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Abstract— In this paper, we present a generic fault-tolerant
control (FTC) strategy via reinforcement learning (RL). We
demonstrate the effectiveness of this method on quadcopter un-
manned aerial vehicles (UAVs). The fault-tolerant control policy
is trained to handle actuator and sensor fault/attack. Unlike
traditional FTC, this policy does not require fault detection
and diagnosis (FDD) nor tailoring the controller for specific
attack scenarios. Instead, the policy is running simultaneously
alongside the stabilizing controller without the need for on-
detection activation. The effectiveness of the policy is compared
with traditional active and passive FTC strategies against
actuator and sensor faults. We compare their performance
in position control tasks via simulation and experiments on
quadcopters. The result shows that the strategy can effectively
tolerate different types of attacks/faults and maintain the
vehicle’s position, outperforming the other two methods.

I. INTRODUCTION

Autonomous aerial and ground vehicles have been increas-
ingly applied to many tasks due to advancement in their
sensors and actuators, together with sophisticated algorithms
and computing power. With their expanding mission capabil-
ities, their attack surface exposed to both cyber and physical
attacks grows accordingly. This poses a significant threat
particularly in its control system which is responsible for
vehicle stabilization and performance.

Current research has been focused on securing the cyber
aspect of cyber-physical systems such as memory protec-
tion [1] or firmware hardening [2]. However, if attacks
are launched against the physical components of mobile
robots/vehicles such as GPS spoofing [3]–[5] or using
sound wave to resonate the IMU sensor [6], cyber (soft-
ware/firmware) techniques can no longer protect the system
and ensure safe operation of the vehicle. It has been found
that signal spoofing is among the most likely and most
effective attacks against UAV systems [7]–[9]. As a result,
undesirable performance or even loss of control would occur.
Given that attacks/faults cannot be fully prevented, flight
recovery strategies and fault-tolerant capability are highly
desirable for such autonomous mobile systems.

In this work, we introduce a novel reinforcement learn-
ing assisted flight recovery strategy against cyber-physical
attacks. Unlike traditional Fault Tolerant Control (FTC)
strategies where specific estimator and controller need to be
designed for detection and recovery under particular fault, the
original stabilizing controller can be kept as is. The unique-
ness of this strategy is that the model-free nonlinear FTC
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policy is designed to be an add-on to the closed-loop system,
which can be trained and implemented on an existing legacy
system through minimally intrusive software retrofitted like
the BlueBox [10]. For training, the vehicle dynamic is
generally well known, the original control software can be
either extract through binary reverse engineering or setup as
software/hardware in the loop. The vehicle dynamics under
various fault conditions can be difficult to model explicitly,
however, it can be viewed as a partially observable Markov
decision process, where the attacks or faults are considered as
unobservable states. The policy can be optimized to handle
both actuator and sensor attacks, and it would recover the
vehicle flight to normal operation. The policy is constantly
running alongside the vehicle’s flight controller, and it does
not require fault detection and activation. When the vehicle
is operating normally, the policy generates no or minimum
control command adjustment and does not interfere with the
operation. When the fault condition arises or the vehicle is
under attack, the policy takes the state inputs and generate
appropriate actuator command adjustment with little to no
delay to compensate for the fault/attack condition and main-
tains vehicle position/trajectory tracking.

To test the proposed strategy, we use a custom build
quadcopter UAV as test platform running ArduPilot [11] as
flight controller. To evaluate its performance, we compare
its position control results against the BlueBox [10] and a
robust controller (passive FTC). The results show that the
RL based policy can maintain vehicle stability under sensor
and actuator attack, and outperforms the other two methods.

II. RELATED WORK

A. Fault-Tolerant Control

Traditionally, there are two types of fault-tolerant control:
passive fault-tolerant control (PFTC) and active fault-tolerant
control (AFTC) [12]. AFTC has a fault detection and diag-
nostics component (FDD) to identify the source of the fault,
and the controller is reconfigured to compensate such fault.
The FDD component is usually an observer [13]–[15], and
can generate residual signals to indicate the fault [14], [16].
Both sensor and actuator attacks or failure can be detected
with system model [10], [17]. If actuator fault is detected, the
control torque can be redistributed accordingly [18] base on
estimation or simple gain scheduling to improve performance
when the motor fault is only loss of effectiveness [16], [19].
Mueller et al. showed that quadcopter can be controlled when
loosing up to three rotors [20].

Meanwhile, PFTC does not have an FDD mechanism, but
aiming at improving the controller’s robustness to tolerate
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Fig. 1. The overview of the RL-assisted fault-tolerant control. The vehicle model is identified and the control algorithm is obtained through source code or
reverse engineering. The information is used in a dynamic simulation where randomized attacks are injected. Using reinforcement learning, a fault-tolerant
policy is optimized to maintain vehicle control under various attacks.

fault condition or attack [19]. These two types have their pros
and cons. AFTC can pinpoint the fault and act accordingly,
but if the FDD is not designed with care, the implementation
could lead to delay in detection or false positives and greatly
affects the performance. PFTC cannot isolate faults but could
potentially achieve robust performance.

B. Reinforcement Learning

Machine learning and reinforcement learning has been
explored in developing FTC strategies. Farivar et al. pro-
posed methods using learning based observer and RL based
controller to treat bounded additive sensor and actuator fault
[21]. Liu and Wang et al. introduced a controller design
incorporating an online RL policy assuming all states are
measurable [22], [23]. Ahmadzadeh et al. use a model based
approach to recover an underwater vehicle from actuator
fault [24]. However, these methods were only evaluated in
simulation, and their real-world performance is unknown.

Deploy reinforcement learning policy onto real systems, or
commonly known as sim-to-real transfer, is a very difficult
task and has gained a lot of attention recently. Controlling an
unstable system such as quadcopter is especially challenging.
Hwangbo et al. [25] achieved quadcopter position tracking
using an RL policy with a weak attitude controller, while in
[26], attitude control is tested with different RL algorithms.
In [27], using a model-based reinforcement learning policy
to control a small quadcopter is explored. More recently,
[28] showed a generalized policy that can be transferred to
multiple quadcopters. In this work, we demonstrate the RL
policy proposed here trained in simulation can be transferred
to real vehicle to recover from sensor and actuator fault.

III. FRAMEWORK PROCEDURE

Here, we propose a novel model-free fault and attack-
resilient control strategy using reinforcement learning. The
control method relies on a stabilizing controller for nominal
flight control, and a model-free fault-tolerant policy opti-
mized to generate additional torque necessary to maintain the
vehicle’s normal operation. The mathematical justification is
similar to Structure Control Network [29], while only the
nonlinear fault-tolerant policy is learned here. The learned

policy can be viewed as an optimized FDD and FTC control
approximated by a neural network. The overview of the pro-
cedure is shown in Fig. 1 and each component is described
as follows.

A. Vehicle Model

For quadcopter UAV, the vehicle dynamics can be de-
scribed by Newton-Euler equation:

ṗ = v, mp̈ = Rf b +mge3,

Ṙ = Rω̂b, Jω̇b + ωb × Jωb = τ b.
(1)

where p = [x, y, z]T is the vehicle’s position in the inertial
frame, R is the rotation matrix, f b = [0, 0, Fz]

T is the body
force, e3 is the unit vector [0, 0, 1]T , ωb = [p, q, r]T is the
body angular velocity, ·̂ denotes the skew-symmetric matrix
mapping, J is the inertia matrix and τ b is the body torque.

The body force can be approximated by a simple fitting

Fz = KFzu
2
z + Fz0

τ =

 Krolluroll + τx0
Kpitchupitch + τy0
Kyawuyaw + τz0

 (2)

and the voltage command of each motor is generated as
u1
u2
u3
u4

 =


1 −1 −1 −1
1 1 1 −1
1 1 −1 1
1 −1 1 1




uz
uroll
upitch
uyaw

 (3)

where K’s are the lumped input gains; uz , uroll, upitch and
uyaw are the input voltage command for thrust, roll, pitch
and yaw; Fz0, τx0, τy0 and τz0 are the thrust and torque
offset introduced either by mechanical imperfection or fault;
u1−4 are the voltage command for each motor.

Our test vehicle is a generic quadcopter assembled in-
house with a commodity microcontroller. System identifica-
tion is performed to obtain these dynamic model parameters.
Each physical component is carefully measured, weighted
and modeled in CAD software, and mass/inertia parameters
are calculated. The thrust and drag constants of the motor
and propeller are measured. For sensor fusion and feedback



control, a Vicon multi-camera position tracking system is
used to provide position feedback.

B. Baseline Controller
The baseline controller is ArduPilot 3.3 multicopter flight

controller [11]. It is a cascading PID controller. The alti-
tude controller generates thrust by controlling the z axis
acceleration with an inner loop PID controller. The outer
loop PID controller uses altitude error to generate velocity
then subsequently acceleration target. The x-y position is
controlled by a proportional controller that generates velocity
targets, where the velocity is controlled by a PID controller
to generate roll pitch angle target. The attitude is also a
cascading controller where the outer loop is a proportional
controller generating angular velocity and the inner loop is
a PID controller generating torque command.

C. Simulation Setup
A high-fidelity simulation tool was developed for the

training and evaluation of the control strategies similar to
[30]. Using the physical test vehicle as a blueprint, we
recreated a virtual quadcopter in the simulation environment.
Virtual sensors are implemented with noise characteristics
similar to that of the real vehicle. Identical sensor fusion
and control algorithms were implemented in the simulation
so the closed-loop dynamics of the vehicle in the simulation
can approximate the real vehicle.

The simulation is validated statically through open-loop
and closed-loop tests. We sample the measured trajectories
and compare the state transition against the simulation.
The overall state transition error within 0.2s window (�
vehicle time constant) is ≤ 10% across all state variables,
which proves the simulation can capture the main dynamic
effects accurately. Closed-loop flight tests were conducted
and similar tracking error is observed on both experimental
and simulated trajectories.

D. Model-free Fault Tolerant Policy
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Fig. 2. The reinforcement learning based FTC control structure. The trained
FTC policy is running alongside the normal baseline controller. When
fault/attack occurs, it will adjust the output to maintain vehicle position.

1) Problem Setup: The fault resilient policy optimization
is formulated with a standard reinforcement learning prob-
lem. The agent is the quadcopter, and the environment is the
simulation world. Their interaction is a finite-horizon MDP
with state space S ⊂ R22 and action space A ⊂ R4. At time
t, the state st ∈ S and the action at ∈ A are

st = [R11, ..., R33, ex, ey, ez, p, q, r, ẋ, ẏ, ż, u1, ..., u4]T (4)

at = [∆u1,∆u2,∆u3,∆u4]T (5)

The simulation starts at a random state s0 ∼ p(s0). Given
an observation of the environment ot, the agent takes an
action at according to a deterministic policy πθ(at|ot).
Given the state transition dynamics p(st+1|st, at), which
is the closed loop dynamics of the vehicle with sensor or
actuator fault, the environment will transition to the next
state st+1 and generate a reward r(st, at). During each
rollout, the total return is the sum of the discounted reward
R = ΣTi=0γ

i−1r(si, ai) at the end of the episode at time T .
The goal is to optimize the policy πθ such that the expected
return J = Eai∼πθ [R] is maximized.

To train the fault resilient control policy, we set the
observation ot = st. For simplicity, we let the vehicle to
hover at p0 = [0, 0, 0]T . The reward is

rt =
(
(fst + fct)

2 + εf
)−1

(6)

where εf is a small number, fst is the stability cost which
equals zero when the vehicle is hovering stable, and fct is
the control cost for regularization. They are given by

fst =λp||ep||+ λv||ṗ||+ λR||eR||+ λω||ω|| (7)
fct =λa||at||+ λa||ȧt|| (8)

By maximizing the reward, the policy will learn to minimize
the vehicle’s position tracking error even when faulty states
are observed by the controller and policy.

2) Attack Injection: Attack/fault on attitude, gyro, GPS
and motor signals are considered in this work. We manipulate
these signals to simulate their effects. Note that the attack
only affects the linear controller and the policy’s observation,
the reward is calculated with the true state value during
training. The attacks are implemented as worse case scenario,
i.e. replacing the actuator signal or the sensor value with a
random number. We will show that this training method can
effectively force the agent vehicle to experience the faulty
condition and learn to recover from weaker attacks. At the
beginning of each episode, a random choice of attack with an
equal chance is selected, and a random attack value sampled
from a uniform distribution is generated. The selected target
sensor reading or the motor signal is replaced by this constant
value during the entire length of the episode. The range of the
attack values of each state during training is listed in table
I. The policy will be optimized to cope with the different
faulty condition regardless of the type and severity of the
attack, and maintain the position of the vehicle. We include
25% rollouts with no attacks so the policy will learn to not
disrupt normal operation.

TABLE I
ATTACKS AND THEIR RANGES IN TRAINING

Motor Position Attitude Gyro
(% throttle) (m) (deg) (deg/s)

Minimum 70 0 30 0
Maximum 80 1.0 40 180

3) Training: Since the system dynamic is largely deter-
ministic, we use actor-critic algorithm deep deterministic
policy gradient (DDPG) for training [31]. Fully connected
MLPs (multilayer perceptron) were used as function ap-
proximators. The actor network has 96 × 96 hidden layers



with tanh hidden and output activation. The critic network
is 128 × 128 with tanh hidden activation and linear output
activation. Both observation and output are normalized. The
simulation is solving the dynamics at 2kHz. To be consistent
with experimental implementation, control is down sampled
to 500Hz. Each rollout has a maximum length of 2,500
samples which corresponds to 5 seconds, and each epoch
has the maximum length of 10,000 samples. The algorithm
implementation is based on [32], with hyperparameters from
[31]. Similar to randomization techniques in [33], we inject
randomness into the physical parameters such as mass/inertia
, motor parameters and thrust/drag constants, etc. as well as
adding noise to the sensor and actuation signals to improve
the robustness of the training and transferability to the real
vehicle. The learning curve is shown in Fig. 3.

IV. EVALUATION AND RESULTS

We compare the effectiveness of the proposed method
against two other fault-tolerant strategies. The first strategy
is our previous work BlueBox, which is Active FTC [10].
The other strategy is a robust control adapted from [34],
which is Passive FTC. The robust controller has built-in
model compensation for actuator attack and a sliding surface
variable constructed such that certain sensor corruption can
be tolerated.

To evaluate the effectiveness of the three different
fault/attack resilient control methods, we use the following
four types of signal spoofing for each sensor and actuator.

• Total failure. The sensor or motor signal is zero.
• Biased signal. The signal supplied to the motor or the

state value is being added with an additional value.
• Multiplicative. The signal is being multiplied with a

number. This could be viewed as actuator loss of
effectiveness or sensor resonating.

• Replacement. The signal is being replaced with a value.

For motor attack, since the vehicle we used has a relatively
low lift-to-weight ratio (71% thrust needed for hovering),
unlike [20], it cannot tolerate large thrust loss. Therefore
motor failure (no thrust) is not tested.

We also include time-varying signals for motor attacks to
test whether each method can tolerate/adapt to the varying
fault condition. The signals are generated using Ornstein-
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Fig. 3. Training performance of the fault-tolerant policy averaged over
five runs with different random seeds. The learning curve is noisy since
the vehicle is experiencing vastly different attack scenarios given the large
attack space.

Uhlenbeck process follows the stochastic equation

dxt = θ(µ− xt)dt+ σdWt (9)

where θ and σ are the parameters and dWt denotes the
Wiener process. For each type of attack, slow and fast
changing attack signals are tested, with the attack signal
varying within the same range as the corresponding fixed
value attacks. The parameters used to generate the attack
signals is shown in table II and a sample attack signal is
shown in Fig. 4.

To simplify the comparison, we only evaluate attacks
on roll angle, x axis gyro measurement and y position,
since these all cause lateral deviation in y direction. The
effectiveness of the fault-tolerant is measured by y position
control error. The attack values of each sensor and motor
attack cases and their position control errors are listed in the
evaluation summary in table III. The results are averaged
over 5 sample flight of 10s for each case.

A. Motor Attack

The motor signal replacement attack result is shown in
Fig. 5. This is the most severe attack as the controller no
longer has control over the actuator. The traditional fault-
tolerant control strategy performs the worst. The FDD delay,
estimator error and a low lift-to-weight ratio of the vehicle
contributed to the suboptimal performance. Robust control
and reinforcement learning strategy performed adequately
well. The Robust controller essentially treats the overridden
motor thrust as normal output plus disturbances, and tries to
compensate for it. However, as the attack value deviates from
its nominal value (0.71), it cannot adapt and compensate
for such large disturbances fast enough, and finally leads
to crashing. The reinforcement learning policy has the best
performance among the three methods with minimum x− y
position error. Observing the flight pattern, the RL policy
learned to fly at the equilibrium condition described in [20],
where it spins about a near constant axis.

Bias and multiplication (loss of effectiveness) at-
tacks/failures are the most common types of failure studied in

TABLE II
MOTOR TIME VARYING ATTACKS

Replacement Bias Multiplication
Slow Fast Slow Fast Slow Fast

µ 0.75 0.05 1.15
θ 5e-4 1e-2 5e-4 1e-2 5e-4 1e-2
σ 5e-4 2e-3 3.5e3 1.2e-2 1e-2 2e-2

Slow Fasta) b)

0 10 20
Time (s)

70

75

80

0 10 20
Time (s)

70

75

80

Fig. 4. Samples of motor replacement attacks signals. a) show the slow
varying attack signal and b) shows the fast changing attack signal. Both
signals roughly varying between 70% to 80%.



TABLE III
POSITION TRACKING ERROR UNDER ATTACK IN 10 SECONDS

Y position error (mm) BlueBox (no redundancy) Robust Control Reinforcement Learning
Attack Target Attack Type Attack Value Mean RMS Max Mean RMS Max Mean RMS Max

Motor

Replacement

0.72 28.6 106.8 656.4 2.8 14.8 45.8 5.7 25.9 71.3
0.75 91.5 1034.2 3032.6 17.5 82.6 405.2 -0.1 20.0 63.5
0.77 785.5 1618.8 3854.5 8.0 85.6 318.7 3.4 18.9 60.8
0.80 3028.6 4159.6 8474.4 454.3 1048.5 3407.6 -4.8 13 60.2

Bias
-0.1 -4.5 11.4 25.8 4.5 7.4 11.5 29.3 68 271.7
0.1 6.6 14.1 32.7 5.4 13.9 20.1 9.1 26.1 64.4
0.2 17.2 30.4 69.5 9.4 14.7 29.7 17.5 28.2 71.2

Multiplication
0.9 6.2 9.4 21.8 2.6 6.1 15.3 8.6 71.3 221.9
1.2 11.7 16.6 38.8 8.2 10.9 17.6 10.3 23.1 67.4
1.4 15.8 30.3 71.0 11.2 13.8 21.3 14.6 25.6 66.4

Replacement
Time varying

slow 1119.3 1648.7 3186.5 7.0 88.1 242.1 5.5 22.5 72.8
fast 53.1 235.9 797 14.2 83.1 268.9 1.5 20.9 50.6

Bias
Time varying

slow 3.6 15.2 34.3 9.4 64.8 106.6 -11.1 34.1 91.5
fast 2.7 12.3 26.7 22.2 35.6 61.3 -1.3 25.2 69.3

Multiplication
Time varying

slow 18.8 31.2 111.4 40.4 80.9 153.6 19.2 39.5 148.7
fast 5.7 21.2 58.2 24.0 34.8 54.2 14.5 26.1 72.6

Attitude

Zero 0◦ 278.2 1133.2 2748.1 2.0 3.5 8.4 -138.3 151.6 233.7
Replacement 5◦ 430.0 959.5 3087.6 3.6 6.2 11.7 38.3 39.6 45.2

Bias 32◦ 8382.9 10646 22212 31884 12148 38139 -45.3 48.2 54.9
Multiplication 30 -4.1 8570.4 26065 1161.1 6459.1 12104 -8.0 8.8 11.1

Gyro

Zero 0◦/s 123.3 596.3 1704.5 236.2 595.0 1890.5 -55.2 62.1 86.1
Replacement 90◦/s 20.2 161.3 424.7 667.1 1466.7 4064.8 -71.5 92.9 150.7

Bias 180◦/s 159.5 162.9 192.3 322.4 341.6 497.7 -121.5 124.7 139.3
Multiplication 10 -1.2 490.2 1515.3 -1.5 15.7 39.7 -179.6 205.9 398.7

Position

Zero 0(mm) 20.2 31.0 82.5 20.8 22.9 33.3 64.4 126.4 272.9
Replacement 500(mm) 3.1 4248.5 7404 -4.1 622.5 1130.2 -64.7 67.1 72.7

Bias 500(mm) -0.8 476.6 502.8 -5.5 1363.4 1878.3 -67.4 68.7 73.9
Multiplication 5 2.7 80.7 143.5 12.6 16.6 32.2 4.1 12.7 19.9

literature. All three methods performed well with small error.
Since these attacks affect the motor thrust in a consistent way,
robust control outperforms the other two methods as it can
accurately adapt to the constant change in thrust.

Under time varying attacks, the RL policy has the best
performance under the strongest replacement attack. For bias
and multiplication attacks, robust control loses its advantage
as it has to constantly update the disturbance estimation.

B. Sensor Attack

Different types of sensor attacks are evaluated and the
results are shown in table III. Corresponding sample flights
with RL-assisted FTC are shown in Fig. 6.

1) Attitude Attack: Without redundancy, the traditional
estimation method can only detect sensor failure. Without
special treatment, it cannot recover the real state value and
therefore cannot defend against such attacks. This is explored
in a parallel study [35]. The robust controller does not control
the attitude directly. However, it still relies on attitude infor-
mation to position error projections. Therefore it can tolerate
subtle attacks that do not affect error projection significantly,
but not sever attacks such as bias and large multiplication.
The RL policy is only trained with replacement attack,
however, it can tolerate all four types of attacks. The vehicle
is able to hover near the target with a very small offset.

2) Gyro Attack: Since both the baseline controller and
the robust controller rely heavily on the angular velocity
measurement, both performances degraded severely when
gyroscope measurement is tampered with. The RL policy
can maintain the position mostly while only shows oscillation

under multiplication attack, which is mostly due to the large
output from the baseline controller.

3) Position Attack: With no position feedback, no con-
troller can accurately maintain the vehicle’s position. Even
using techniques such as dead reckoning, longterm position
drift is inevitable. However with single-axis measurement
being attacked, y position in our case, other state variables
could be used to estimate the y position. The RL policy
can leverage the attitude and acceleration measurement to
minimize the drift, while traditional controller cannot.

C. Real Vehicle Verification

The reinforcement learning FTC policy is implemented on
the real vehicle to demonstrate successful sim-to-real trans-
fer. To avoid damaging the vehicle in our testing environment
with limited space, only mild attack cases were tested, as
stronger attacks could result in drastic movements. Motor
replacement attack with fixed 73% thrust is shown in Fig. 7a)
and gyro replacement attack with p = 90◦/s is shown in Fig.
7b). The experimental evaluation exhibits similar behavior
as the simulation result, further validating the fidelity of the
simulation and the effectiveness of the training.

D. Discussion

Motor FDD and remapping cannot deal with strong motor
attacks where the motor signal is being replaced, especially
when the vehicle is carrying payloads and has a low lift-
to-weight ratio. The performance degrades severely when
the attack value deviates from its normal operating point.
With no redundant sensor, special treatment is needed to
isolate sensor fault and subsequently recover. Generally,
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Fig. 5. The position tracking control of the quadcopter under actuator attack is shown. All samples above show the position of the vehicle while motor 4
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Fig. 7. a) Motor attack on the test vehicle. The attack initiates at 3s and ends at 8s. The altitude will drop and the yaw angle will lose control under
such attack, however the lateral position control is stable. b) Gyro attack on the test vehicle. Similar to that observed in simulation, the position control is
drifting, when the attack is in effect. Attitude stability is maintained.

robust control can tolerate most motor attacks. By mixing all
state variables in the sliding surface variable, the controller
can tolerate some sensor attacks without crashing. The re-
inforcement learning policy assisted FTC can tolerate both
motor and sensor fault.

V. CONCLUSIONS

In this work, we presented a novel model-free reinforce-
ment learning-based hybrid fault-tolerant strategies for UAVs
to recover flight under cyber-physical attacks. This is realized
by training an MLP policy that provides extra control efforts

on top of the existing stabilizing controller while injecting
attacks. By selecting the position tracking error as cost,
the policy learned to maintain position control regardless of
whether an attack is present or not, or the type of attack
it encounters. We evaluate the effectiveness of this method
against two tradition strategies: fault detection and robust
control. The result shows that, without explicit modeling,
the trained policy is able to decide when and how to provide
appropriate action to counter the attack/fault. Among all the
attacks cases, the RL strategy survives the most cases and
has the least position error.
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