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ABSTRACT

With the deployment of multimedia service proxies at different locations in the networks, it is possible to create
an application-level media service proxy network. Examples of media services offered by this network include
media data adaptation, transformation, protection, enhancement, recovery, and different combinations of them.
Multimedia sources and clients will then connect to this network and create customized, value-added, and
composite media service delivered by one or more proxies in the media service proxy network.

In this paper, we focus on the problem of finding multimedia service path in the media service proxy network.
A service path is a chain of media service proxies between a media source and a media client. With dynamic
changes in proxy capacity and connection bandwidth between the proxies, our goal is to find the ‘best’ path with
respect to end-to-end resource availability for each service path request. Qur solution includes (1) a mechanism
to monitor and propagate resource availability information in the media service proxy network and (2) an
algorithm to find the best service path based on the resource monitoring results. Its main features include:
(1) the resource monitoring mechanism provides reasonable accuracy and stability, while incurring controlled
overhead; (2) the service path finding algorithm finds the best path for each service path request, and achieves
high overall success rate among all requests; and (3) it is an application-level solution, and does not require
changes to the lower-level network infrastructure.
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1. INTRODUCTION

To enable customized delivery or wide distribution of multimedia data, media service providers and media
content carriers deploy media service proxies in local-area, metropolitan-area, or wide-area networks. A media
Service ProxY (or SPY for the rest of the paper) accepts a media stream, performs certain application-level
processing on the media data, and forwards the stream. For example, a SPY may be capable of: transcoding
media data from one format to another, repairing or enhancing the poor image quality in a media stream, adding
background music to a mute video, summarizing the content of a video stream, tracking the image of an object
in the media stream, performing error correction coding/decoding, and performing real-time water-marking in
a media stream for copyright protection. The media data processing often requires a non-trivial portion of a
SPY’s total capacity. In addition, the SPY may increase or decrease the data rate of a media stream after the
media processing.

With SPYs deployed at different locations in the networks, an application-level media Service ProxY Network
or SPY-Net, is formed. Media sources and clients can then connect to the SPY-Net to get customized, value-
added, and composite media services (Figure 1). Furthermore, besides media data processing, SPYs also serve
as relays: simply accepting a media stream and forwarding it. With this, the SPY-Net may also help media
streams getting round some poor-quality network links - even if the lower-level network cannot do so. Although
a SPY-Net has many potential capabilities such as individual service delivery between single source and single
client, as well as large-scale media content distribution to multiple clients,"»2 we focus on media service delivery
to an individual client in this paper. We also assume a relatively small size of a SPY-Net (less than a hundred
SPYs).
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Figure 1: SPY-Net and SPY mapping for service paths

More specifically, we focus on the case of finding service paths in a SPY-Net. A service path consists of a
chain of SPYs between a media source and a media client*. The SPYs perform multiple proxy services - in a
certain order, on the media stream from the source to the destination. If working with existing media capturing,
querying, or distribution systems (such as the e-Seminar System*), service paths will make it possible to create
more composite and value-added media services. Some examples of service paths are: (1) A video stream is first
water-marked by a copyright protection proxy service, then it is summarized by a video summarization service,
and finally, an object tracking service tracks the image of an object of interest (by generating a rectangle
around that image, for example). (2) A low-quality video stream from an outdoor mobile environment (for
example, during a field trip) is first enhanced by an image repair and enhancement service, and then mixed
with background music by a music adaptation service. (3) A media stream is compressed by a data compression
service before going on a low bandwidth network link such as a trans-pacific link; on the other side, the
corresponding decompression service decompresses the media stream before forwarding it to the destination.

Challenges in finding service paths in a SPY-Net come from the dynamic changes in resource availability,
including both SPY capacity and connection bandwidth between SPYs. Specifically, the following problems have
to be studied: (1) how to obtain and propagate resource availability information without incurring excessive
overhead in the SPY-Net; (2) for a service path request, since the proxy services may change the data rate of
the media stream, the service path may require different amounts of bandwidth in different segments of the
path; (3) on the service path, how to map the requested proxy services to the actual SPYs: a SPY may perform
multiple proxy services (for example, P, in Figure 1), if it has the required capacity and functionality; on the
other hand, a SPY may just serve as a relay without performing any proxy service (for example, P; in Figure
1).

Existing solutions to network-level unicast QoS routing may not be applicable to the above challenges.
More specifically, they do not solve problems (2) and (3) which arise only in service path computation. First,
network-level unicast QoS routing computes an end-to-end path with uniform bandwidth on each link; while
a service path may require different bandwidth in different segments. Second, network-level QoS routing does
not involve end hosts; while a service path involves one or more SPYs. Therefore, network-level QoS routing
does not perform the dual task of SPY mapping and path finding, which is more complicated than finding an
end-to-end network path of uniform bandwidth.

*The generic concept of service path was first introduced in the Ninja Project.



In this paper, we propose our solution to finding the ‘best’ service path with respect to end-to-end resource
availability for each service path request. Our solution includes (1) a mechanism to monitor and propagate
the resource availability information in the SPY-Net and (2) an algorithm to find the best service path based
on the resource monitoring results. Its main features include: (1) the resource monitoring mechanism provides
reasonable accuracy and stability, while incurring controlled overhead; (2) the service path finding algorithm
finds the best path for each service path request, with respect to a generic resource evaluation function; (3) the
service path finding algorithm achieves high overall success rate among all service path requests; and (4) it is
an application-level solution, requiring no changes to the lower-level network infrastructure.

The rest of the paper is organized as follows. Section 2 provides a brief overview of our solution. Section 3
describes the SPY-Net resource availability monitoring mechanism. Section 4 presents the algorithm for finding
service paths. Section 5 presents performance evaluation. Section 6 compares our work with related work.
Finally, Section 7 concludes this paper.

2. SOLUTION OVERVIEW

Our solution can be summarized as follows: each SPY in the SPY-Net monitors (1) its own capacity and (2) the
connection bandwidth from itself to a selected subset of other SPYs. The monitoring results of proxy capacity
and connection bandwidth are periodically propagated to every other SPY in the SPY-Net. Therefore, each
SPY is able to maintain a global view of the SPY-Net: a SPY-Net Monitoring Graph or SNMG. Based on the
SNMG, a SPY executes the service path finding algorithm locally, for each service path request submitted to it.
Our solution avoids the distributed service path probing upon each request, at the cost of periodic propagation
of resource monitoring results. In addition, our simulation results (Section 5) show that the service path finding
algorithm achieves good performance even with long propagation period.

Note that our solution takes advantage of the facts that (1) the size of a SPY-Net is relatively small and (2)
all operations are performed at application-level instead of in the lower-level network infrastructure, where the
implementation of these operations could have introduced unacceptable overhead.

3. MONITORING SPY-NET RESOURCES

To keep track of resource availability in the SPY-Net, each SPY maintains a SPY-Net Monitoring Graph
(SNMG). A node P in the SNMG represents a SPY in the SPY-Net. C(P) represents its current capacity, and is
monitored by P. An edge (P, P') in the SNMG represents the connection from SPY P to P'. B(P, P') represents
its current bandwidth. We assume that B(P, P') is monitored by P. Each SPY periodically propagates its
resource monitoring results to other SPYs, while it updates its SNMG with results from itself and other SPYst.

3.1. Proxy Capacity and Connection Bandwidth

Proxy capacity can be estimated with the help of the operating system running on the SPY. With recent
advances in resource management frameworks for CPU,* ¢ disk I/O bandwidth,” and buffer space, it becomes
possible to estimate the current resource availability via APIs provided by these resource management schemes.
Furthermore, by using the ‘ticket and currency’ based model,® it will be possible to ‘collapse’ multiple resources
into a single ‘abstract’ resource with uniform denomination. However, this is outside the scope of this paper.
For simplicity, we in this paper assume the availability of a single resource (such as CPU) as the proxy capacity.

Connection bandwidth between SPYs is more difficult to measure. Instead of measuring current available
bandwidth, we suggest the probing of current feasible bandwidth between the SPYs as follows: when SPY P
probes B(P, P'), P sends to P’ a series of fixed-size pseudo-frames using different levels of bandwidth (for
example, 28.8Kbps, 64Kbps, 128Kbps... 2Mbps), while P’ responds with ACKs or NACKs indicating if the
frames arrive on time. P progressively raises the bandwidth level if certain number of consecutive ACKs are
received, but immediately drops to the previous level if one NACK is received. The probing continues until the
highest stable level is reached. The probing is conservative and only indicates that B(P, P') is feasible with
high probability.

"We assume that each SPY knows every other SPY in the SPY-Net via some pre-configuration.



Note that if the proxy capacity and connection bandwidth are reservation-enabled, our solution will provide
end-to-end resource availability guarantee for each service path request. However, even if the resources are not
reservation-enabled, our service path finding algorithm will still improve the overall success rate of service path
requests based on the resource monitoring information.

3.2. SNMG Construction and Maintenance

As implied in Section 3.1, probing connection bandwidth incurs both network traffic and SPY overhead. There-
fore, it is necessary to control the number of connections being actively monitored by each SPY. However, since
the monitored connections are candidates to be selected to form media service paths, it is important that good
connections be dynamically discovered and added to the SNMG, while degraded connections be identified and
purged.

Similar to the application-level multicast systems,>% 10 we put constraints on both the number of outbound

connections a SPY actively probes and the number of inbound connections (probed by other SPYs) the SPY
accepts. For each SPY P, we denote dyy(P) and d;,(P) as the upper bounds for the numbers of outbound
and inbound monitored connections, respectively. We also denote ADJ,:(P) and ADJ;,(P) as the ‘neighbor’
SPYs associated with the outbound and inbound connections, respectively. The elements in ADJ,,:(P) and
AD J;,,(P) will be dynamically decided by P at runtime.

However, the method used by P to decide the elements in ADJ,,;(P) is different from the methods in the
application-level multicast systems.? %19 We describe our method as follows.

Initialization During SPY-Net deployment, each SPY P is assigned an initial ADJ,,:(P) and ADJ;,(P),
which satisfies the (dyut(P),din(P)) constraint. We assume that the initial assignments lead to a connected
SNMG.

Monitoring and propagation At runtime, each SPY P periodically probes each connection from itself to
a SPY € ADJ,y:(P). The probing period Tp is a configurable parameter, and each probing starts randomly
during the period. In addition, the current proxy capacity of P is obtained in each period. At the end of each
period, P propagates the resource monitoring results to other SPYs in the SPY-Net!.

In addition, at the end of each period, P executes Dijkstra’s algorithm to compute the following (the
purpose will soon be explained): based on the currently monitored connections (edges) in the SNMG, what
is the maximum end-to-end concatenated bandwidth from P to every other SPY. This can be computed by
Dijkstra’s algorithm, if we replace the ‘+’ operator with ‘min’; and ‘>’ operator with ‘<’ in the algorithm. We
denote the resultant maximum end-to-end bandwidth from P to P’ as By,q.(P — P').

Trying and update Meanwhile, each SPY P also probes the connections to SPYs outside AD J,:(P) - at
a much lower frequency. The probing period for these connections can be multiples of Tp, for example 107p.
After such a connection (P, P,) is probed, P decides if P, should be added to ADJ,:(P):

e P compares B(P, P,) with By,;4,(P — P,) computed by Dijkstra’s algorithm. If B(P, P,) < Bee(P —
P,), P, will not be added to ADJ,,:(P).

e Otherwise, if the number of elements in ADJ,,:(P) has not reached d,.:(P), P, will be added to
AD Joy:(P) immediately. Here, we assume that when P, was probed, P, already checked if its din(P;)
limit has been reached. The probing will be performed only if the limit has not been reached.

e If d,,:(P) has been reached, a procedure (Figure 2) will be executed to find at least one ‘victim’ SPY
P, € ADJyy:(P) U {P,} to be removed (or kept away - if it is P,) from ADJy,:(P). Specifically, the
procedure identifies P, such that: in graph SNMG, which is the current SNMG plus an additional edge
(P, P,), if edge (P, P,) is removed from SNMG™, the consequent end-to-end bandwidth from P to P,
(Besg(P — P,) in Figure 2) will drop by the lowest percentage, compared with the current B(P, P,).

#To save propagation bandwidth, each SPY may not propagate the items with only minor changes since last probing
period.



FIND-VICTIM ()
Besg(P — Py) = Bpoo(P — Py);

percent(P,) = B(P’P’");(BI;;:)P‘)P”) * 100%;

for each P; € ADJy:(P) {
Bcsq(P — P) = MAZT p; € AD J oy (P)U{ Py }, P;#P; (min(B(P, Pj): Bmaw(Pj — P)));

percent(P;) = B(P’P");f;f]gi()PHP') * 100%;

}
return {P,|P, € ADJy(P) U {P,;}, and percent(P,) is the lowest}

Figure 2: The procedure to find victim(s)

We note that in the procedure, By, q,(P; — P;) is needed. However, Dijkstra algorithm executed by P
does not compute this value. The problem is solved as follows: each P; € ADJ,,+(P)U {P,} piggy-backs
the values of Bpoz(P; — P;) (P; € ADJyy(P) and P; # P;) with an ACK back to P, during the
bandwidth probing for B(P, P;). P can then use these values.

e After the procedure, if P, is the only victim selected, then nothing happens. Otherwise, P removes the
‘victim’ SPY(s) from ADJyy:(P) and adds P, to it. This change will be known by all other SPYs after
P’s next round of propagation.

The intuition behind our method is: between any pair of SPYs P and P’, if By, (P — P') in the current
SNMG is equal to or better than the direct connection bandwidth B(P, P'), then connection (P, P') will not be
monitored. Here we prefer multiple ‘short’ connections to one ‘long-haul’ connection from P to P’'. The former
may provide more SPY mapping (from requested proxy services to actual SPYs) options during service path
finding, and it may better reflect the routing topology of the lower-level networks. Meanwhile, to dynamically
discover improving/degrading connections, we also probe connections not in the SNMG. To replace a monitored
connection due to the d,,; constraint, our policy in the procedure is to purge such a connection whose removal
will lead to the lowest percent of end-to-end bandwidth drop between any pair of SPYs. Note that the removal
will not affect any on-going service paths which involve the victim connection. The only consequence is that
the victim connection will not appear in service paths computed after the removal.

In addition, P will keep the probing result of a connection not added to SNMG for a period of Tp. The
result will be leveraged to create ‘short-cuts’ during media service sessions. This will be presented in Section
4.3.

Finally, SNMG partition may occur due to SPY failure or transient inconsistency of SNMGs at different
SPYs. Fortunately, the application-level multicast systems® ' have proposed methods to detect and repair
‘mesh partitions’, which can be readily applied to the SPY-Net. Details of these methods are omitted due to
the space limitation of this paper.

4. FINDING SERVICE PATHS IN SPY-NET

After describing the SPY-Net resource monitoring mechanism, we proceed to present the service path finding
algorithm. Each SPY executes this algorithm locally on the SNMG. We first formally define the problem of
finding the best media service path.

4.1. Problem Definition

Suppose in each service path request, there are K requested media proxy services. We call each requested media
proxy service a virtual SPY (VSPY), and the service path a Virtual service path. Let vP(1 < k < K) represent
the VSPYs and their logical service order. For denotation convenience, let vFPy and vPk 1 be the media source
and destination hosts (they are not SPYs), respectively. Let C'(vPy) be the proxy capacity requirement of v P
(1 <k <K),and B(vPy,vPy 1) be the bandwidth requirement from vPj, to vPy; (0 <k < K).



Let P; and P; be the SPY-Net ‘access points’ (i.e. the nearest SPYs) of the media source and destination
hosts, respectively. We assume that the service path request is sender-initiated. Therefore, a service path
request will be submitted to Ps, which will execute the service path finding algorithm.

The objective of the algorithm is to find both (1) a path P in SNMG from P; to Py: let |P| be the number
of SPYs on P, and P; (1 < i < |P|) be the SPYs. Especially, Pi = P, and Pp| = Py; and (2) a mapping M
from vP;, (1 < k < K) to a SPY on PS: if vP; and vP; (1 <i < j < K) are mapped to SPYs P, and P,, then
either P, = P, or P, is reachable from P, on P (which we denote as P, < P,). Among all possible paths and
mappings, P and M achieve the minimum value of a generic evaluation function F'. We define F' as follows:

F(P7M) = G(fC’(P7M)7fB(P7M))7 (1)

G(z,y) is a non-decreasing function specific to a SPY-Net (simple examples such as G(z,y) = maz(azx, fy) or
G(z,y) = ax + By, a >0, 8 > 0).

fc(P,M) is the proxy capacity evaluation function defined as:

P,M)= 2
fB(P,M) is the connection bandwidth evaluation function defined as:
pile B('U‘Pjaij+1)M(vP<)<P-andP- 1<M(vPjy1)
fs(®,M) = 3 e dac sl Q

£ B(P;, Piy1)

Intuitively, function fo computes the accumulative ‘risk’ (or ‘cost’) with respect to proxy capacity ‘requirement-
to-availability’ ratio on P: the higher the fc value, the more costly the accumulative proxy capacity requirement
is. Meanwhile, function fg characterizes the accumulative risk or cost with respect to bandwidth ‘requirement-
to-availability’ ratio on P: the higher the fp value, the more costly the accumulative bandwidth requirement is.
To combine the evaluation of f¢ and fp, the SPY-Net specific and configurable function G is introduced. The
reason is that the values of fo and fp are not directly comparable, due to their differences in resource types and
probing methods. Function G is therefore used to ‘normalize the price’ of both proxy capacity and connection
bandwidth. For example, if G(z,y) = c1x + c2y, we can intuitive think of ¢; * fo (P, M) and cs * fg(P,M) as
the ‘cost’ of proxy capacity and connection bandwidth under some uniform ‘currency’, respectively.

With G combining fo and fp, function F' evaluates how risky or costly the choices of P and M are, with
respect to overall resource usage: the lower the F/(P, M) value, the less risky or costly the choices for a service
path request. Therefore, the goal of our algorithm is to find P and M that minimize F(P,M).

Although the evaluation function F' is generic, our service path finding algorithm works as long as function
G is non-decreasing. This claim will be shown in Section 4.2. For now, we first have the following lemma, (proof
can be found in a technical report!?):

Lemma 1 Let G(z,y) be a non-decreasing function. For a service path P and VSPY-to-SPY mapping M, if
P’ is a sub-path of P which starts from the same P;, and My, (1 < k < K ) is an incomplete mapping from the
first k VSPYs to SPYs on P', such that M(vP;) = My (vP;) (1 <i < k), then we have F(P',My) < F(P,M).

$We assume in this paper that a SPY has the functionality to perform every type of proxy service requested. This is
practical using the active service technique.'*




4.2. Media Service Path Finding Algorithm

Our media service path finding algorithm extends Dijkstra’s algorithm.'® More specifically, we extend Dijkstra’s
algorithm to accommodate the ‘try-out’ of different VSPY-to-SPY mapping options, while exploring the different
paths from Ps to Py.

Extended multi-stage estimates for functions F, fo, and fp In Dijkstra’s algorithm, each node P in
the graph is associated with a shortest-path estimate d[P]. For each node P in SNMG, we extend this estimate
to 3% (K + 1) estimates: F¥[P], fE[P], and fE[P] (0 < k < K). F*[P] estimates the minimum value of function
F - for any path from P; to P and for any incomplete mapping from the first ¥ VSPYs to SPYs on the path.
fE[P] and f£[P] maintain the corresponding fc and fg values leading to F¥[P], respectively.

Extended pointers for tracing service paths In Dijkstra’s algorithm, 7[P] represents the predecessor
of P. We extend w[P] to «*[P], 4*[P), and path*[P] (0 < k < K): *[P] represents the predecessor of P, in
the case when the first ¥ VSPYs have been resolved (mapped) on the path from P, to P. t*[P] represents
the number of VSPYs that have been resolved on the path from P, to m*[P]. Therefore, there are exactly
(k — ¢*[P]) number of VSPYs mapped to SPY P. We will use both 7*[P] and 1*[P] as ‘pointers’ to trace the
best service path when the algorithm terminates. Finally, path*[P] is for our presentation convenience only. It
is a linked list recording the path from P, to P with the first £ VSPYs resolved.

Extended RELAX procedure We extend the RELAX procedure to implement the progressive try-out of
different VSPY-to-SPY mappings. The procedure is for two nodes P, and P, in the SNMG with an edge from
P, to P,, as shown in Figure 3. Each iteration in RELAX tries out the following VSPY-to-SPY mapping: given
that the first k¥ VSPYs have been mapped to SPYs from P; to P,, can we achieve a smaller value of F¢[P,], if
we map the following (¢ — k) VSPYs to P,?

RELAX(P,, Py, k, G)

fori=Fkto K {
B(ka,ka+1) .

T = "BF.,p)
_ E;'=te+1 Clwhy)
Y= C(P) )

if x <1and y <1 {//resource availability checking
b= fE[P] +x; c = fEIP] +y;
if G(c,b) < Fi[P,] {
Fz[Pv] = G(Ca b);
fEP, =b; foP, =¢;
Wi[Pv] = Pu; 'l/}z[Pv] = k;
pathi[P,] = path![P,] + Py;

Figure 3: Extended RELAX procedure

The computational complexity of the extended RELAX procedure is O(K), assuming that }*_, ., (C(vF;))
is computed once and re-used by subsequent RELAX procedure calls. Fortunately, the number of VSPYs in
a service path request is typically very small (less than five VSPYs). Therefore, RELAX can practically be
considered as a constant time procedure.

Extended INITIALIZE procedure We also extend the INITTALIZE procedure to be called at the

beginning of the algorithm (complete pseudo-code can be found in a technical report!?). Especially, the value
of F¥[P,] (0 < k < K) is initialized as follows:

Y1 (CwPy)

Fk[Ps] :G( C(Ps) ,

(4)



Extended Dijkstra’s algorithm We are now ready to extend Dijkstra’s algorithm (Figure 4). The major
extension is one more layer of loop (‘for £ =...”) outside the original algorithm. At the end of each iteration
of this loop, we will get a path from P; to Py (in fact, to other SPYs too) and a mapping My, for the first &k
VSPYs, which achieve the minimum value of F(P,My). Therefore, the VSPY-to-SPY mapping progresses by
one VSPY after each iteration. In addition, due to the iterative nature of the VSPY-to-SPY mapping, loop
may be formed across different iterations. Therefore, we introduce a loop checking before performing RELAX.
This will prevent any loop in resultant service paths.

EXTENDED-DIJKSTRA (SNMG, FP;)
INITIALIZE (SNMG, P;);
for k =0to K {
Sk =¢; Q¥ = V[SNMG];
}

for k=0to K
while Q* # ¢ do {
P, = EXTRACT-MIN(Q*); S* = S* U {P,};
for each P, € ADJ,:(Py)
if P, is not on path*[P,] and P, € Q* //loop checking
RELAX(P,, Py, k, G);

Figure 4: Extended DIJKSTRA’s algorithm

After the execution of EXTENDED-DIJKSTRA, the best service path can be identified by traversing from Py
back to Ps: the predecessor of Py is Ppreq = K [P4], and the VSPYs which are mapped to P; can be determined
as the VSPYs with index numbers 9% [P;] + 1 to K. Next, if we let k = ¢X[P,], then the predecessor of P,eq
is 7%[P,eq], and the VSPYs mapped to Pp..q are the VSPYs with index numbers from 1*[P,,.q4] + 1 to k, and
so on, until we reach P;.

The computational complexity of our service path finding algorithm is O(KV? + K2EV). The increased
complexity comes from the loop checking (Figure 4), which takes O(V') time. To proof the correctness of our
algorithm, we first have the following lemma:

Lemma 2 There is no loop on the best service path computed by EXTENDED-DIJKSTRA.

With Lemma 1 and Lemma 2, we have the following theorem about the correctness of our service path
finding algorithm (proof can be found in a technical report!?):

Theorem 1 If EXTENDED-DIJKSTRA algorithm is run on the SNMG. At the termination, for any P
i SNMG, let P and M be the computed service path and VSPY-to-SPY mapping, respectively. Then P is
loop-free; and F(P,M) = FX[P] is minimum among all paths from P, to P and all mappings of the K VSPYs.

4.3. In-session Service Path Pruning

After P, computes the service path, the media service session will start. We assume that the media data are
packetized into application-level packets and transmitted along the SPYs on the service path. The application-
level packets are of uniform format which is understood by every SPY in the SPY-Net. We further assume that
the header of each application-level packet contains (1) the addresses of SPYs (P;,1 <4 < |P|) on service path
P, (2) the VSPY-to-SPY mapping M; and (3) the bandwidth requirement B(vPy,vPrt1) (0 < k < K) on the
virtual service path.

However, the service path is not pinned during the media service session. In this section, we propose an
in-session service path pruning technique, which dynamically changes the service path during the service session.
The goal is to reduce the number of SPYs on P. Recall in Section 3.2, to control the number of monitored
connections and to expose more VSPY-to-SPY mapping opportunities, the SPY-Net monitoring mechanism



prefers multiple ‘short’ connections to one long-haul connection between two SPYs, if the concatenated end-
to-end bandwidth of the former is no less than the connection bandwidth of the latter. However, this may
lead to service paths with consecutive ‘forward-only’ SPYs - SPYs to which no VSPYs are mapped, serving
only as relays. For example, in Figure 5, between P to Py, there are three forward-only SPYs Ps, Py, and Ps.
Consecutive forward-only SPYs incur additional service session delay and points of failure.

Source vP1 vP2 vP3 Client

Figure 5: In-session service path pruning

Our service path pruning makes use of recent probing results of connections not added to the SNMG. Recall
that in Section 3.2, such a result will be kept by the probing SPY P for a period of Tp. In Figure 5 for example,
suppose P, recently probed connection (P, Ps), which is not in the SNMG. However, if B(P;, P5) is equal to
the concatenated bandwidth from P» to Ps via P3 and Py, Ps will not be added to ADJyy:(P;). During the
service session, when P, sends out application-level media data packets, P» can in fact send them directly to
Ps, because P, knows that B(P,, Ps) is equal to the bandwidth along (P, — P3 — Py — Ps). Therefore, the
service path is dynamically pruned to P, — P, — Ps; — F;.

5. EXPERIMENTS
5.1. Simulation Setup

In this section, we present simulation results to evaluate the performance of the SPY-Net architecture and service
path finding algorithm. Using our own simulation program, we simulate a SPY-Net of 16 SPYs. In Figure 6(a),
the solid lines represent the actual links in the lower-level network, while the dotted lines represent the initial
assignment of the SNMG edges. To determine the actual route between a pair of SPYs, the lower-level network
uses a non-QoS routing mechanism based on hop count only. Each SPY has an initial total capacity of Cj,
units. Each physical connection in Figure 6(a) has an initial total bandwidth of B;,;; = 1000 units. When a
SPY P probes the application-level connection bandwidth from P to P’, it will get the concatenated (minimum)
bandwidth along the lower-level route from P to P’. Function G in the service path finding algorithm is defined
as G(z,y) =z +y.

Service path requests are generated according to a Poisson process. In each run of the simulation, we use a
different average request arrival rate, ranging from 100 req/min to 400 req/min. The range of request arrival
rate is chosen to reflect different workload of the SPY-Net (from under-utilized to overloaded). Each run lasts 3
hours. For each request, the source SPY P; is randomly selected among all SPYs, while the destination SPY Py
is selected from all SPYs - each with a different and time-varying probability. This is to create non-uniform and
changing load across the SPY-Net. The session duration of each requested service path is also heterogeneous,
ranging randomly between 1 minute and 45 minutes. The virtual service path associated with each service path
request is generated as follows: it contains 4 VSPYsY. For both proxy capacity of a VSPY and connection
bandwidth between any consecutive VSPYs, the minimum and maximum requirements are r (r is randomly set
among 1, 2, and 3) units and 7 * M (M > 1) units, respectively. Other capacity and bandwidth requirements
are randomly set between the minimum and maximum. The lower portion of Figure 6(b) shows an example of
virtual service path, in which M = 10 and r = 2.

TWe assume that the number of VSPYs in a service path request is typically very small.
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Figure 6: Simulation setup

5.2. Simulation Results

(1) Overall success rate of finding service paths We first evaluate the success rate achieved by our service
path finding algorithm, which we denote as SPF in the rest of this section. A service path is successfully found,
if and only if during the entire service session, its resource requirements are always satisfied by the resource
availability on the path.

For comparison, we also simulate another service path finding algorithm which we call Intuit. Algorithm
Intuit maps the VSPYs on a virtual service path to either Ps; or P, and exposes only the ‘thinnest’ connection
to the network. Therefore, Intuit results in finding an end-to-end path (without any SPY) from P; to Py, with
the lowest bandwidth requirement on the virtual service path. We use Intuit as a comparison, because it aligns
well with the intuition to reduce the service path finding problem to the unicast QoS routing problem. Intuit
works as follows: (1) it identifies the minimum bandwidth requirement B,,;, on the virtual service path, for
example, the bandwidth between vP, and vP; in Figure 6(b); (2) it maps the VSPYs before this ‘thinnest’
connection to Py, for example, vP; and vP» are mapped to Ps in Figure 6(b); (3) it maps the VSPYs after the
‘thinnest’ connection to Py, for example, vP; and vP, are mapped to Py; (4) it finds a best end-to-end path P
from P; to P; which can offer bandwidth B,,;,.

Figure 7 shows the path finding success rate achieved by SPF and Intuit, under different request arrival rates.
Results in each sub-figure are obtained under a different ratio of Bjpi; : Cinie (with By fixed at 1000 units). M
(see Section 5.1) is fixed at 10. We observe that the success rate of SPF is constantly no lower than that of Intuit.
The former may be higher than the latter by as much as 20%. The reason is that SPF dynamically identifies
insufficient resources and discovers available resources - either proxy capacity or connection bandwidth. On the
other hand, Intuit only tries to minimize bandwidth usage. In Figures 7(a) and 7(b), Cini is not significantly
higher than B;,;. In this case, both proxy capacity and connection bandwidth can become scarce at different
times. We observe that the success rate of SPF is always higher than that of Intuit. In Figures 7(c) and
7(d), Cinit is 6 and 8 times of Bj,i:, respectively. In this case, proxy capacity tends to be more plentiful than
bandwidth. We notice that although SPF is still the winner, the success rates of both algorithms gradually
converge, with the increase of request arrival rate. This is because when bandwidth is relatively scarce and
request arrival rate is high, SPF tends to find the same path as Intuit does for each request.

We also study the impact of M on service path finding success rate. M is the ratio of maximum to minimum
resource requirement on a virtual service path. To focus on bandwidth requirement, we use the same initial
resource availability Bjn; and Cini as in Figure 7(d) where Byt : Cing = 1 : 8, so that proxy capacity is
relatively plentiful. However, we increase the value of M from 10 to 15 and 20, respectively, and the results are
shown in Figure 8. Comparing Figures 7(d), 8(a), and 8(b), we are interested in the convergence of SPF and
Intuit success rates. We observe that the higher the M, the lower the request arrival rate at which SPF loses
its lead (at 400 req/min, 280 req/min, and 220 req/min when M = 10,15, 20, respectively).



©
o
©
o

SPF —+—
Intuit -

SPF —+—
Intuit -

©

o
T

©

S}
T

EN o @ ~
o o o S}
s T T
EN I3 @ ~
o o o S}

T T T

w
o
T
w
o

N
o
T
N
o
T

=
o

=
o

Service path finding success rate (%
Service path finding success rate (%

. . . . . . . . . .
150 200 250 300 350 400 150 200 250 300 350 400

100 100
Request arrival rate (reqg/mn) Request arrival rate (reqg/mn)
(a) Binit : Cinse =1:1 (b) Binit : Cinit =1:2

< 100 < 100 t
- x - x|
o 95 - > o 95 - .
© @ g
~ 90 lay - 90 S
o 85 o 85
o o
E E
2 80 > gof
2 75t 2 75t
k=] k=]
S 70t Z 70r
£ 651 < 65
T ©
2 60 2 60
8 8
= 55| = 55|
> >
% 50 L L L L L % 50 L L L L L

100 150 200 250 300 350 400 100 150 200 250 300 350 400

Request arrival rate (req/mn) Request arrival rate (req/mn)
(¢) Binit : Cinit =1:6 (d) Binit : Cinit =1:8

Figure 7: Service path finding success rate under different B;y;t : Cinit ratio

(2) Impact of propagation period on service path finding success rate The success rate of SPF
is affected by the period length for resource monitoring result propagation. The shorter the period, the more
updated the resource availability information a SPY can gather. However, too frequent propagation of resource
monitoring results causes non-trivial network traffic, and will hurt the scalability of a SPY-Net with respect
to the number of SPYs. In the experiments of (1), we use a propagation period T of 1 minute, which may
not be realistic in a real SPY-Net. Therefore, we increase T' to 2, 5, and 10 minutes, respectively. The results
are shown in Figure 9, and they are for the experiment configurations of M = 10, Bjpit : Cinie = 1 : 2 and
M =10, Bipnit : Cinit = 1 : 8, respectively. The results verify the negative impact of larger T' on the success rate
of SPF. Furthermore, the different degree of success rate degradation in Figures 9(a) and 9(b) suggests that the
appropriate value of T' may be different in SPY-Nets with different system parameters. An in-depth study on
the relation between T' and the system parameters (such as Bj,i; and Cjp;) is our on-going work.

(3) Service path length reduction via in-session pruning In (3) and (4), we evaluate the effect of our
resource monitoring and SNMG maintenance mechanisms. We first evaluate the in-session pruning technique to
reduce service path length. In this experiment, we compare the service path length before and after in-session
pruning. We set 7" as 1 minute, which is also the duration a bandwidth probing result will be kept. We also
set the d,yut(P) of each SPY P as 4, 6, 8, and 10, respectively. Figure 10(a) shows the result. The x-axis is
the service path length before pruning, and the y-axis is the average length of the same paths after pruning.
We observe the reduction of service path length. We also observe that with the increase of T' (not shown in
Figure 10(a)) and dyq: (P), the reduction becomes larger. This is because larger T and d,,; (P) introduces more
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pruning possibilities in the SNMG.

(4) Stability of SNMG topology Finally, we study the stability of the SNMG topology during the
execution of our simulation. We set d,.:(P) for each SPY as 4, 6, and 8, respectively. We also set T as 1
minute. Under request arrival rate of 200 req/min, We record the average accumulative number of changes
in ADJ,,+(P) with the elapse of time. The results are shown in Figure 10(b). We notice that under each
dout(P), the topology of SNMG becomes stable after the first 5 minutes. Furthermore, we observe that (not
shown in Figure 10(b)) more than 95% of the actual lower-level links are included in the stable SNMG (recall
the difference between the initial SNMG assignment and the lower-level network topology in Section 5.1). This

demonstrates that our resource monitoring and SNMG maintenance mechanisms achieve topology stability for
the SNMG.

6. RELATED WORK

Service paths (and similar concepts) have been proposed, and their usefulness has been justified.> 1415 In the
Ninja Project,® service path is defined as a sequence of application-level service operators and connectors. It
focuses on path specification, instantiation, and protocol translation along the path. The CANS framework!# is
proposed for the composition of adaptive service delivery over the Internet. It highlights QoS adaptation along
the service delivery path under different resource conditions. A programming framework!® is presented for the
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construction of network services to access media data. Its focus is more on the programming model and open
signaling between media-playing objects. However, these works do not address the problem of how to find a
good service path in the networks. Finally, an integrated path and server selection technique'® is proposed for
networked multimedia environments. However, it does not consider multiple proxy services and the mapping
to physical proxies.

Application-level multicast!> %9 10:17.18 hag recently been studied. An application-level overlay network is
proposed to support multicast even without IP-level multicast capability. Application-level multicast architec-
tures have been introduced in the context of large scale content distribution,2'® or small-to-medium scale
group communications.®!® Our SPY-Net architecture shares the same design principle of maintaining an
overlay network, monitoring its resource and performance at application-level, and planning data transmission
according to the monitored resource or performance condition.

However, the SPY-Net has the following differences from the proposed application-level multicast architec-
tures: (1) it aims at enabling the dynamic combination of multiple media proxy services, and the composition of
new and value-added media services from basic proxy services; and (2) when planning media service paths, it not
only considers the performance of network connections, but also considers the end-system resource availability
in media service proxies.

In technical details, SPY-Net uses a link-state-like approach in finding service paths, while in the application-
level multicast systems,?'? a distance-vector-like approach is used. We do not choose the distance-vector
approach because: different service path requests may have very different requested service types, proxy capacity
requirement, and connection bandwidth requirement. Given our problem definition for service path finding
(Section 4.1), it is not possible to adopt a single definition of ‘distance’ to be estimated and propagated. On
the contrary, the ‘distance’ can only be determined jointly by SPY-Net resource availability and by individual
service path request upon its arrival. This is also the reason why it may be difficult to use the service path pre-
computation approach proposed by Shaikh et al'® (though SPY-Net does share the same link-state mechanism).
It is likely that SPY-Net will share the same overlay network with an application-level multicast architecture.
Therefore, the different routing or path finding mechanisms will co-exist and complement each other.

Interestingly, we find that our approach can easily be merged into the ALMI infrastructure.’ Our SNMG
currently kept by each SPY will then become the neighbor monitoring graph kept by the session controller.”
The session controller may then execute our service path finding algorithm. Also, given its relatively small size,
the SPY-Net can also be plugged in to the Resilient Overlay Networks (RON) architecture,?® which already
provides the capability of network performance monitoring.



7. CONCLUSION

We envision the emergence of application-level media service proxy networks (SPY-Nets). Media sources and
clients will be able to ‘tap to’ a SPY-Net to form customized, composite, and value-added media proxy services.
In this paper, we study the problem of finding service paths in the SPY-Net. Our solution includes (1) a
mechanism to monitor and propagate resource availability condition in the SPY-Net and (2) an algorithm to
find the best service path based on the resource monitoring results. Our theoretical analysis and simulation
results show that: (1) the resource monitoring mechanism achieves reasonable stability and accuracy for service
path computation, while incurring controlled probing and propagation overhead; (2) the service path finding
algorithm finds the best path for each service path request, with respect to a generic resource evaluation function;
(3) the service path finding algorithm achieves high success rate. Especially, it performs no worse (and in many
cases better) than a service path planning method which may align well with common intuition; and (4) it
is an application-level solution, requiring no changes to the lower-level network infrastructure. Our on-going
work includes the issue of interoperability with current application-level multicast architectures, and the issue
of multi-dimensional resource condition (for example, with both network bandwidth and delay) in the resource
evaluation function.
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