly.

S

(a) Smaller reach with larger relay probabilities.

S

(b) Larger reach with smaller relay probabilities.

Figure 2: Different choices of reach and relay probabil-
ity in the controlled information diffusion process

Therefore, in the ideal scenario, we wish to employ a few
of the neighboring nodes leading to different directions
of the supplier to re-broadcast the diffused symbol, and
each re-broadcasting reservoir node employs one suc-



cessive neighbor to further relay the symbol. From the
point of view of the overall diffusion process, we may
observe a few non-overlapping routes extending from
the supplier towards different directions, while nodes
within one hop range of the routes are covered by the
diffusion, and subsequently become reservoir nodes that
buffer the diffused symbol.
To approximate this ideal scenario in the iFlow algo-
rithms, we need to select nodes from the neighborhood
of the supplier that are far apart from one another, so
that their coverage areas overlap as slightly as possible.
This objective may be achieved, if — rather than allow-
ing each of the neighbors of the supplier to make a ran-
dom and independent decision on relaying — we allow
a neighbor to relay a diffused symbol if and only if it
has not heard a neighbor doing exactly the same. The
result of such a modified algorithm will be that, two or
three neighbors (who are beyond the transmission range
of each other) are expected to re-broadcast the symbol,
and the other neighbors remain “silent”.
In addition, we need to guarantee that only one neighbor
of each broadcasting node further relays the symbol be-
ing diffused, if it is not beyond the predefined reach from
the supplier. This may be achieved if the relay proba-
bility is set to be inversely proportional to the number
of new nodes that receive the symbol during a broad-
cast. As shown in Fig. 3, this number can be estimated
as ρSδ/(πR2), where ρ is the average node degree in
the network, and Sδ is the area covered by the down-
stream broadcaster B, but not by the upstream broad-
caster A, which corresponds to the shaded area in the
figure. The distance between A and B can be estimated
as

∫ R

0
r(2πr)dr/

∫ R

0
2πrdr = 2R/3, which is the ex-

pected distance between an arbitrary pair of neighbors.
It then follows that the estimate on the number of new
nodes being covered can be computed as 0.42ρ.

A B

R
2
3 R

Figure 3: Effective coverage of a successive broadcast

2.3 The Information Gleaning Process
Table 2 presents the algorithm for the information glean-
ing process on consumers. In the gleaning process, a
consumer that generates a request for data item α probes
its neighbors for symbols of α as it moves around. Sim-
ilar to the diffusion process, the requesting node waits
for a random time period (represented by a random vari-
able Tc) between two consecutive probes, such that its

Table 2: The information gleaning process
On information consumers: consumer gleaning algorithm

while not sufficient symbols to recover α do
pause for random time period Tc

(a random variable), E[Tc] = ∆t
broadcast a probing message to neighbors
pause for time period t′c
if advertisements received

confirm with node that can provide max # of symbols
receive symbols from confirmed neighbor

end
end

set of neighbors may experience some variations during
that period. In our analysis, we set the expected length
of this waiting period as E[Tc] = ∆t, where ∆t is the
expected time that a node encounters one new neighbor
in its neighborhood. The probe message contains a de-
scription of the symbols that the consumer already has
for the requested data item α. Upon receiving a request,
a neighboring node advertises the symbols it is able to
provide for α, if such symbols exist. The consumer con-
firms with the neighbor that can provide the maximum
number of symbols, after which the transfer begins. If
the symbols collected after the transfer are still not suffi-
cient to recover α, or if no advertisement is received, the
consumer waits to probe again after a subsequent ran-
dom time period.

To accommodate the interests of applications with
stricter deadlines, we include a panic mode in the glean-
ing process. The mobile ad hoc application has the op-
tion of specifying a delay requirement for a particular
request. In this case, the consumer terminates the glean-
ing process when the gleaning time reaches the specified
delay, and enters the panic mode. In the panic mode, the
consumer contacts the supplier immediately with a list
of symbols it has collected. The supplier may then de-
liver complementary symbols to the consumer directly
using a separate multi-hop unicast transmission, until the
consumer has sufficient symbols to recover α.

However, since multi-hop unicast transfers incur higher
bandwidth costs (which is against iFlow’s objective of
improving bandwidth efficiency), the panic mode should
only be considered as a last resort that provides a hard
delay guarantee for our rendezvous algorithms, which
are inherently probabilistic. Naturally, we would like to
control the diffusion process so that the network is sat-
urated to a certain degree, where the expected gleaning
time is less than the application-specified delay.

From the perspective of bandwidth efficiency, the degree
of saturation is determined by the actual bandwidth con-
sumption of the diffusion process (i.e., the more band-



Table 3: List of mathematical notations
parameter definition
m total number of nodes within the net-

work
ρ average node degree of the network
∆t expected time it takes for a node to

encounter a new neighbor
α data item of interest
n number of uncoded data segments in

the data item
k stretch factor of Tornado coding
qα popularity of a data item α, i.e., the

percentage of nodes that eventually
generate a request for α as consumers

c coverage of diffusion, i.e., expected
number of reservoir nodes that hold
each symbol after diffusion

s saturation, i.e., average number of
symbols a node receives in diffusion
over the number of uncoded data seg-
ments in the data item

width used, the higher the saturation). As a minimum
requirement, the bandwidth consumption incurred by the
information rendezvous process (including both diffu-
sion and gleaning) should be (much) less compared with
the approach of making separate unicast requests from
consumers directly to the supplier. We use such a guide-
line as one of the design requirements of the iFlow algo-
rithms.
We proceed to analyze critical trade-offs and relation-
ships between two pairs of parameters: (1) the relation-
ship between the degree of saturation and gleaning time;
and (2) the relationship between bandwidth consump-
tion and the degree of saturation, especially when com-
pared with the all-unicast approach without using iFlow.
For clarity, we list the mathematical notations of several
key parameters in Table 3.

2.4 Bandwidth Consumption vs. Saturation
For this part of the analysis, we assume that the sizes
of the coded symbols are much larger than the sizes of
control messages in iFlow or underlying network proto-
cols (such as routing). Therefore, we focus on the band-
width consumption incurred when transferring the sym-
bols across the network. More specifically, we calculate
the times that the symbols are being transferred. Thanks
to the wireless broadcast advantage, each local unicast
or broadcast of a particular symbol counts as a single
transmission (i.e., the bandwidth consumption is 1, with
a unit of symbols · hops). Further, it is straightforward
to observe that, the total number of symbols replicated

in the controlled diffusion process is c · kn. Therefore,
the degree of saturation, s, may be estimated from the
coverage of diffusion: s = c · kn/(mn) = ck/m.
In order to estimate the relationship between bandwidth
consumption and the degree of saturation s, we first seek
to examine the relationship between bandwidth con-
sumption and the coverage of diffusion. Consider a par-
ticular symbol being diffused, x. Let bx be the band-
width consumption of diffusing x, i.e., the number of
times that x is broadcasted in the controlled diffusion
process. Let cx be the coverage of x, i.e., the number of
nodes that have x at the end of the diffusion process.
Recall that we have estimated the number of new nodes
being covered by a re-broadcast as 0.42ρ. It follows that
cx = (bx − 1)0.42ρ + ρ = 0.42bxρ + 0.58ρ. If the
total bandwidth consumption of diffusing all symbols of
α is b = bx · kn, we have the following relationship be-
tween the total bandwidth consumption and the coverage
of diffusion: c = 0.42bρ/(kn)+ 0.58ρ. Substituting the
derived c in s = ck/m, we then have

s =
ρ

m

(
0.42b

n
+ 0.58k

)
.

The above estimate suggests that, in order to achieve
a certain degree of saturation, the total bandwidth con-
sumption of diffusion should be proportional to the num-
ber of symbols to be diffused, as well as to the normal-
ized size of the network, i.e., the area of deployment of
the network divided by the disk area within the commu-
nication range of a node.

2.5 Saturation vs. Gleaning Time
We now consider the case where the controlled diffusion
process of the data item α has completed, and over a cer-
tain period of time, the diffused symbols have mingled
uniformly in the network, due to the random trajectories
of mobile nodes. Under such an assumption, we esti-
mate the expected gleaning time of a consumer, should
it now generates a request for α. We first consider a
new consumer that has just joined the network, and then
modify our estimate for a consumer that was previously
in the network.
To facilitate our analysis, we assume that the decoding
inefficiency in Tornado coding is 1, i.e., exactly n sym-
bols is required to recover α. We further assume that
the requesting consumer can obtain any useful symbols
from the surrounding nodes, once they become neigh-
bors to one another. In order to glean n unique symbols
from its neighborhood, the number of symbols the re-
questing consumer is expected to encounter is:

n−1∑
i=0

c(kn)
c(kn) − ci

=
n−1∑
i=0

kn

kn − i
≈ kn

k − 1
2

(1)



Therefore, the number of nodes the consumer is ex-
pected to encounter can be estimated as:

1
ns

kn

k − 1
2

=
k

(k − 1
2 )s

.

It follows that the expected gleaning time, tg , is

tg ≈ max
{

(
k

(k − 1
2 )s

− ρ)∆t, 0
}

+ ttr.

where ttr is the net transfer time of the symbols. Note
that the above result is an overestimate in that it does not
take into account the fact that symbols found at the same
reservoir node are distinct; it is an underestimate in that
the ≈ in Eq. (1) is actually ≥, and in that it ignores the
time overhead it takes for the consumer to set up con-
nections with its neighbors. However, the result should
still provide insights on how the gleaning time may be
related to the degree of saturation. It shows that, when
saturation is beyond a certain level such that a node is
able to collect sufficient symbols from one set of neigh-
bors, then the gleaning time is dominated by the transfer
time of the symbols. However, if saturation is below
such a level, then the consumer needs to spend time in
both receiving the symbols and in waiting to meet new
neighbors. Since the second term is on the scale of phys-
ical movement, it usually dominates the gleaning time.
Naturally, the existence of such a dominating factor de-
pends on whether the number of nodes that the consumer
needs to encounter is larger than the size of its local
neighborhood. On the other hand, the expected number
of nodes to be encountered by a consumer is inversely
proportional to the degree of saturation.
If the consumer is not new and has been previously
present in the network, the expected gleaning time is
smaller, since the consumer may very well be a reser-
voir node itself, and may have accumulated a number of
symbols during the diffusion process before its request
arrives. We can therefore adjust the above estimate to

tg ≈ max
{

(
k

(k − 1
2 )s

− ρ − 1)∆t, 0
}

+ ttr.

The relationship between tg and saturation s is similar
to the case where the consumer is a new node in the net-
work.

2.6 iFlow vs. Unicast
The total bandwidth consumption of accessing a data
item α using iFlow is approximately b+n(mqα), where
the first term represents the bandwidth consumption of
diffusion, and the second term is the bandwidth con-
sumption of gleaning. In comparison, the total band-
width consumption of accessing α using the all-unicast
approach may be estimated as nh(mqα), where h is the

expected number of hops between a pair of arbitrary
nodes within the network. Therefore, in order to sat-
isfy the minimum design requirement that iFlow should
be more bandwidth efficient than the plain unicast ap-
proach, we need to satisfy b < nmqα(h−1). This upper
bound may be denoted as bu.
On the other hand, the delay requirement of the applica-
tion defines a lower bound on the coverage of diffusion.
Since coverage is controlled by bandwidth consumption,
we have a corresponding lower bound for b, bl. For any
value of b such that bl ≤ b ≤ bu, the delay require-
ment is expected to be satisfied, while the bandwidth
efficiency is expected to be better than the all-unicast
approach. The supplier has the choice of trading delay
for less bandwidth consumption, by choosing b that is
closer to bl; or, alternatively, trading bandwidth for a
smaller delay, by choosing b that is closer to bu. How-
ever, note that the average memory overhead on iFlow
nodes is proportional to saturation. Therefore, the for-
mer choice is usually more preferable, since it leads to
lower saturation and hence lower memory overhead.
Our analysis shows that the lower bound bl is indepen-
dent of the popularity qα, while the upper bound bu

is proportional to qα. Therefore for the range [bl, bu]
to be non-empty, we have a lower bound requirement
on qα. This confirms the intuition that iFlow may be
more bandwidth efficient when more consumers request
a popular data item. However, this requirement is rather
loose in many scenarios; that is, contrary to common
intuitions, the iFlow algorithms may both achieve band-
width efficiency and meet the delay requirement for data
items that are not popular, depending on the network
characteristics. We proceed to show such an example.
Consider a moderately dense network with total num-
ber of nodes m = 300, average node degree ρ ≈ 17,
and average number of distance between a pair of nodes
h ≈ 4 hops. Assume that the data item of interest, α,
has n = 100 symbols and Tornado codes with a stretch
factor k = 2 is used. We now consider the extreme case
where mqα = 1, i.e., only one node in the network has
a request for α. We show that if we choose the reach
of diffusion to be just 1, then both the lower bound re-
quirement and the upper bound requirement can be sat-
isfied. When the reach is one, b = kn = 2n < 3n =
n(mqα)(h − 1), therefore the upper bound requirement
due to bandwidth efficiency is satisfied. On the other
hand, the saturation s = ck/m = (ρ + 1)k/m = 0.12;
therefore the first term in our estimate of the gleaning
time, max(( k

(k− 1
2 )s

− ρ − 1)∆t, 0) = 0 since k
(k− 1

2 )s
≈

11 < 18 = ρ + 1. This means that the gleaning time
is dominated by the symbol transfer time, and should
therefore satisfy any reasonable delay requirement.
Therefore we conclude that there exist abundant oppor-
tunities for improving bandwidth efficiency using the



information rendezvous algorithms proposed in iFlow,
even with non-popular data items and relatively strict ap-
plication requirements on delay, given that node mobil-
ity is present.

2.7 iFlow: The Multiple-Supplier Case
We now briefly consider the case where complete copies
of the data item of interest, α, exist on multiple suppli-
ers before the diffusion process. Such a scenario may
exist if, for example, by the time that the popularity of a
data item popularity is estimated to be sufficiently high
to initiate diffusion, a few nodes have already acquired
α through unicast.
The proposed iFlow algorithms adapt to the multiple-
supplier case naturally without modifications. However,
to maintain the same level of bandwidth consumption,
each supplier may choose to use a small reach as its
control parameter. Such a case enjoys two advantages
over the single-supplier case. First, since the reach pa-
rameters used are small, in many cases just one, there
exists less overlap among different broadcasts; the same
amount of bandwidth consumption may now lead to a
larger coverage. Second, reservoir nodes covered by
diffusion has higher diversity in terms of geographical
distribution; this observation, again, assists the reservoir
nodes to mingle with the regular nodes more promptly
and rapidly. We conclude that iFlow performs better in
the multiple-supplier case, which conforms to the intu-
ition.

3 Improving iFlow: Network Coding
The ultimate objective in the design of the iFlow archi-
tecture is to facilitate bandwidth-efficient information
access. In this section, we present the important con-
cepts of network coding [7] in wireline networks, pro-
pose to apply network coding on reservoir nodes to fur-
ther improve bandwidth efficiency in iFlow.
Network coding is a theoretical strategy that has been
proposed in the area of information theory [7, 8, 9], the
objective of which is to increase end-to-end throughput
in multicast sessions in wireline networks, which is sub-
tly different from our goal of improving bandwidth ef-
ficiency (i.e., delivering more useful data with limited
channel capacity) in wireless networks. With network
coding, bits of data to be delivered are not merely treated
as “atoms” that may only be replicated and forwarded at
intermediate nodes; rather, data may be coded before be-
ing forwarded further.
Similar to Tornado codes on information suppliers, bit-
wise exclusive-or (⊕) can be employed as the basic cod-
ing operation for its computational efficiency. Different
from Tornado codes, network coding may be used not
only at the source node, but also at intermediate nodes;
it may code not only information of the same data item,
but independent information from different data items as

well. Coded data may be decoded by a downstream or
destination node, based on its knowledge of the coding
strategy.

3.1 Network Coding: a Review of Concepts

S

R1 R2

A B

C

D

f1

f1

f1

f1

f2

f2

f2f2

f1 f2 f1 f2

Figure 4: The effectiveness of network coding in wire-
line networks

We briefly review the concepts of network coding with
an example shown in Fig. 4 [7]. The example shows
how the session throughput of an 1-to-2 multicast ses-
sion may be improved in wireline networks. In the fig-
ure, f1 and f2 represent two independent information
flows originating from the source S. Node C transmits
the coded flow f1 ⊕ f2 along the “bottleneck” link CD
to node D, which then forwards the coded flow to both
destinations R1 and R2. R1 and R2 can recover {f1, f2}
from {f1, f1 ⊕ f2} and {f2, f1 ⊕ f2}, respectively. The
session achieves a throughput of 2C, assuming each link
has capacity C. Without network coding, it can be veri-
fied that the achievable throughput is only 3C/2.

3.2 Network Coding in Wireless Networks
While network coding may increase throughput of mul-
ticast sessions in wireline networks, there exist funda-
mental differences between wireless and wireline net-
works. With respect to bottleneck formation, wireline
networks are link-centric, while wireless networks are
node-centric. In wireline networks, a single link can
form a bottleneck due to limited link capacity, while a
forwarding node is usually not a concern; in wireless
networks, a single node is sufficient to form a bottle-
neck, since virtual links sharing the same node may not
transmit concurrently, [10]. We are not aware of any
previous work that has studied the problem of applying
network coding in wireless networks, especially when
the objective is to improve bandwidth efficiency.
We believe that network coding may still be applied ef-
fectively in wireless networks, in order to improve band-
width efficiency. Fig. 5 shows an example in which
network coding helps to reduce the total bandwidth
consumption in two 1-to-2 wireless multicast sessions,
where S1 and S2 are the sources and R1 and R2 are
the destinations. Without network coding, four transmis-
sions are required to deliver a packet from each source



1

without coding with coding

f

1f 1f

1f

1f 1f 1f

2f

2f

2f

2f
2f 2f2f

R1 R2 R1

S1 S1S2 S2

R2

A A

Figure 5: Network coding in wireless networks: an ex-
ample

to each destination: S1
f1−→ (A,R1), S2

f2−→ (A,R2),

A
f2−→ R1 and A

f1−→ R2. With network coding, the
“bottleneck” node A transfers the coded flow f1 ⊕ f2

to both receivers at once, only three transmissions are

necessary: S1
f1−→ (A,R1), S2

f2−→ (A,R2), and

A
f1⊕f2−→ (R1, R2). Therefore overall bandwidth effi-

ciency is improved by 1/3.

3.3 Network Coding: Improving iFlow
We proceed to discuss the details of improving the band-
width efficiency in the iFlow architecture by applying
network coding on reservoir nodes. A major feature of
iFlow as opposed to a generic wireless ad hoc network is
that, iFlow applies Tornado codes in information suppli-
ers before the diffusion process. We observe that, both
network coding and Tornado codes employ the bitwise
exclusive-or operation, and therefore can act in concert
with each other naturally within the iFlow framework, as
we will show shortly. In iFlow, a reservoir node has the
opportunity to apply network coding when it is relaying
multiple symbols during diffusion, supplying symbols
for multiple consumers during gleaning, or a mixture
of the two. In these cases, the reservoir node forms a
“bottleneck” node that may apply take advantage of the
broadcast nature of wireless transmission by broadcast-
ing a recoded symbol that may potentially benefit more
neighbors. Due to limit of space, we show an example of
applying network coding in information diffusion only.

P Q

RI II

III

IV

Figure 6: Network coding in information diffusion: an
example

Assume that during diffusion, a node R receives a sym-
bol a from node P and a symbol b from node Q, respec-
tively, as shown in Fig. 6. If R plans to further relay
a symbol in the diffusion process, it may perform one
of the following tasks: (1) re-broadcast a or b directly;

or (2) re-broadcast the recoded symbol a ⊕ b, in accor-
dance with the concept of network coding. We argue
that, re-broadcasting a⊕ b is a better choice, since it can
potentially benefit more neighboring nodes of R.

Table 4: Network coding in information diffusion: a
comparison

current
symbols

broadcast
a at R

broadcast
b at R

broadcast
a⊕ b at R

I a a a, b a, b
II b a, b b a, b
III a, b a, b a, b a, b
IV φ a b a ⊕ b

Table 4 shows the set of symbols acquired by
nodes within different areas, before and after R’s re-
broadcasting of a, b, or a ⊕ b. The choice at R does
not affect nodes within area III, since they have already
received both a and b before R’s re-broadcasting. If R
re-broadcasts a, then nodes within area II and IV will
benefit, since a is new to them; nodes within area I will
not benefit since they have received a already. Similar
arguments apply if R re-broadcasts b. In comparison,
if R re-broadcasts the recoded symbol a ⊕ b based on
network coding, then nodes within both area I and area
II will benefit and obtain complete information on both
symbols a and b.
It is not obvious, though, whether nodes in area IV also
benefit from the coded transmission from R. Naturally,
if nodes within area IV received a or b previously from
other nodes, or will receive a or b later on, the value of
a ⊕ b can then be realized. Furthermore, since a and b
are being diffused concurrently within nearby network
areas, it is highly probable that they are coded symbols
of the same data item α. In that case, the recoded symbol
a ⊕ b has its own value without being recovered to a
and b first. The reason is that, same as a or b, a ⊕ b
is just another coded symbol obtained by applying the ⊕
operations over certain data segments in α, and therefore
can be transmitted within the network and be used as
input to the Tornado decoding procedure as well.
To further illustrate such harmony between Tornado
codes and network coding, consider the following ex-
ample. For clarity, assume that there are only three data
segments in α, 1, 2 and 3. Further, assume that a Tor-
nado coding scheme with a stretch factor of 2 is used,
with 1, 2, 3, 1 ⊕ 2, 2 ⊕ 3 and 1 ⊕ 2 ⊕ 3 being the
coded symbols. We can verify that any combination of
three distinct symbols is sufficient to recover the data
item with probability 0.8, and any combination of four
distinct symbols is sufficient for the recovery with prob-
ability 1. Therefore such a coding scheme has the de-



coding inefficiency of (3 × 0.8 + 4 × 0.2)/3 = 1.07.
If symbol a in the previous example is, say, 1 ⊕ 2, and
symbol b is 2 ⊕ 3, then the recoded symbol resulting
from network coding, a ⊕ b, is precisely 1 ⊕ 3, which
intuitively also contains useful information for the pur-
pose of recovering α. We then come to the conclusion
that re-broadcasting a ⊕ b at R is more bandwidth effi-
cient than re-broadcasting a or b with a high probability.
This example shows the advantage of network coding in
the diffusion process.
To conclude, though iFlow is a complete architecture
and set of algorithms to enable bandwidth-efficient in-
formation access, further improvements on bandwidth
efficiency can be realized if network coding is applied
appropriately in the information diffusion process.

4 iFlow: Simulation
For the purpose of evaluating the performance of various
aspects of the iFlow architecture and the feasibility of
its deployment, we performed simulations of the iFlow
algorithms in C++, followed by a prototype implemen-
tation of iFlow as a COM-based middleware layer (dis-
cussions of which are postponed to Sec. 5).

4.1 Bandwidth Efficiency
The primary design objective of the iFlow architecture is
to enable bandwidth-efficient information access within
mobile ad hoc applications, given a certain degree of
user mobility and information popularity. Our analysis
in Sec. 2 has shown that, there exist abundant opportu-
nities that iFlow can achieve this goal. This observation
is verified by forthcoming empirical results.

10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

 data popularity (%)

 b
an

dw
id

th
 c

on
su

m
pt

io
n

 bandwidth consumption: iFlow vs. unicast

Unicast
iFlow

Figure 7: Bandwidth efficiency under different degrees
of data popularity: iFlow vs. unicast

Fig. 7 shows a comparative study between the iFlow
algorithms and the plain all-unicast approach, with re-
spect to bandwidth consumption of disseminating the
same data item. In the comparison, we simulate with

the same network environment and the same simulation
framework. The simulation parameters are established
as follows. (1) The area of deploying the mobile ad hoc
network is 500m × 500m. (2) The total number of users
m is 300. (3) The communication range of each node
R is 70m. (4) The number of uncoded data segments in
the data item n = 50. (5) With respect to Tornado codes,
the stretch factor of Tornado codes k is 3, and the decod-
ing inefficiency is 1.0. (6) The nodes move around the
deployment area using the random way-point mobility
model, with the pause time as 0 seconds, and the veloc-
ity as 9 m/s. (7) The expected waiting time E[Tx] = ts
between consecutive broadcasts at supplier is 2 seconds;
while the expected waiting time E[Tc] between consec-
utive probes at consumers is 3 seconds.
With respect to the bandwidth consumption in iFlow,
we take the bandwidth consumed in both diffusion and
gleaning processes into account. For the all-unicast ap-
proach, we compute the total length of routes between
the supplier and the consumers. In cases that the supplier
and the consumer are separated within different parti-
tions of the network, we wait until they move into the
same partition.
Simulation results in Fig. 7 show that, the total band-
width consumption of the all-unicast approach grows
linearly with data popularity, and is always larger
than the bandwidth consumption of the iFlow system.
The difference becomes more significant as popularity
grows, up to an order of magnitude. The reason be-
hind this observation is that, for the all-unicast approach,
bandwidth consumption is proportional to data popular-
ity; while for iFlow, the total bandwidth consumption
is a summation over two terms: diffusion bandwidth
consumption and gleaning bandwidth consumption. The
first term remains at a constant level regardless of data
popularity, only the second term grows linearly with
popularity. Since information gleaning consists of one-
hop transmissions only, the second term is much smaller
than the total bandwidth consumption of multi-hop uni-
cast transmissions. Therefore, the bandwidth consump-
tion of iFlow grows much slower than that of unicast.

4.2 Diffusion Bandwidth Consumption vs Sat-
uration

In Sec. 2, we have analyzed the relationship between
bandwidth consumption and expected gleaning time by
first deriving the relationship between diffusion band-
width consumption and saturation, and then deriving the
relationship between saturation and gleaning time. Re-
call that the theoretical result of our analysis on the first
relationship is s = ρ · (0.42b/n + 0.58k)/m. Below we
compare results from our simulations to such a theoreti-
cal estimate.
We have performed two sets of simulations, one of
which has a deployment size of 500m × 500m, while



300 400 500 600 700 800 900 1000 1100 1200
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 Diffusion bandwidth consumption

 S
at

ur
at

io
n

 Diffusion bandwidth consumption vs. Saturation
Simulation Results
Theoretical Results

700m*700m

500m*500m

Figure 8: The relationship of diffusion bandwidth con-
sumption and saturation

the other has a deployment size of 700m × 700m. We
vary the reach r from 2 to 4, and vary the relay proba-
bility p from 0.1 to 0.2 and from 0.3 to 0.4 for the 500m
× 500m case and the 700m × 700m case, respectively.
Other parameters remain unchanged as in Sec. 4.1. We
choose different ranges of relay probabilities for the two
cases so that saturation within two networks under the
same bandwidth consumption can be compared.
Both simulation and previous analytical results are
shown in Fig. 8. It shows that overall, results from our
simulations agree with our theoretical analysis. In par-
ticular, for the same amount of bandwidth consumption,
the degree of saturation in the 500m × 500m network is
approximately twice as high as that in the 700m × 700m
network. This confirms our previous observation that, in
order to achieve the same level of saturation, bandwidth
consumed in diffusion should be proportional to the nor-
malized network size.

4.3 The Role of Relay Probability
The relay probability p plays an important role in the
iFlow algorithms. It is used to arbitrate the trade-off
between bandwidth efficiency and the delay of satisfy-
ing requests from the application. With the similar net-
work setup2 carried forward from the previous experi-
ments, Fig. 9 has shown how bandwidth consumption
and gleaning time vary as the relay probability varies.
As we may observe, as p grows, bandwidth consumption
increases and gleaning time decreases. However, when
the value of p reaches a certain level (0.5 in this case),
further increases of p elevates the amount of bandwidth
consumption without significant effects on the gleaning
time. This suggests that the combination of a smaller
relay probability with a larger reach is a better choice,

2It is identical except that the reach of diffusion is 5, the user ve-
locity is 2 m/s, and E(Tx) = 1 second.

rather than the combination of a larger relay probability
with a smaller reach. This confirms the corresponding
statements in our analysis of the algorithms (Sec. 2). As
previously explained, this is due to the fact that the lat-
ter choice introduces more overlap among the broadcasts
during the diffusion, and is therefore less cost-effective.

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1.5

2

2.5
0

5000

10000

15000

relay probability p

 Effects of relay probability p

    average gleaning time (sec)
 b

an
dw

id
th

 c
on

su
m

pt
io

n 
of

 d
iff

us
io

n

Figure 9: Effects of varying the relay probability p in the
controlled diffusion process

4.4 Comparison of Delay Latency
Finally, we perform simulations to compare the delay
latency of performing the same data dissemination task
using unicast, iFlow, and iFlow with Tornado coding re-
placed by cyclic repetition. The results are presented
in Table 5, using the same network simulation param-
eters as the first experiment3. First, we observe that,
by introducing Tornado coding on information suppli-
ers, the latency of satisfying requests experienced by the
mobile ad hoc application is dramatically reduced. The
justification is that, as we have explained, erasure codes
such as Tornado coding gracefully solves the problem
of obtaining the last few segments of data, from which
the scheme of cyclic repetition suffers. Second, we no-
tice that although delay of unicast is smaller than that of
iFlow, they are on the same magnitude. This is due to
the poor data availability of the unicast approach, since
a consumer node may be partitioned from the only sup-
plier node when its request arrives. In that case, the con-
sumer has to wait until it moves into the same network
partition as the supplier. In denser networks where parti-
tion rarely occurs, the performance of unicast should be
better, in terms of delay latency.
The set of simulation results presented in this section
has verified the insights we have obtained from the anal-
ysis of iFlow, and has provided solid proof that iFlow

3With the exception that the deployment size of the network is
600m × 600m, the transmission range R = 50 m, the reach is 2,
and the relay probability p = 0.1.



Table 5: Latency: Tornado coding vs. cyclic repetition

user velocity (m/s) 3 5 7 9
Delay: Unicast(s) 2.3 2.0 1.4 1.5
Delay: iFlow (s) 4.3 4.0 3.4 3.6
Delay: cyclic repetition (s) 11.8 8.8 7.4 6.0

is able to consistently outperform the alternatives with-
out iFlow, with respect to both bandwidth efficiency and
latency.

5 iFlow: Implementation
Beyond simulation results previously shown, we have
implemented the iFlow architecture as a middleware
layer based on the Microsoft Component Object Model
(COM), supporting COM-aware applications on the
Windows platform. The iFlow middleware layer exposes
COM interfaces for the applications to invoke, and de-
livers COM events to applications, so that the applica-
tion may implement customized event handlers to handle
iFlow events. For basic communication between neigh-
boring nodes, the iFlow middleware utilizes the Win-
dows Sockets library available on Windows. In order
to realize a wireless ad hoc network, we have further
used the ad hoc mode of IEEE 802.11b wireless LAN as
the MAC and physical substrate in our testbed, without
fixed access points. We employ Windows-based laptop
computers for our testbed, mainly with Windows 2000
and Windows XP as operating systems.
The advantage of using COM as our middleware sub-
strate is to support the ubiquitous availability of Win-
dows applications, including those on Pocket PC based
platforms. The entire set of iFlow algorithms are built as
a Dynamic Link Library (DLL) in Windows, to be read-
ily loaded by any COM-aware applications. The avail-
ability of Rapid Application Development tools such
as Microsoft Visual Basic greatly facilitates making the
necessary modifications to existing applications to take
advantage of iFlow, if there are interests for iFlow events
to be handled. Using Visual Basic, we have imple-
mented a prototype application to employ the services
of the iFlow middleware, with graphical user interfaces
for the purpose of illustrating the status of iFlow in ac-
tion.
For the purpose of showing global properties of the en-
tire wireless ad hoc network, we have resorted to the
creation of an omniscient observer, which, obviously,
may not be available in real-world scenarios. However,
the availability of the omniscient observer in our imple-
mentations greatly facilitates the monitoring of instan-
taneous network and node states, such as total num-
ber of nodes, node locations, roles of different nodes

(consumers, reservoir nodes or information suppliers),
as well as the number of consumers that have already
reconstructed the requested data item. Due to the un-
availability of GPS devices and the fact that most of our
tests are conducted indoors, we have simulated the node
locations on the omniscient observer, and then delivered
the node locations to participating nodes on a periodic
basis. The other advantage of such simulated locations
is that the degree of node mobility may be easily var-
ied, leading to more deterministic studies of the effects
of mobility4.
The implementation of iFlow middleware layer is de-
signed to be multi-threaded in order to accommodate
multiple incoming requests and ongoing connections.
There exists three types of threads: (1) the main thread
to handle COM-based method invocations; (2) the server
thread to listen on the well-known port and create TCP-
based stream sockets; and (3) the “worker” threads to
process incoming requests. We have accomplished chal-
lenging tasks of COM-based multi-threaded program-
ming, where the COM interface pointer needs to be mar-
shaled per thread.
With respect to the exposed interfaces for the applica-
tion to invoke, and the delivered COM events for the ap-
plication to handle, we briefly show precise definitions
of example methods and events in the iFlow interface,
defined in the Microsoft Interface Definition Language
(IDL):

interface iFlowWrapper : IDispatch
{

typedef struct tagPacket { ... } Packet;

\\ methods
\\ send a packet for local broadcast through iFlow
HRESULT BroadcastPacket([in] Packet* Msg,

[out,retval] int* pCount);
\\ initialize the iFlow middleware algorithms
HRESULT StartServer([in] BSTR srcAddress,[in] int srcPort,

[in] int IsMaster);
\\ parse incoming message
HRESULT ParseMessage([in] int pPacket,[in] UINT pSocket,

[out, retval] int* pVal);
...

};

\\ events
dispinterface _iFlowWrapperEvents
{

HRESULT OnDiffuse();
HRESULT OnRecvBroadcast([in] short PacketNumber);
HRESULT OnReBroadcast([in] short PacketNumber,

[in] short reach);
...

};

To demonstrate the results of such an implementation,
we have deployed iFlow in a 30-node network with one
data item of interest. Fig. 10 shows graphical user in-
terfaces on a regular node and the omniscient observer

4Since node mobility is simulated, it may be more appropriate to
refer to our testbed as an emulation testbed rather than implementation.
However, with modest modifications, we believe that the implementa-
tion of iFlow may still be readily be deployed in real-world scenarios.



during a diffusion session. The results have mostly
agreed with our simulations, which we choose not to
show repeatedly. For completeness, Fig. 11(a) shows the
per-node progress recorded within iFlow on each of the
nodes (10 nodes are shown as examples), and Fig. 11(b)
shows the number of consumers that have reconstructed
the requested data item over time. To conclude, even
though the implementation is a proof-of-concept proto-
type, it has demonstrated the feasibility of real-world
deployment of iFlow on wireless devices; we have es-
pecially shown ready support for COM-based Windows
applications that are ubiquitously available.

(a) The monitoring graphical user interface of the iFlow middleware architecture on regular 
nodes, showing the number of symbols accumulated so far. (Windows 2000)

(b) The monitoring graphical user interface of the iFlow architecture on the "omniscient
observer", showing a global view of the entire network. (Windows XP)

Figure 10: The middleware implementation of iFlow ar-
chitecture: controlled diffusion session in action

6 Related Work
The design of the iFlow architecture and algorithms has
been inspired by various exciting work from recent lit-
erature. We position iFlow in light of these work and
highlight our original contributions in comparative stud-
ies.
Byers et al. studied the problem of delivering bulk data
(on the order of gigabytes) to a large number of users

25 30 35 40 45
0

5

10

15

 time (s)

nu
m

be
r 

of
 c

on
su

m
er

s 
co

m
pl

et
ed

(b) completed consumers over time

80 90 100 110 120 130 140
0

10

20

30

40

50

60

 time (s)

 n
um

be
r 

of
 a

cc
um

ul
at

ed
 s

ym
bo

ls

(a) accumulated symbols: per-node progress

Figure 11: Live progress on consumers with the iFlow
middleware testbed

across the Internet through an overlay network [11].
Their approach is similar to ours in that both employ Tor-
nado codes to resolve the problem of obtaining the final
data segments, as well as to provide robustness. Also,
intermediate nodes have recoding capability and collab-
orate with each other actively. However, the focus of
their work is on the problem of reconciliation between
peer nodes, which is complicated by the application of
Tornado codes. The design objective of their system is to
deliver content to end users in a timely fashion in broad-
band wireline networks, while the design of iFlow fo-
cuses on improving bandwidth efficiency of information
access in mobile ad hoc networks.
The theoretical work of Grossglauser et al. [12] first re-
veals the fact that node mobility, which is usually treated
as a negative factor in wireless networking, can play
a positive role. Their main result is that, when nodes
are mobile, the available end-to-end capacity for each
source-destination pair in the network can remain con-
stant, rather than approaches zero, as the size of the net-
work grows. Although this result remains largely theo-
retical due to its strong assumptions, it does suggest that
in certain scenarios in practice, it is possible to devise
algorithms to trade off delay for better network perfor-
mance, which is throughput in their case, and bandwidth
efficiency in ours.
Network coding was first proposed and studied by
Ahlswede et al. in the context of wireline networks [7].
It is shown that, applying network coding (usually lin-
ear codes suffice[8]) on intermediate nodes over a multi-
cast network may increase its capacity. The problem of
whether a given throughput can be achieved in a given
multicast network was studied subsequently using an al-
gebraic approach, with sufficient and necessary condi-
tions provided for some cases [9]. Although exciting in-
sights are provided, the existing studies on network cod-
ing has remained to be largely theoretical, and we are
not aware of any published work that studies network
coding in wireless networks. Due to the unique spatial
contention of wireless transmissions in the local neigh-
borhood, the effects of network coding is dramatically



different from its counterpart in broadband wireline net-
works. In Sec. 3, we have shown that network coding
can lead to higher bandwidth efficiency in wireless trans-
missions as well.
The 7DS system proposed by Papadopouli et al. [4]
presents a practical study of data sharing among nodes
in an ad hoc network that is sparse and less mobile. A
node that loses Internet connection may acquire a de-
sired data item from its neighbors, if it has been cached
by one or more of them. The authors focus on the issues
of how various network dynamics and design choices af-
fect the performance of the 7DS protocol. The design of
7DS concentrates on data availability rather than band-
width efficiency. With iFlow, although data availability
is also improved due to its nature of distributed content
caching, our main interests are on utilizing node mobil-
ity to disseminate popular data items in a bandwidth effi-
cient way, subjecting to delay requirements imposed by
applications.
A recent short paper by Goel et al. has first proposed
to use Tornado codes to facilitate data dissemination in
wireless networks [13]. Their simulation results show
that the time it takes for all requesting nodes to obtain the
data item using Tornado codes may be significantly re-
duced compared to not using Tornado codes. However,
there does not exist any analytical work to support the re-
sults, and the results are limited to pre-defined mobility
models. Further, the paper did not examine the issue of
bandwidth efficiency in wireless networks. In the design
of iFlow, we have brought the separate pieces together,
including the use of Tornado codes that was previously
mentioned [13], and also the algorithms facilitating in-
formation rendezvous and network coding on third-party
nodes. We design and assemble the strategies with one
unified objective: improving bandwidth efficiency, and
study the effects of various tradeoffs and parameters per-
taining this goal. We have not been able to identify such
analysis in previous studies.

7 Concluding Remarks
This paper has presented the architecture, algorithms
and analysis of iFlow, a middleware framework to facil-
itate information access in mobile ad hoc applications.
We have shown that, iFlow is able to transparently pro-
vide a bandwidth-efficient way of information flow from
suppliers to consumers, with strategies that include in-
formation rendezvous, erasure codes and network cod-
ing. We note that a high degree of node mobility actu-
ally contributes to achieving and improving bandwidth
efficiency, and a relaxed delay requirement in delay-
insensitive applications is an ideal scenario to deploy
iFlow.
We are convinced that the full potential of iFlow with
respect to efficient information access has yet to be re-

alized. As an example, we may devise a mechanism for
requests from consumers to be self-routed to the reser-
voir nodes (or suppliers) that hold the missing symbols,
so that the requests may be satisfied earlier, with a slight
penalty on bandwidth efficiency. Such a mechanism
may be invoked when the consumers are about to ac-
tivate the panic mode to directly contact the suppliers.
Other improvements are also possible, including more
in-depth integration of Tornado codes and network cod-
ing. We believe that, by extending our prototype imple-
mentation of iFlow as a middleware layer, iFlow may
be rapidly deployed to assist emerging applications in
mobile ad hoc networks, and, subsequently, redefine the
communication patterns of such applications. Such pat-
terns may further be studied to facilitate the design of
lower-layer ad hoc network protocols.

References

[1] J. Li, C. Blake, D. Couto, H. Lee, and R. Morris, “Capacity of Ad
Hoc Wireless Networks,” in Proc. of ACM MobiCom, September
2001, pp. 61–69.

[2] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “Instrumenting
the World With Wireless Sensor Networks,” in Proceedings of
the International Conference on Acoustics, Speech and Signal
Processing, 2001.

[3] J. Chang and L. Tassiulas, “Energy Conserving Routing in Wire-
less Ad hoc Networks,” in Proceedings of IEEE INFOCOM,
2000.

[4] M. Papadopouli and H. Schulzrinne, “Effects of Power Conser-
vation, Wireless Coverage and Cooperation on Data Dissemina-
tion among Mobile Devices,” in Proc. of ACM MobiHoc, 2001.

[5] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A Digital
Fountain Approach to Reliable Distribution of Bulk Data,” in
Proc. of ACM SIGCOMM, 1998, pp. 56–67.

[6] J. Wieselthier, G. Nguyen, and A. Ephremides, “On the Con-
struction of Energy-Efficient Broadcast and Multicast Trees in
Wireless Networks,” in Proc. of IEEE INFOCOM, 2000.

[7] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network
Information Flow,” IEEE Transactions on Information Theory,
vol. 46, no. 4, pp. 1204–1216, July 2000.

[8] S.-Y. R. Li and R. W. Yeung, “Linear Network Coding,” IEEE
Transactions on Information Theory, to appear, 2002.

[9] R. Koetter and M. Medard, “Beyond Routing: An Algebraic
Approach to Network Coding,” in Proc. of IEEE INFOCOM,
2002.

[10] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang,
“MACAW: A Media Access Protocol for Wireless LANs,” in
Proc. of ACM SIGCOMM, 1994, pp. 212–225.

[11] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost, “Informed
Content Delivery Across Adaptive Overlay Networks,” in Proc.
of ACM SIGCOMM, 2002.

[12] M. Grossglauser and D. Tse, “Mobility Increases the Capacity of
Ad-hoc Wireless Networks,” in Proc. of IEEE INFOCOM, 2001.

[13] S. K. Goel, M. Chai, D. Xu, and B. Li, “Efficient Peer-to-Peer
Data Dissemination in Mobile Ad-hoc Networks,” in Proc. of
International Workshop on Ad Hoc Networking, August 2002.


