
vRead: Efficient Data Access for Hadoop in
Virtualized Clouds

Cong Xu
Purdue University

xu172@purdue.edu

Brendan Saltaformaggio
Purdue University

bsaltafo@purdue.edu

Sahan Gamage
VMware Inc.

sahans@gmail.com

Ramana Rao Kompella
∗

Google Inc.
rkompella@gmail.com

Dongyan Xu
Purdue University

dxu@purdue.edu

ABSTRACT
With its unlimited scalability and on-demand access to computation
and storage, a virtualized cloud platform is the perfect match for big
data systems such as Hadoop. However, virtualization introduces a
significant amount of overhead to I/O intensive applications due to
device virtualization and VMs or I/O threads scheduling delay. In
particular, device virtualization causes significant CPU overhead as
I/O data needs to be moved across several protection boundaries.
We observe that such overhead especially affects the I/O perfor-
mance of the Hadoop distributed file system (HDFS). In fact, data
read from an HDFS datanode VM must go through virtual devices
multiple times — incurring non-negligible virtualization overhead
— even though both client VM and datanode VM may be running
on the same machine. In this paper, we propose vRead, a pro-
grammable framework which connects I/O flows from HDFS ap-
plications directly to their data. vRead enables direct “reads” to
the disk images of datanode VMs from the hypervisor. By doing
so, vRead can significantly avoid device virtualization overhead,
resulting in improved I/O throughput as well as CPU savings for
Hadoop workloads and other applications relying on HDFS.

Categories and Subject Descriptors
D.4.4 [Operating Systems]: Communications Management—In-
put/Output

General Terms
Design, Measurement, Performance

1. INTRODUCTION
Many enterprises are increasingly moving their applications from

traditional infrastructures to private/public cloud platforms in order
to reduce application running costs, both in terms of capital as well
as operational expenditure. Cloud providers generate revenue by

∗Contributed to the work while at Purdue University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
Middleware ’15 December 07-11, 2015, Vancouver, BC, Canada
Copyright 2015 ACM 978-1-4503-3618-5/15/12 ...$15.00
DOI: http://dx.doi.org/10.1145/2814576.2814735

keeping their operational costs low while providing good perfor-
mance for their “tenants”. The key technology which drives cloud
computing is virtualization. In addition to enabling multi-tenancy
in cloud environments, virtualizing hosts in the cloud environment
makes resource management increasingly flexible, resulting in sig-
nificant savings in operational costs.

Similar to other cloud applications, Hadoop [16] applications
can also benefit from cloud deployment by taking advantage of the
agility to help deploy, run, and manage these clusters while main-
taining reasonable performance on par with physical deployments.
Compared with running Hadoop on physical machines, virtualized
Hadoop allows clusters to be scaled dynamically — separating data
and computation in different virtual machines (VMs) while keep-
ing data safe and persistent. Several public and private cloud plat-
forms already embrace this concept. For instance, the Amazon EC2
[1] provides an Elastic Map/Reduce (EMR) service [7] for hosting
data processing applications. Similarly, Openstack [39] is develop-
ing the Sahara [11] platform with similar goals as EMR. VMware’s
Hadoop Virtualization Extention (HVE) [12] goes one step further
to enhance Hadoop’s topology awareness on virtualized platforms
(upstreamed into Apache Hadoop release 1.2.0+).

However, running Hadoop inside VMs can lead to sub-optimal
performance due to virtualization and data movement overheads.
Specifically, the performance of Hadoop inside VMs is heavily de-
pendent on the I/O efficiency of the Hadoop distributed file system
(HDFS) [41], because all consumed data by big data applications
is first loaded from HDFS. In general, when the client application
requests the HDFS datanode to read a file, it reads that file from
the local disk and sends its content back to the client over a TCP
socket. Depending on the location of the datanode in relation to
the client, this performance can vary drastically. For instance, if
there is a co-located datanode, standard Hadoop implementations
prefer a local read from the co-located datanode over other repli-
cas elsewhere. While the local read is efficient when Hadoop is run
in non-virtualized environments, its performance can suffer when
the client and datanode are co-located on the same physical host
but in different VMs (recommended deployments by Docker [6]
and VMware’s HVE [12, 13]), due to device virtualization over-
heads and data movement through protection boundaries (hypervi-
sor, OS, application). Remote reads are even slower because of the
additional network data transfer overheads.

In particular, the data flow for each file read on HDFS in a vir-
tualized cloud causes data to pass through the virtual devices (e.g.,
virtual block and virtual NIC) multiple times — causing excessive
CPU consumption and performance degradation compared to run-
ning Hadoop in physical machines. Further, even if high speed stor-

age hardware (e.g. SSD) is used in the virtualized hosts, the HDFS
performance, in terms of throughput and latency, will still be de-
graded due to a lack of CPU cycles to copy the data. In addition, if
low-power processors (Atom, ARM, etc.) are used (as is the trend
in some data centers to obtain better per-watt performance), this
degradation is even more serious. Therefore, if we can provide an
efficient data movement channel between datanode VMs and client
VMs, then we can mitigate the negative impact caused by device
virtualization overhead and achieve better data read performance.

In this paper, we focus on improving the I/O performance of vir-
tualized Hadoop applications or other big data applications which
rely on HDFS that involve significant data reads, either partially or
completely, in their work flows. More specifically, we target data
movement between datanode VMs and client VMs — without per-
forming transformation over virtual network and virtual disk. We
propose to alleviate the involved device virtualization overheads
by enabling HDFS client VMs to directly read data from the co-
located datanode VM’s virtual disk or utilizing RDMA [37] over
converged Ethernet (RoCE) [42] to transfer data directly from the
remote disk to the memory of client VMs via its zero-copy net-
working behavior. By doing so, we are able to reduce 1) device
virtualization overhead such as copying data through the virtual
disk, virtual network, and the network stack in both the datanode
VM and client VM, 2) data copy overhead between the guest ker-
nel/application memory and the data buffers in the host kernel for
remote reads, and 3) I/O threads scheduling and synchronization
overheads caused by “indirect” reads unnecessarily involving the
virtual network between VMs.

To realize the idea of an efficient data movement channel in the
hypervisor layer, we have developed a system called vRead, where
data needed by the HDFS client VM is directly read from the vir-
tual disk of a datanode VM — avoiding unnecessary data copies
involved in virtual I/O behaviors. vRead installs a kernel module
and a library in the guest providing the file operations interface and
a daemon in the host to read data owned by datanode VMs from
local and remote physical disks (via RDMA) then map it into the
guest memory for the application’s use. vRead is transparent to
user level applications (such as Hadoop MapReduce, Hbase, and
Hive) using HDFS. Therefore, it is able to support all existing ap-
plications storing data in HDFS.

To summarize, our contributions in this paper are:
1. We propose a new file operation interface for HDFS client

VMs which allows Hadoop applications to read data from
HDFS more efficiently.

2. We develop the vRead system, which provides I/O shortcuts
at the hypervisor level via components in the guest and in the
hypervisor. vRead works for both virtual local read (read
from co-located datanode VMs) and remote read.

3. We present evaluation results from a vRead prototype im-
plemented on KVM. Our microbenchmark results show that
vRead achieves higher read throughput, lower latency, and
less CPU cycle consumption compared to standard HDFS
running on VMs. For example, Hadoop’s throughput can
be improved by up to 60% for read and 150% for re-read.
Results from a number of Hadoop benchmarks also show
significant application-level performance improvements with
vRead.

We next explain our motivation in detail in Section 2 followed by
the design and implementation of vRead in Section 3 and Section 4
respectively. We then present the results of our evaluations of vRead
in Section 5. We discuss future work in Section 6, related work in
Section 7, and conclude the paper in Section 8.

2. MOTIVATION
In this section, we motivate the problem by demonstrating the

impact of virtualization overheads on Hadoop I/O efficiency. We
then discuss the inadequacy of existing solutions.

Virtual Block Virtual NIC

Application

Virtual NIC Virtual Block

HDFS Datanode

Virt-IO Virt-IO

Kernel Kernel

VM1 VM2

Hypervisor

Disk Image of VM1 Disk Image of VM2

Figure 1: I/O flow in Hadoop for co-located VMs.

2.1 Problem Analysis
Virtualization-based overheads (e.g., device virtualization and

VM or I/O thread scheduling) cause serious performance degra-
dation to HDFS, and this prevents Hadoop and other applications
which rely on HDFS (e.g. Hbase, Hive, and generic Java applica-
tions storing data in HDFS) from achieving their expected perfor-
mance. To illustrate this problem, Figure 1 presents a concrete ex-
ample of a Hadoop application hosted in a VM reading a file from
a co-located VM hosting the HDFS datanode1. In this scenario,
the Hadoop application first creates a TCP socket, connects to the
HDFS datanode, and sends the file read request via this socket.
Then the HDFS datanode reads the requested file from disk and
sends its content back over the same TCP connection.

Even though the virtual disk and virtual network between co-
located VMs are very fast (mainly due to inter-VM para-virtual I/O
techniques such as virt-io [38] and vhost), this single I/O flow in-
volves at least 5 data copies: 3 data copies caused by virt-io, 1
inter-VM data copy, and 1 copy between the kernel buffer and ap-
plication buffer in VM1 (which may also happen in VM2). Note
that each data copy consumes non-negligible CPU cycles and the
whole data transfer incurs overhead from both VMs’ network stacks.
Further, if the file being read was located on a remote datanode VM
running on another physical machine, then we would need to also
consider the physical networking overhead and additional delays
in the host kernels’ network stacks on each physical machine. In-
tuitively, such high I/O costs mean less CPU cycles for the real
Hadoop workload, which negatively impacts the performance of
Hadoop applications.

To illustrate this performance degradation, Figure 2 compares
the observed read delays from HDFS versus the local file system
in a virtualized host. In this experiment, we ran a Java applica-
tion in one VM that reads a file from the local file system and an
HDFS co-located datanode VM. The local file read (i.e., the base-
line reading performance) only involves 2 data copies: 1) from disk
to guest kernel buffer and 2) from guest kernel buffer to guest user
space. We varied the request size (application buffer size) from
64KB to 4MB and used two different read patterns. “Read without
cache” means reading data after clearing the disk memory buffer in
the guest kernel (virtual disk cache in the hypervisor is disabled).
1Such virtual local reads from co-located VMs are more common
than remote reads due to existing virtual Hadoop optimizations.

“Read with cache” (or re-read) means reading data without clear-
ing the cache. Figure 2 shows that the delay of HDFS hosted in a
co-located VM is significantly higher than the baseline read for all
cases. The root cause of this result is that inter-VM reads involve
more data copies and suffer more device virtualization overhead.

However, besides the additional data copies, there exists a sec-
ond, more systemic cause of this performance degradation: I/O
thread synchronization in the virtualized host. Most existing hyper-
visors perform I/O (network or disk) in a dedicated per-VM thread
that is optimized for I/O performance. For instance, Xen uses a
netback thread to process I/O requests for the virtual network, and
similarly KVM uses a vhost-net thread for the same task. There-
fore, to get good I/O performance, the VM and the corresponding
I/O thread must run cooperatively on different cores so that the syn-
chronization delay between them is short. If not, context switches
between them will cause slow-down at the hypervisor level.

In addition to the synchronization between a VM and its I/O
thread, data movement between 2 co-located VMs requires the I/O
threads of both VMs to synchronize as well. Therefore, we would
need 4 free cores to allow 2 I/O VMs to communicate with each
other unimpededly. As more VMs run in the same host, the data
transfer between VMs is further degraded because the VM sched-
uler cannot find enough free cores to run the cooperating threads.
Figure 3 highlights this problem. In this experiment, we ran 2 co-
located VMs hosting a netperf [10] server and client respectively in
a quad-core machine. When there are no other active VMs running,
we can get high transaction rates, even with varying request sizes.
However, if an additional 2 VMs are running CPU-intensive work-
loads (85% lookbusy [9]) in the same host, then the TCP trans-
action rate drops by 20%. Since the total CPU utilization of the
vCPU thread and I/O thread of each VM hosting netperf is less
than 75% , we know the host is not overloaded for the 4 VMs sce-
nario. Thus, the only reason for the drop in transaction rate is the
synchronization delay of VMs and I/O threads. Again, because vir-
tualized Hadoop requires many such cross-VM data movements,
this same scenario causes a loss in I/O performance in virtualized
Hadoop as well.

 0

 5

 10

 15

 20

 25

 30

 35

 40

64KB 1MB 4MB

D
a
ta

 R
e
a
d
 D

e
la

y
 (

m
s)

size of request

inter−VM
local

(a) Access delay without cache.

 0

 5

 10

 15

 20

 25

 30

 35

 40

64KB 1MB 4MB

D
a
ta

 R
e
a
d
 D

e
la

y
 (

m
s)

size of request

inter−VM
local

(b) Access delay with cache.

Figure 2: Virtual HDFS data access delay caused by device vir-
tualization overhead.

2.2 Alternative Solutions
We now examine several alternative solutions and their short-

comings when used with virtual Hadoop.
HDFS Short-Circuit Local Reads HDFS Short-Circuit Local
Reads (HDFS-2246 and HDFS-347) [8] allow a read to bypass the
datanode process — so that the client to read each file directly.
This approach is only possible when the client process and the
datanode process execute in the same operating system (OS). How-
ever, virtual Hadoop separates HDFS clients and datanodes in dif-

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

32KB 64KB 128KB

T
C

P
 T

ra
n

sa
ct

io
n

 R
at

e
(p

er
 s

ec
)

request size

2vms
4vms

Figure 3: I/O Threads synchronization overhead.

ferent VMs to obtain a more scalable Hadoop cluster and better
on-demand resource allocation. Further, locating some clients and
datanodes in the same VM to utilize HDFS Short-Circuit Local
Reads would cause a significant penalty to virtual remote reads
(inter-VM data reads). Thus, traditional HDFS Short-Circuit Local
Reads does not work for virtual Hadoop.

VirtFS VirtFS [26] is a para-virtualized file system interface de-
signed to improve pass-through technologies which rely on the virt-
io framework and the 9P protocol. With VirtFS, a guest can easily
exchange data with the host. However, there are several aspects
of VirtFS which impedes its useful application to HDFS. First, the
9P protocol used by VirtFS is not efficient, resulting in unaccept-
able disk I/O performance. Second, the explicit shared directory
assignment of VirtFS makes the virtual Hadoop cluster setup more
complex and inflexible. Third, it is not applicable when datanodes
and clients are in different physical machines, which is a typical
pattern in distributed Hadoop systems.

Hadoop Virtualization Extensions VMware’s HVE enables vir-
tual Hadoop to know the location of data files in order to co-locate
inter-VM data reads. However, it does not optimize the data read
path in the hypervisor (causing excessive data copies). This data
flow is similar to the scenario shown in Figure 1, and is thus sus-
ceptible to the same aforementioned issues.

Inter-VM Shared Memory Inter-VM Shared Memory [44, 31,
35] is a popular technology used to boost the performance of inter-
VM communication. However, this zero-copy communication be-
tween VMs can only reduce one data copy in the data flow of vir-
tual Hadoop (Figure 1). The involvement of datanode VMs still
imposes additional overheads (i.e., device virtualization and I/O
threads synchronization) on each data read performed by applica-
tions running in client VMs. Again, this approach only works for
co-located VMs running in the same machine.

3. DESIGN
Based on the above discussion, it is evident that if we provide an

efficient file read mechanism for HDFS (i.e. if the HDFS clients can
read the disk blocks owned by datanode VMs directly regardless of
their location), then we can improve virtual Hadoop’s performance
significantly. vRead achieves this by letting the HDFS client VMs
independently perform data reads directly from the disk instead of
channeling it through the datanode VM.

First, vRead enables a shortcut in the I/O path that reduces the
data access delay. Second, a reduction of data copies translates to
the reduction of CPU consumption, thus more CPU resources are
available for the actual Hadoop CPU-bound tasks. Third, a short-
ened inter-VM data transfer path significantly reduces the I/O pro-
cessing delay caused by synchronization of the VMs’ I/O threads.

To enable an HDFS client VM to read data directly from a datan-
ode VM’s virtual drive, vRead needs to provide three features: 1)

API Function Input Parameters Return Value Description

vRead_open() blk_name, datanodeID vRead descriptor Open the file for an HDFS block stored in a specified
datanode and get the corresponding vRead descriptor.

vRead_read() vRead descriptor, buffer Number of bytes read into buffer Attempt to read up to length bytes from the file
offset, length pointed to by vRead descriptor.

vRead_seek() vRead descriptor, offset Resulting offset as measured in bytes Set the file offset for an opened file pointed to by
the given vRead descriptor.

vRead_close() vRead descriptor Successful (0) or not (-1) Close the file for a given HDFS block indicated
by the vRead descriptor.

Table 1: vRead API.

Virtual
Block

Virtual
NIC

Application HDFS Datanode

Virt-IO

v
R

e
a

d
 B

u
ffe

r

Kernel Kernel

VM1 VM2

Hypervisor

vRead Daemon

vRead library

vRead Hash

Virtual
Block

Virtual
NIC

Virt-IO

vRead driver

Disk Image of VM1 Disk Image of VM2

Figure 4: I/O flow in Hadoop for co-located VMs with vRead.

a new user-level block read interface for inter-VM block reads, 2)
a mechanism to directly read from the virtual drive of the datanode
(an active VM) without channeling through the datanode and, 3)
an efficient data sharing (zero-copy) and communication channel
between the guest OS and hypervisor.

The architecture of vRead is shown by Figure 4 and Figure 5.
The above requirements are realized with the three main compo-
nents of vRead shown in these figures. In the following subsections
we will discuss each of these sub-components of vRead in detail.

In this paper, vRead targets HDFS but this framework is able to
be generalized to other similar distributed file systems such as QFS
[36] and GFS [21].

3.1 vRead User-level API
vRead provides a set of user-level library functions for HDFS to

use. It should be noted that these API calls will only be used by the
HDFS components. Hadoop applications are unaware of the exis-
tence of the vRead system and continue to use the original HDFS
interfaces to read data — hence requiring no modifications to them.
vRead’s implementation is independent of the guest OS so that this
user-level library does not need to be adjusted or changed when-
ever a different OS is used. We outline the vRead user-level APIs
in Table 1. The vRead APIs are a set of functions provided in a
user-level library (libvread) which hides the complexity of interact-
ing with the underlying vRead components. This library provides
4 main functions. To read a file stored in a datanode VM’s vir-
tual disk, we first need to call vRead_open to initialize a set of data
structures inside both the guest OS as well as inside the hypervisor.
This will return a vRead descriptor which is used as a parameter
in the rest of the functions. HDFS only understands block names,
hence the vRead descriptor is invisible to it. Thus, each obtained
descriptor is stored in a hash table in the user-level library, which
maps the block names to vRead descriptors, until the vRead_close
function is called. This lets HDFS reuse the descriptor for subse-
quent read/seek operations on the same block file.

HDFS is designed to support very large files in a distributed en-
vironment. Thus, each file stored in HDFS is divided into chunks
called data blocks (some smaller files on disk, 64MB each by de-

Application

vR
e

ad
 B

u
ffe

r

Kernel

VM1

Hypervisor
vRead Daemon

Hypervisor
vRead Daemon

Kernel

RDMA

VM2

HDFS Datanode
vRead library

vRead Hash vRead Hash

vRead driver

Disk Image of VM2Disk Image of VM1

Figure 5: I/O flow in Hadoop for remote VMs with vRead.

fault), and if possible, all blocks will reside on different datan-
odes. As a distributed file system, all actual data (HDFS blocks)
are stored in the same path in each datanode. To read a file from
HDFS, the Hadoop client needs the assistance of the namenode
which stores the metadata of each file (block mappings, destination
data node ID, etc.). In this work, we preserve all logic between
clients and the namenode, and only modify the file read logic in the
HDFS client interface. We re-implement the HDFS interface with
the vRead file operation interface. When an HDFS client plans to
read a specific file, it first gets the block list from a namenode then
uses the vRead interface wrapped by the HDFS interface to send
target block information (block name and datanode ID) and opera-
tions to the vRead per-VM daemon running in the hypervisor. The
daemon then reads the data from the destination virtual disk and
returns to the client. We discuss the operation of this daemon in the
following subsection.

3.2 Reading from a Datanode’s VM Disk Image
We use a daemon running in the hypervisor to aid in reading

from the virtual disk images of datanodes. This daemon receives
the requests from a guest and uses a hash table to store the map-
pings between HDFS datanode IDs and the corresponding virtual
disk (which can be a local image file, NFS, or iSCSI) information
for each datanode VM. This hash table is initialized when Hadoop
is started by accepting information from the namenode and looking
up the VM’s configuration. For the datanode VMs running on other
machines, we only store the IP address of the destination host ma-
chine. This table is dynamically updated once there are any datan-
ode VMs created, deleted, or migrated.
Reading from a Local Datanode To read data from the datan-
ode VM’s virtual disk (i.e., an image file) in the hypervisor using
existing POSIX APIs, vRead has to meet the following two require-
ments. First, the vRead hypervisor daemon should be able to under-
stand the file system in the virtual disk. This is because the HDFS
blocks are stored as regular files in the datanode’s file system and
accessing these files requires the hypervisor layer to understand the
file system layout of the datanode VM. In KVM environments, a
Linux kernel functions as the hypervisor and this kernel can in-

terpret most file systems used by guest OSs (typically guests also
use a similar if not the same Linux version). To access the content
of the datanode’s file system, all datanode VMs’ virtual disks are
mounted in read only mode to a specific directory in the hypervisor
(e.g. /mnt/datanode1) as loop devices with the assistance of losetup
(qemu-nbd module is needed if the disk image file is qcow format).
Since each virtual disk is installed independently of the file systems
(maintained by the guest OS), we need to read the partition tables
on these virtual devices and create device maps over the partitions’
segments (we use the existing Linux tool kpartx for this).

Second, we need to synchronize accesses to this file system by
the datanode and HDFS clients. The datanode’s access is read-
write while the HDFS clients’ accesses are read-only. Since the file
system within the guest OS is independent of the file system in the
hypervisor (file system of the VM is in the VM’s address space and
hence opaque to the hypervisor unless we use VM introspection
tools), new HDFS blocks generated by the datanode are invisible
to the vRead daemon. Thus, we need to refresh the directory entry
and inode cache information of the hypervisor mount point of the
datanode’s disk partition if any HDFS blocks are created, deleted,
or renamed. However, HDFS mostly operates in “append-only”
mode, hence we do not need to refresh all information for the mount
point. Only the added inodes (i.e., new files representing the HDFS
blocks) need to be updated.

The synchronization is achieved through the Hadoop namenode.
When a datanode writes new blocks to the file system, it notifies the
namenode about the availability of the new blocks so the readers
(HDFS clients) can access these blocks. We use this notification as
a trigger to refresh the mount point corresponding to that datanode.
The new block information is obtained from the vfsmount structure
and superblock of the corresponding virtual disk. The whole pro-
cess is similar to a remount. This process is sufficient to guarantee
that there is no read/write conflict issues since HDFS follows the
write-once and read-many approach for its data blocks. This ap-
proach assumes that a file in HDFS will not be modified once it is
written. All new written data will generate new blocks. So we do
not need to be concerned with read/write conflicts when issuing a
direct read on a virtual disk without notifying the owner VM.

Reading from a Remote Datanode To read data from a remote
datanode, the local vRead daemon contacts the remote host’s vRead
daemon using RDMA and sends the request to the remote daemon.
The remote daemon then performs the read operation on the lo-
cal disk (as discussed above) and returns the data via RDMA. For
vRead, RDMA is not necessary (traditional TCP/IP also works),
but RDMA helps vRead consume less CPU cycles and ensure lower
latency for remote data reads.

RDMA allows an application to communicate directly with an-
other application via remote memory read/write. This means that
an application does not need to rely on the operating system to
transfer messages. To communicate with the remote end, we (1)
Register a Memory Region (MR). This Memory Region is similar
to the packets buffer, but it is shared by the remote party which can
directly access it via the RDMA device. (2) Create a Send and a Re-
ceive Completion Queue (CQ). (3) Create a Queue Pair (QP) that
is a Send/Receive Queue Pair. To send or receive messages, Work
Requests (WRs) are placed onto a QP. When processing is com-
pleted, a Work Completion (WC) entry is optionally placed onto a
CQ associated with the work queue. To enable the RDMA, we use
the support of two libraries (rdmacm and libverbs) in userspace and
a physical NIC with RDMA support. Traditional RDMA requires
an infiniband network which is very expensive, so we use RoCE
(RDMA over Converged Ethernet) instead of infiniband.

3.3 Data Sharing and Communication Channel
The communication between the guest OS and local vRead dae-

mon is accomplished using a shared memory channel and an event
mechanism. This channel is a memory ring buffer shared by the
VM and hypervisor. For each HDFS read request, the vRead driver
in the guest places a request in the shared memory and fires an event
to notify the vRead daemon in the hypervisor. In turn, the vRead
daemon in the hypervisor reads the data from the datanode VM’s
disk image, writes the data to this channel, and then sends an event
to the guest OS so the data can be consumed by client applications.
We cannot use KVM virt-io’s ring buffer for this purpose since the
HDFS client VM needs to read data from the datanode VM’s vir-
tual disk and such an I/O operation is not the intended use of virt-io
channels. Instead we have to use a shared memory mechanism be-
tween the local vRead daemon and guest OS’s vRead driver.

To achieve zero-copy between the hypervisor and guest OS in
the VM, we use a POSIX SHM object as the shared buffer that is
assigned to each VM as a character device. For each guest, this
shared memory object appears as a virtual PCI device inside the
guest OS. This POSIX SHM object is divided into multiple chunks
(default 1024) to comprise a ring buffer. The vRead daemon uses
SysV APIs to read from/write to this shared buffer. The guest maps
the virtual PCI device’s address space to it’s own address space and
then performs read/write operations. The synchronization between
the vRead daemon and guest OS is guaranteed by a read/write lock
on each chunk.

To send notifications between the vRead daemon in the hyper-
visor and guest OS, vRead uses interrupts between them that are
implemented by assigned eventfds. Each VM listens on its own
eventfd, and uses its corresponding vRead daemon’s eventfd to
send an event (and vice versa). The only difference is that the
vRead daemon operates the event directly, whereas the event re-
ceived by the VM has to be translated into a virtual interrupt which
can be recognized by the guest OS. This translation is done by the
vRead driver in the guest kernel. With this channel, applications
in the guest OS can send requests (e.g., read a HDFS block) to the
vRead daemon and get the result from the shared memory buffer.

4. IMPLEMENTATION
We have implemented a prototype of vRead for the KVM [29]

hypervisor. We used Linux 3.12 as the kernel of the VMs and the
KVM host. The Hadoop version is 1.2.1.

vRead includes new implementations of the read interfaces for
an HDFS client (in the DFSClient class). These interfaces mainly
contain read, seek, and skip functions located in the DFSInput-
Stream class (a subclass of DFSClient). Of these functions, the
read function is the most important as it is frequently called dur-
ing HDFS reads. The DFSInputStream class has 2 different read
functions that vRead overrides: called read1 and read2 in this pa-
per. read1 reads a large file from the beginning and its request
size is smaller than one HDFS block (e.g., for use by applications
performing sequential reads). Its vRead implementation is shown
in Algorithm 1. Before reading an HDFS block, vRead checks
whether the corresponding file has been opened previously (and
thus has a corresponding vfd in hash) or not. If the file has not been
opened previously, a new vRead descriptor vfd is created by call-
ing vRead_open() and added to a hash table for future use. Upon
subsequent calls to read1, vRead checks if the input descriptor is
a valid vRead descriptor (i.e., in the hash table). If so, it is used
to read data via vRead_read(); if not, the original HDFS function
read_buffer is called to perform the read from the datanode. read2
reads data from a specific position in a file (e.g., for use in asyn-

chronous/random reads). The implementation of read2 is outlined
by Algorithm 2. Generally, read2 is similar to read1 except that it
is allowed to read across multiple blocks so vRead has to collect
all involved block information from the namenode and perform the
vRead_read on them one by one.

Additionally, we slightly modify the write interfaces of HDFS to
update the dentry/inode of the mount point for new blocks gener-
ated by the datanode. Specifically, we call the vRead_update func-
tion at the end of the standard append function (in the DFSOut-
putStream class) once a full block is written to the datanode VM.
Likewise, the same thing happens for a block delete or rename.
Note that we do not have to call vRead_update for each append op-
eration before a new block is completely created. Since all vRead
functions in libvread are written in C, but HDFS is implemented
in Java, all vRead functions have to be called via a Java native in-
terface (JNI). After adding the vRead extensions to the DFSClient
class, the Hadoop source code was re-compiled and we replaced
the hadoop-core-1.2.1.jar required by the Hadoop running environ-
ment with our new one.

Algorithm 1 DFSInputStream read1 with vRead interface
1: v f d is the vRead descriptor for a given HDFS block
2: v f d_hash is the hashtable storing the mappings of HDFS block and vfd
3: datanode_id indicates the target datanode
4: blk is the instance of an HDFS block to read
5: bu f is the application buffer
6: len is the number of bytes to read
7: o f f is the offset of the data block
8: procedure READ(bu f ,o f f , len)
9: blk = getCurrentBlock();

10: if v f d_hash.containsKey(blk.name) == null then
11: /* call vRead_open() to get the vRead descriptor */
12: v f d = vRead_open(blk.name, datanode_id);
13: v f d_hash.put(blk.name,v f d);
14: else
15: v f d = v f d_hash.get(blk.name);
16: end if
17: /* read the data with vRead descriptor */
18: if v f d != null then
19: result = vRead_read(v f d,bu f ,o f f , len);
20: else
21: /* original method of HDFS */
22: result = read_bu f f er(blk,bu f ,0, len);
23: end if
24: if result > 0 then
25: position += result;
26: if position == blk.size then
27: vRead_close(v f d);
28: end if
29: end if
30: end procedure

To interact with the vRead buffer, we implemented a guest kernel
driver that: 1) helps the guest OS recognize the assigned POSIX
SHM object as a virtual PCI device and 2) translates the eventfd
signals to virtual interrupts and vice versa. This driver is a load-
able kernel module whose implementation is based on the ivshmem
[31] VM driver. The address of the virtual PCI device representing
the vRead buffer is mapped to the address space via mmap() — so
that applications in the guest can read from/write to this ring buffer
by calling the vRead series functions in libvread. The vRead ring
buffer is divided into 1024 slots (the size is configurable, with a de-
fault of 4KB) comprising the critical area between the application
thread in the guest OS and the vRead daemon in the hypervisor.
A spinlock (pthread_spinlock_t) is used on each slot to guarantee
synchronization safety.

The vRead daemon is a generic thread granted read privilege
to the entire local physical disk of the hypervisor. In the KVM

platform, each VM is a process/thread in the host. Therefore, the
vRead daemon can communicate with the process representing a
VM via an eventfd and a read/write on the shared POSIX SHM
object (vRead buffer).

Algorithm 2 DFSInputStream read2 with vRead interface
1: v f d is the vRead descriptor for a given HDFS block
2: v f d_hash is the hashtable storing the mappings of HDFS block and vfd
3: datanode_id indicates the target datanode
4: blk is the instance of an HDFS block to read
5: position is the absolute start position of the target file stored in HDFS
6: bu f is the application buffer
7: len is the number of bytes to read
8: o f f is the offset of the data block
9: procedure READ(position,bu f ,o f f , len)

10: blk_list = getRangeBlock(position, len);
11: remaining = len;
12: for each blk in blk_list do
13: start = position - blk.getStartO f f set();
14: bytesToRead = min(remaining,blk.size− start);
15: if v f d_hash.containsKey(blk.name) == null then
16: /* call vRead_open() to get the vRead descriptor */
17: v f d = vRead_open(blk.name, datanode_id);
18: v f d_hash.put(blk.name,v f d);
19: else
20: v f d = v f d_hash.get(blk.name);
21: end if
22: /* read the data with vRead descriptor */
23: if v f d != null then
24: result = vRead_read(v f d,bu f ,start,bytesToRead);
25: else
26: /* original method of HDFS */
27: result = f etchBlocks(blk,start,bytesToRead,bu f);
28: end if
29: remaining -= bytesToRead;
30: position += bytesToRead;
31: end for
32: end procedure

To connect to remote vRead daemons on other machines with
low latency and low CPU cost, we use RDMA interfaces (declared
in rdma/rdma_cma.h and infiniband/arch.h) instead of TCP/IP APIs
to exchange data2. Specifically, we call a few standard infiniband
verbs such as ibv_reg_mr (register memory regions), ibv_post_send
and ibv_post_recv (send and receive requests) on the Ethernet links
via RoCE techniques to directly map the working set address of
request/response to the remote memory.

To update the file system for new blocks added in a mounted
virtual disk, vRead needs to refresh the dentry/inode of the mount
point if the vRead_update function is called in the guest OS. This
is done by calling a function extended from attach_recursive_mnt()
(in the source code of the mount command) which is responsible for
updating the vfsmount structure of the host file system.

5. EVALUATION
This section presents our evaluation of vRead using both mi-

crobenchmarks and real world Hadoop applications.

Evaluation Setup Our testbed consists of multiple servers, each
with a 3.2 GHz Intel Xeon quad-core CPU and 16GB of memory.
An SSD and 10Gbps RoCE NIC are installed in each server. All
physical servers are connected by 10Gbps network in a LAN. These
servers run KVM as the hypervisor and Linux 3.12 as the OS for all
guest VMs and the hosts. The Hadoop version is 1.2.1. To emulate
the different CPUs (low power and high frequency), the frequency

2We also implemented a TCP/IP version prototype, but note that it
consumes more CPU cycles for remote reads

of our Xeon processor is set to different values (1.6 GHZ, 2.0 GHZ
and 3.2 GHZ) via the cpufreq-set command [5].

All VMs in our experiments are assigned 1 vCPU and 2GB RAM
each. We do not set the CPU affinity for the VMs. KVM vhost-net
is enabled to boost the virtual network performance. vhost-blk is
disabled because it is still the test version in the latest KVM release.
The virtual disk image of each VM is a raw image file located in
the local SSD.

 0%

 20%

 40%

 60%

 80%

 100%

vRead vanilla

C
P

U
 U

ti
li

za
ti

o
n

(%
)

others
vhost−net
data copy(vRead−buffer)
data copy(virtio−vqueue)
loop device
client−application

(a) Client CPU utilization.

 0%

 20%

 40%

 60%

 80%

 100%

vRead−daemon vanilla−datanode

C
P

U
 U

ti
li

za
ti

o
n

(%
) others

vhost−net
data copy(virtio−vqueue)
loop device
disk read

(b) Datanode CPU utilization.

Figure 6: CPU utilization for co-located read.

5.1 Microbenchmark Performance
CPU Savings To verify whether vRead’s shortcut to file reading
can reduce overall CPU cost or not, we compare the CPU utiliza-
tion of reading a 1GB file from the HDFS with vRead and without.
The request size (application buffer on the client-side) of each read
is 1MB. There are three scenarios: 1) the client VM and HDFS
datanode VM are running on the same machine (i.e., co-located
scenario), 2) the client VM and datanode VM are running on two
different machines (i.e., remote scenario) and the vRead daemons
use RDMA to exchange data, and 3) still the remote scenario but
the vRead daemons use TCP instead of RDMA to exchange data.

Figure 6 shows the average CPU utilization when the client reads
from the co-located datanode VM. As expected, the VMs’ CPU
utilization with vRead is much lower than the vanilla case. Since
there is no virtual network involved in vRead for this case, vRead
saves a significant number of CPU cycles both in the guest and
host. The direct data read from disk also avoids any unnecessary
data copies between the 2 VMS, between the host and datanode
VM, and between the guest kernel buffer and application buffer in
the datanode VM. In total, we save around 40% of the CPU cycles
on the client side and around 65% on the datanode side with vRead.

The results of the remote-read scenario with RDMA enabled are
presented in Figure 7. vRead still beats the vanilla case on both
the client and datanode sides. Thanks to RDMA, the inter-host

 0%

 20%

 40%

 60%

 80%

 100%

vRead vanilla

C
P

U
 U

ti
li

za
ti

o
n

(%
)

others
rdma
vhost−net
data copy(vRead−buffer)
data copy(virtio−vqueue)
loop device
client−application

(a) Client CPU utilization for remote read with RDMA.

 0%

 20%

 40%

 60%

 80%

 100%

vRead−daemon vanilla−datanode
C

P
U

 U
ti

li
za

ti
o

n
(%

)

others
rdma
vhost−net
data copy(virtio−vqueue)
loop device
disk read

(b) Datanode CPU utilization for remote read with RDMA.

Figure 7: CPU utilization for remote read with RDMA.

network cost of vRead (shown by the rdma bar) is far lower than
the vanilla (shown by the vhost-net bar). Since our prototype uses
an active model for RDMA data exchange on the datanode side
(actively pushing data into the client’s memory), the RDMA cost
of the host running the datanode VM is higher than that of the host
holding the client VM. In this case, we save around 45% of the
CPU cycles on client side and more than 50% on datanode side.

We also evaluate the TCP version of the data exchange for re-
mote reads. In this setup, the vRead daemons running on differ-
ent machines use TCP/IP interfaces instead of RDMA verbs to ex-
change data. The results of these tests are shown in Figure 8. Com-
pared with the RDMA version, the number of CPU cycles spent in
sending/receiving data with TCP is significantly higher. Note that
the total CPU utilization is still slightly lower than the vanilla case,
which also uses TCP/IP, because it avoids copying data from the
host to the datanode VM. Nonetheless, the network processing of
the vanilla setup (vhost-net) is even more efficient than our TCP
component (“vRead-net”). This is because all operations of vhost-
net are completely done in kernel space, while our TCP version of
vRead is a user-level thread in the host — which has to switch be-
tween kernel space and user space and thus consumes more CPU
cycles. Therefore, we prefer the RDMA version utilizing the RoCE
because it helps achieve encouraging performance with low cost.

Data Read Delay Reduction vRead allows the client VM to read
files (HDFS blocks) from a datanode VM’s disk image directly.
Theoretically it would achieve performance close to that of reading
data from the local file system. So we repeat the data access delay
experiment (shown in Figure 2) described in Section 2. However,
now we replace the local reads by HDFS reads with vRead; the
baseline is still vanilla HDFS reads. Figure 9 shows the average
data read delay when performing a 1GB file read from a co-located
HDFS datanode VM. The request size varies from 64KB to 4MB.
In the first scenario, only 2 VMs (client and datanode VMs) are

 0%

 20%

 40%

 60%

 80%

 100%

vRead vanilla

C
P

U
 U

ti
li

z
a
ti

o
n

(%
)

others
vRead−net
vhost−net
data copy(vRead−buffer)
data copy(virtio−vqueue)
loop device
client−application

(a) Client CPU utilization for remote read with TCP.

 0%

 20%

 40%

 60%

 80%

 100%

vRead−daemon vanilla−datanode

C
P

U
 U

ti
li

za
ti

o
n
(%

)

others
vRead−net
vhost−net
data copy(virtio−vqueue)
loop device
disk read

(b) Datanode CPU utilization for remote read with TCP.

Figure 8: CPU utilization fore remote read with TCP.
running in a quad-core machine. The CPU frequency is set to 2.0
GHZ. We issue two kinds of reads for this case. Figure 9(a) shows
the results after clearing the memory cache in the datanode VM and
host. Figure 9(b) shows the results without clearing the memory
cache, that is, all data are read from the memory cache and not the
disk (called re-read). Our results show that for any request size,
vRead beats the vanilla case in both read and re-read evaluations,
because it cuts 3 data copies for each read.

Further, recall that I/O thread synchronization may negatively
impact inter-VM communication — resulting in HDFS read degra-
dation when CPU competition happens among VMs and I/O threads.
To measure vRead’s effectiveness in this scenario, we ran an ad-
ditional 2 VMs in the same quad-core machine so that all vCPU
threads and I/O threads cannot always find a free core to run on.
Hence, the HDFS data read delay in the 4 VMs scenario is higher
than the 2 VMs case. vRead’s performance is also affected, but its
degradation is lower than the vanilla case. Therefore, the gap be-
tween vRead and the vanilla case is larger in the 4 VMs scenario.
Overall, vRead can reduce the data access delay of the co-located
HDFS reads by up to 40% for the 2 VMs scenario and up to 50%
for the 4 VMs scenario compared with the vanilla environment.

5.2 Application Performance
Hadoop Performance In this experiment, we set up a simple
Hadoop cluster containing one client VM and two datanode VMs.
The namenode resides in the same VM as the client. More specif-
ically, one datanode VM shares the same host (Host1) with the
client VM, the other datanode is hosted by another physical ma-
chine (Host2) in the same LAN. Each physical machine hosts up to
4 VMs, and the rest of the VMs are background VMs running an

 0

 10

 20

 30

 40

 50

256KB 1MB 4MB

D
at

a
R

ea
d

 D
el

ay
 (

m
s)

size of request

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(a) Data access delay without cache.

 0

 10

 20

 30

 40

 50

256KB 1MB 4MB

D
at

a
R

ea
d

 D
el

ay
 (

m
s)

size of request

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(b) Data access delay with cache.

Figure 9: Data access delay for virtual HDFS.

VM3

Lookbusy

VM4

Lookbusy

VM3

Lookbusy

VM4

Lookbusy

Host1 Host2

HDFS

VM2
Datanode1

VM1
Datanode2

VM2
Lookbusy

VM1
Client

Namenode

Figure 10: Hadoop setup.

85% lookbusy [9] workload. The setup is shown in Figure 10.
In the virtual local read scenario, the client reads data from only

the co-located datanode VM. In the remote scenario, only the data
stored in the datanode VM located on Host2 is read. hybrid means
that the client read data from both the co-located datanode VM and
remote datanode VM, which is a more generic scenario in the real
world. A widely used HDFS benchmark TestDFSIO is chosen to
measure the read throughput of HDFS and the CPU running time.
Unlike the simple Java application used in our data access delay
experiment, TestDFSIO is a real Hadoop workload utilizing the
Map/Reduce framework. In our experiment, the client reads/re-
reads 5GB of data from the HDFS each time with the default 1MB
memory buffer. To measure the performance on different proces-
sors, we vary the CPU frequency from 1.6 GHZ to 3.2 GHZ to
emulate low-power processors and powerful processors. The re-
sults shown in Figure 11 indicate that if only the client VM and
datanode VM are running (2 VMs scenario) vRead obtains around
20% throughput improvement over the vanilla Hadoop on power-
ful processors (3.2 GHZ). While, on the low-power processors (1.6
GHZ), the throughput improvement increases to around 41%. The
CPU bottleneck on low-power processors becomes more severe for
the vanilla case, but its impact on vRead is slight because vRead
requires far fewer CPU cycles to perform a read from the HDFS

 0

 50

 100

 150

 200

 250

 300

1.6GHz 2.0GHz 3.2GHz

T
h
ro

u
g
h
p
u
t

(M
B

p
s)

CPU Frequency

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(a) DFSIO throughput for co-located read.

 0

 50

 100

 150

 200

 250

 300

1.6GHz 2.0GHz 3.2GHz

T
h
ro

u
g
h
p
u
t

(M
B

p
s)

CPU Frequency

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(b) DFSIO throughput for remote read.

 0

 50

 100

 150

 200

 250

 300

1.6GHz 2.0GHz 3.2GHz

T
h
ro

u
g
h
p
u
t

(M
B

p
s)

CPU Frequency

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(c) DFSIO throughput for hybrid read.

 0

 200

 400

 600

 800

 1,000

1.6GHz 2.0GHz 3.2GHz

T
h
ro

u
g
h
p
u
t

(M
B

p
s)

CPU Frequency

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(d) DFSIO throughput for co-located re-
read.

 0

 200

 400

 600

 800

 1,000

1.6GHz 2.0GHz 3.2GHz

T
h
ro

u
g
h
p
u
t

(M
B

p
s)

CPU Frequency

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(e) DFSIO throughput for remote re-read.

 0

 200

 400

 600

 800

 1,000

 1,200

1.6GHz 2.0GHz 3.2GHz

T
h
ro

u
g
h
p
u
t

(M
B

p
s)

CPU Frequency

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(f) DFSIO throughput for hybrid re-read.

Figure 11: HDFS read throughput.

which is verified by our CPU saving experiments.
When 2 or 3 additional VMs hosting 85% lookbusy are running

on the same hosts (4 VMs in total), each VM and its I/O thread
cannot be assured a free core to run on. Thus the synchronization
among VMs and their I/O threads are delayed by the CPU fair-
share scheduler. This is why the vanilla case’s throughput drops
by up to 22% for the 4 VMs scenario. Whereas, vRead’s perfor-
mance just drops slightly due to less work being done by the I/O
threads (i.e., no inter-VM communication). Therefore, vRead has
up to 65% improvement over the vanilla case in the 4 VMs sce-
nario. Figure 12 shows the actual CPU running time (not the task
completion time) spent by the TestDFSIO benchmark when per-
forming the 5GB reads from the HDFS. This shows that vRead still
saves significant CPU cycles along with gaining better throughput,
which is helpful to reduce the electric power cost for data centers
while obtaining encouraging performance.

 0

 20

 40

 60

 80

 100

 120

 140

co−located remote hybrid

T
h
ro

u
g
h
p
u
t

(M
B

p
s)

vanilla
vRead

Figure 13: HDFS write throughput.

To enable the new HDFS blocks written into the datanode VM to

be visible to the vRead daemon in the hypervisor, we need to update
the mount point information once a new file is generated in the file
system of the virtual disk image. We verify that this will not hurt
the HDFS write performance by running TestDFSIO-write with the
same setup as TestDFSIO-read. Figure 13 shows the results of 3
different scenarios (CPU is set to 2.0 GHz) for the vanilla case and
vRead. From this figure we can see that the overhead of updating
the information of the mount directory is negligible.

Big Data Analysis Tools with vRead There are a number of pow-
erful data query tools in the Apache Hadoop ecosystem helping
people store and analyze big data efficiently and safely. In this
subsection, we will evaluate the performance of vRead on some of
these tools (Hbase [2], Hive [3], and Sqoop [4]).

Scan SequentialRead RandomRead
Vanilla 6.26MB/s 3.01MB/s 2.48MB/s
vRead 7.97MB/s 3.72MB/s 2.91MB/s

% Improvement 27.3 23.6 17.3

Table 2: Performance improvement for Hbase.
HBase Apache HBase is a Hadoop database: a distributed, scal-
able, big data store. It is capable of hosting very large tables —
millions, or even billions, of rows on top of commodity hardware.
Each read/write operation is split into Map/Reduce jobs running
on the underlying Hadoop clusters. For this experiment, we in-
stalled HBase-0.94 on top of our Hadoop deployment (same as the
hybrid 4 VMs setup in last subsection). The CPU frequency is
set to 2.0 GHZ and the frequency scaling is disabled. In order
to use the extended HDFS with vRead, we replace the Hadoop-
core-1.2.1.jar under the hbase-0.94/lib directory with our new jar
package with vRead. We use the built-in HBase benchmark Perfor-

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

1.6GHz 2.0GHz 3.2GHz

C
P

U
 R

u
n
n
in

g
 T

im
e

(m
s)

CPU Frequency

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(a) DFSIO CPU time for co-located read.

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

1.6GHz 2.0GHz 3.2GHz

C
P

U
 R

u
n
n
in

g
 T

im
e

(m
s)

CPU Frequency

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(b) DFSIO CPU time for remote read.

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

1.6GHz 2.0GHz 3.2GHz

C
P

U
 R

u
n
n
in

g
 T

im
e

(m
s)

CPU Frequency

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(c) DFSIO CPU time for hybrid read.

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

1.6GHz 2.0GHz 3.2GHz

C
P

U
 R

u
n
n
in

g
 T

im
e

(m
s)

CPU Frequency

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(d) DFSIO CPU time for co-located re-
read.

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

1.6GHz 2.0GHz 3.2GHz

C
P

U
 R

u
n
n
in

g
 T

im
e

(m
s)

CPU Frequency

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(e) DFSIO CPU time for remote re-read.

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

1.6GHz 2.0GHz 3.2GHz

C
P

U
 R

u
n
n
in

g
 T

im
e

(m
s)

CPU Frequency

vanilla−2vms
vRead−2vms
vanilla−4vms
vRead−4vms

(f) DFSIO CPU time for hybrid re-read.

Figure 12: HDFS read CPU time.

manceEvaluation to measure the performance of scan, sequential
read, and random read in HBase. We inserted 5 million records via
PerformanceEvaluation-SequentialWrite to HBase as testing data.
The results are shown in Table 2. Compared with the vanilla case,
vRead can improve the throughput of the 3 operations by 27.3%,
23.6% and 17.3%, respectively.

Hive Apache Hive is a data warehouse software that facilitates
querying and managing large datasets residing in distributed stor-
age. Hive provides a mechanism to project structure onto this data
and query the data using a SQL-like language. Similar to the HBase
test, we installed Hive-1.1 on top of our Hadoop deployment (same
as the hybrid 4 VMs setup in TestDFSIO test). Following the eval-
uation approach from the UC Berkeley AMP Lab, we first created
a test table in Hive storing some user information (id, name, birth-
day, etc.) and loaded 30 million rows into this table. Then we ran a
sql query (select * from test where id ≥ x and id ≤ y) to select the
rows meeting the query conditions. The query completion time is
shown in the second column of Table 3. From this we can see that
a 21.3% time reduction was achieved by vRead.

Select Sql for Hive Sqoop Export
Vanilla 17.945s 385.136s
vRead 14.117s 342.508s

% Improvement 21.3 11.3/(Reduction)

Table 3: Performance improvement for Hive and Sqoop.
Sqoop Apache Sqoop is a tool designed for efficiently transferring
bulk data between Apache Hadoop data store and structured datas-
tores such as relational databases (MySQL, Oracle, MSSQL etc.).
Here, we measure the performance of exporting data from Hive to
MySQL. The export operation, in fact, is a process of reading data

from HDFS and inserting them to a relational database. In this
experiment, we move the test table storing 30 million rows used
in our Hive test to a MySQL database running in another physical
machine on the same LAN through Sqoop-export. The job comple-
tion time is shown in the third column of Table 3. For these results,
we can see that vRead can reduce the time by around 11.3%. The
reduction is lower than our other test case, because the export per-
formance is limited by both the read efficiency of HDFS and the
insert (write) efficiency of MySQL which vRead cannot optimize.

6. DISCUSSION
Interplay with Modern Hardware SR-IOV [18] devices and
IOMMUs such as Intel VT-d [25] enable the hypervisor to directly
assign devices to the guests. This allows the guests to directly in-
teract with the physical devices and eliminates virtualization over-
head. However, it does not work for inter-VM data movement,
which is common with virtual Hadoop. Additionally, with these
hardware, delays caused by synchronization between VMs and I/O
threads will still impact the I/O performance of the communicating
parties. Actually, vRead is compatible with SR-IOV and IOMMUs
because vRead does not modify the networking routines for packets
on the outgoing host. Therefore, vRead and those modern hardware
are complimentary and could mutually benefit from each other.

Compatibility with VM Migration VM live migration [17] is
helpful for maintaining overall load balance among physical servers
in a data center. Live migration requires storing the VM disk im-
ages in a centralized storage. Hypervisors (or the VM host) access
the VM images via NFS or iSCSI. vRead still works in this setup.
All image files deployed by NFS or iSCSI can be mounted in the
hypervisor’s file system. The reads/writes on these virtual disk im-

ages are the same as that on image files located on a local disk drive.
Once a VM is migrated to another host, the vRead hash tables in
both hosts just need to be updated.

Direct Read Bypassing the File System in the Host Since the
vRead daemon has the privilege to access all local devices, it can
directly read a datanode VM’s virtual disk and bypass the file sys-
tem in the host. This method can avoid mounting the virtual image
files in the host and updating the mount point’s dentry/inode for any
new blocks. However, the main drawback of this method is that it
cannot benefit from the file system cache, that is, all reads have to
load data from the physical disk drive. Also, this approach needs
to manually translate the address of each file several times (guest
logical to guest physical, guest physical to host logical, host logical
to host physical) for each read. This is much more complex than
mounting the virtual disk image to the host’s file system — which
allows vRead to use Linux POSIX APIs to read/write files.

7. RELATED WORK
We have introduced some alternative solutions for optimizing

data movement for virtualized systems in Section 2. Here, we dis-
cuss other related work in the same area. These efforts can be
divided into three categories: reducing device virtualization over-
head, VM scheduling optimization, and functionality offloading.

Reducing Virtual Device Overhead In recent years, many ef-
forts have focused on reducing device virtualization overhead to
improve VM I/O performance or capacity of VM hosts. vPipe [19]
enables direct “piping” of application I/O data from source to sink
devices, either files or TCP sockets, at the hypervisor level. By
doing so, vPipe can avoid both device virtualization overhead and
VM scheduling delays, resulting in better VM I/O performance.
vPipe focuses on reducing the virtualization overhead between the
virtual devices in the same VM, while vRead targets reducing the
redundant data copies between VMs. Menon [32] proposes sev-
eral optimizations such as offloading datagram checksum and TCP
segmentation (TSO) to the Xen virtual machine monitor (VMM)
[15] to improve TCP performance in Xen VMs. [34] aimed to re-
duce the TCP per-packet processing cost in VMs by packet coa-
lescing to achieve better TCP receive performance. [33] proposes
offloading part of the network device’s functionality to the hyper-
visor to reduce CPU cycles consumed by network packet process-
ing. These three work focus on optimizing some functionalities
of TCP/IP in virtual environments, whereas vRead focuses on opti-
mizing the data movement path between VMs communicating with
each other and mainly targets the applications relying on HDFS.

Similarly, Ahmed et al. propose virtual interrupt coalescing for
virtual SCSI controllers [14] to reduce disk I/O processing over-
head in virtualized hosts. In [22, 24], Gordon et al. propose exit-
less interrupt delivery mechanisms to mitigate the overhead of vir-
tual interrupt processing in KVM so that the incoming I/O events
are sent to the destination VM without switching to the hypervisor
by a VM-Exit. These two works can reduce the virtual interrupts’
overhead incurred by processing disk or network I/O requests in a
VM, but they cannot eliminate the unnecessary I/O flow between
VMs which is targeted by vRead.

VM Scheduling Optimization Since VM scheduling delay can
significantly affect a VM’s I/O performance in terms of throughput
as well as application-perceived latency in virtual systems, many
previous efforts have focused on reducing VM scheduling delay
for I/O-intensive applications. [30] proposes a soft-realtime VM
scheduler to reduce the response time of I/O requests thus improv-
ing the performance of soft-realtime applications such as media
servers. However, its preemption-based policy may violate CPU

fair-share if a VM is I/O-intensive. vSlicer [43] minimizes CPU
scheduling delay and hence the application-perceived latency — to
a certain degree by setting a smaller time-slice for latency-sensitive
VMs. However, such a time-slice is not small enough to improve
TCP/UDP throughput in LAN/datacenter environments. These two
efforts both assume multiple VMs are running on the same CPU
core. If there is no CPU sharing among VMs, they are less help-
ful. As new CPUs increasingly have more cores in each socket, the
CPU sharing scenario is less common. vRead does not have any
CPU sharing assumption, it also works no matter the VMs have
dedicated cores or not. Besides, vRead reduces the I/O processing
delay by avoiding redundant data copies between VMs thus elim-
inating the scheduling delay of I/O threads. MRG [27] proposes
a VM scheduler specifically for Map/Reduce jobs. This scheduler
keeps Map/Reduce job fairness by introducing a two-level group
credit-based scheduling policy. The efficiency of map and reduce
tasks can be improved by batching I/O requests within a group,
hence superfluous context switches are eliminated. But, this work
can not improve the I/O performance between Map/Reduce jobs
and HDFS.

Functionality Offloading to the Hypervisor Offloading partial
I/O operations to reduce virtualization overhead and improve I/O
performance is a well studied approach. [23] proposes the idea
of offloading common middle-ware functionality to the hypervisor
layer to reduce context switches between the guest OS and hyper-
visor. Differently, vRead introduces shortcutting at the inter-VM
I/O level and is applicable to efficiently read files from other VMs’
virtual disks. In [40], the whole TCP/IP stack is offloaded to a sep-
arate core to reduce the I/O response time of VMs sharing the same
core. vSnoop [28] and vFlood [20] mitigated the negative impact of
CPU access latency on TCP by offloading acknowledgement gener-
ation and congestion control to the driver domain of the Xen VMM.
However, they all focus on the CPU sharing scenarios, but vRead is
applicable no matter the VMs have dedicated cores or not. Besides,
they are hardly applicable to inter-VM communication on the same
host, which vRead addresses.

8. CONCLUSION
We have presented vRead, a system that directly improves the

performance of HDFS. We observe that traditional virtual Hadoop
systems frequently move data from a disk to a datanode VM which
then sends the data to a client VM via the virtual network — re-
gardless of if the two VMs are co-located or not. Thus, each HDFS
read requires at least 5 data copies which incurs I/O overhead aris-
ing from device virtualization and CPU scheduling latency among
VMs and I/O threads. vRead mitigates such penalty by shortcut-
ting the HDFS reads at the hypervisor layer. Our evaluation of
a vRead prototype shows that vRead can improve I/O throughput
and reduce the CPU cost of HDFS. This benefits all applications
(not limited to Hadoop) storing data in HDFS. Our application case
studies demonstrate vRead’s applicability and effectiveness.

9. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments.

This work was supported in part by NSF under Awards 0855141
and 1219004.

10. REFERENCES
[1] Amazon EC2. http://aws.amazon.com/ec2.
[2] Apache HBase. http://hbase.apache.org/.
[3] Apache Hive. https://hive.apache.org/.

[4] Apache Sqoop. http://sqoop.apache.org/.
[5] CPU Frequency Utils. http://mirrors.dotsrc.org/linux/utils/

kernel/cpufreq/cpufrequtils.html.
[6] Docker. http://www.docker.com/.
[7] Elastic Map/Reduce (EMR).

http://aws.amazon.com/elasticmapreduce/.
[8] HDFS Short-Circuit Local Reads.

http://hadoop.apache.org/docs/current/hadoop-project-dist/
hadoop-hdfs/ShortCircuitLocalReads.html.

[9] lookbusy – load generator. http://www.devin.com/lookbusy/.
[10] Netperf Benchmark. http://www.netperf.org/.
[11] Sahara. https://wiki.openstack.org/wiki/Sahara.
[12] Hadoop Virtualization Extensions on VMware vSphere5. In

VMware technical white paper (2012).
[13] A Benchmarking Case study of Virtualized Hadoop

Performance on VMware vSphere5. In VMware technical
white paper (2013).

[14] AHMAD, I., GULATI, A., AND MASHTIZADEH, A. vIC:
Interrupt coalescing for virtual machine storage device IO. In
USENIX ATC (2011).

[15] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the art of virtualization. In ACM
SOSP (2003).

[16] BORTHAKUR, D. The hadoop distributed file system:
Architecture and design. In Hadoop Project Website (2007),
vol. 11, p. 21.

[17] CLARK, CHRISTOPHER, KEIR FRASER, S. H., JACOB
GORM HANSEN, E. J., CHRISTIAN LIMPACH, I. P., AND
WARFIELD., A. Live migration of virtual machines. In
Proceedings of the 2nd conference on Symposium on
Networked Systems Design and Implementation (2005),
vol. 2, pp. 273–286.

[18] DONG, Y., YU, Z., AND ROSE, G. SR-IOV networking in
Xen: architecture, design and implementation. In WIOV
(2008).

[19] GAMAGE, S., CONG, X., KOMPELLA, R. R., AND XU, D.
vPipe: piped i/o offloading for efficient data movement in
virtualized clouds. In ACM SOCC (2014).

[20] GAMAGE, S., KANGARLOU, A., KOMPELLA, R. R., AND
XU, D. Opportunistic flooding to improve TCP transmit
performance in virtualized clouds. In ACM SOCC (2011).

[21] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The
google file system. In ACM SIGOPS operating systems
review (2003), vol. 37, ACM, pp. 29–43.

[22] GORDON, A., AMIT, N., HAR’EL, N., BEN-YEHUDA, M.,
LANDAU, A., SCHUSTER, A., AND TSAFRIR, D. ELI:
bare-metal performance for I/O virtualization. In ACM
ASPLOS (2012).

[23] GORDON, A., BEN-YEHUDA, M., FILIMONOV, D., AND
DAHAN, M. VAMOS: virtualization aware middleware. In
WIOV (2011).

[24] HAR’EL, N., GORDON, A., LANDAU, A., BEN-YEHUDA,
M., TRAEGER, A., AND LADELSKY, R. Efficient and
scalable paravirtual I/O system. In USENIX ATC (2013).

[25] HIREMANE, R. Intel virtualization technology for directed
I/O (Intel VT-d). Technology@ Intel Magazine 4, 10 (2007).

[26] JUJJURI, V., HENSBERGEN, E. V., AND LIGUORI, A.
VirtFS – a virtualization aware file system pass-through. In
OLS (2010).

[27] KANG, H., CHEN, Y., WONG, J. L., SION, R., AND WU,

J. Enhancement of Xen’s scheduler for MapReduce
workloads. In ACM HPDC (2011).

[28] KANGARLOU, A., GAMAGE, S., KOMPELLA, R. R., AND
XU, D. vSnoop: Improving TCP throughput in virtualized
environments via acknowledgement offload. In ACM/IEEE
SC (2010).

[29] KIVITY, A., YANIV KAMAY, D. L., LUBLIN, U., AND
LIGUORI., A. KVM: the Linux virtual machine monitor. In
In Proceedings of the Linux Symposium (2007).

[30] LEE, M., KRISHNAKUMAR, A. S., KRISHNAN, P., SINGH,
N., AND YAJNIK, S. Supporting soft real-time tasks in the
Xen hypervisor. In ACM VEE (2010).

[31] MACDONELL, CAM, XIAODI KE, A. W. G., AND LU, P.
Low-Latency, High-Bandwidth Use Cases for
Nahanni/ivshmem. In KVM Forum (2011).

[32] MENON, A., COX, A. L., AND ZWAENEPOEL, W.
Optimizing network virtualization in Xen. In USENIX ATC
(2006).

[33] MENON, A., SCHUBERT, S., AND ZWAENEPOEL, W.
TwinDrivers: semi-automatic derivation of fast and safe
hypervisor network drivers from guest OS drivers. In ACM
ASPLOS (2009).

[34] MENON, A., AND ZWAENEPOEL, W. Optimizing TCP
receive performance. In USENIX ATC (2008).

[35] MOHEBBI, H. R., KASHEFI, O., AND SHARIFI, M. Zivm:
A zero-copy inter-vm communication mechanism for cloud
computing. Computer and Information Science 4, 6 (2011).

[36] OVSIANNIKOV, M., RUS, S., REEVES, D., SUTTER, P.,
RAO, S., AND KELLY, J. The quantcast file system.
Proceedings of the VLDB Endowment 6, 11 (2013),
1092–1101.

[37] RECIO, R., CULLEY, P., GARCIA, D., HILLAND, J., AND
METZLER, B. An rdma protocol specification. In IETF
Internet-draft draft-ietf-rddp-rdmap-03 (2005).

[38] RUSSELL, R. Virtio – towards a de-facto standard for virtual
i/o devices. In ACM SIGOPS Operating Systems Review
(2008).

[39] SEFRAOUI, O., AND MOHAMMED AISSAOUI, M. E.
Openstack: toward an open-source solution for cloud
computing. In International Journal of Computer
Applications (2012), vol. 55.

[40] SHALEV, L., SATRAN, J., BOROVIK, E., AND
BEN-YEHUDA, M. IsoStack: Highly efficient network
processing on dedicated cores. In USENIX ATC (2010).

[41] SHVACHKO, K., HAIRONG KUANG, S. R., AND
CHANSLER., R. The Hadoop distributed file system. In
IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST 2010) (2010).

[42] SUBRAMONI, H., PING LAI, M. L., AND PANDA., D. K.
RDMA over Ethernet – A preliminary study. In In Cluster
Computing and Workshops (CLUSTER) (2009).

[43] XU, C., GAMAGE, S., RAO, P. N., KANGARLOU, A.,
KOMPELLA, R. R., AND XU, D. vSlicer: latency-aware
virtual machine scheduling via differentiated-frequency cpu
slicing. In HPDC (2012).

[44] ZHANG, X., SUZANNE MCINTOSH, P. R., AND GRIFFIN,
J. L. XenSocket: A high-throughput interdomain transport
for virtual machines. In Middleware (2007).

