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Abstract— As a rapidly growing cyber-physical platform, un-
manned aerial vehicles are facing more security threats as their
capabilities and applications continue to expand. Adversaries
with detailed knowledge about the vehicle could orchestrate
sophisticated attacks that are not easily detected or handled by
the vehicle’s control system. In this work, we purpose a generic
security framework, termed BlueBox, capable of detecting and
handling a variety of cyber-physical attacks. To demonstrate
an application of BlueBox in practice, we retrofitted an off-
the-shelf quadcopter. A series of attacks were then launched
by embedding malicious code in the control software and by
altering the vehicle’s hardware with the specific targeting of
sensors, controller, motors, vehicle dynamics, and operating
system. Experimental results verified that BlueBox was capable
of both detecting a variety of cyber-physical attacks, while also
providing the means in which to recover from such attacks.

I. INTRODUCTION

In recent years, we have witnessed an increased popularity

of unmanned aerial vehicles (UAVs) used in a variety of

applications including aerial photography, search and rescue,

precision agriculture, surveying and inspection [1]. With the

ever expanding usage of UAVs, the level of sophistication

of their electronic control units (ECUs) have been required

to keep pace; with command and control algorithms running

on real-time operating systems instead of directly on micro-

controllers. This trend raises concern about the security of

such systems. As an entity that senses and interacts with

the real world, a cyber-physical system (CPS) could be

exploited by an adversary and result in harmful impacts to

the physical world. One such example is the cyber attack

against a physical infrastructure [2]. Currently, there exists

no universal operating system or security solution for either

professional or hobby UAVs.

To address potential security problems with UAVs’, a

variety of control algorithms have been proposed, such as

state-estimation, robust control, fault detection and diagnosis

(FDD) and fault tolerant control (FTC) [3]–[6]. These meth-

ods work well with a faulty sensor or actuator, assuming no

active real-time manipulation of the vehicle, in a dynamic

and insidious way. Other methods have used parameter and

and controller estimation to detect changes in the vehicles

dynamics or control algorithm [7]. Such detection is reliable

only if the input and state measurement are not compromised.

Complementary to these works, cyber attacks have also

been extensively studied as a computer security problem.
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Fig. 1. BlueBox diagram. Components within the blue shade will
be implemented on the external hardware. BlueBox reads the command
reference, controller output, raw sensor data and sensor fusion results.
BlueBox is not accessed by the original system and has the sole control
over the actuation of the vehicle.

Examples include works that have aimed at deriving an attack

detection model and improvements to controller robustness

[8], [9]. In the CPS domain, system abnormal response is not

only from physical fault or uncontrollable disturbance, but

rather from malicious cyber attack. Cyber domain analysis of

the threat models and vulnerabilities of UAVs are proposed in

great detail [10]–[12]. For example, successful cyber-domain

attacks were demonstrated [13]–[15], in which the vehicle

take-over is achieved using sensor spoofing and estimator

tricking strategies.

Recently, more sophisticated approaches have been pro-

posed for robotic vehicle attack detection and counteraction

with stronger threat model. Attacker are assumed to have full

access to sensing and actuation of the system [16]. However,

if the attacker has sufficient knowledge about the vehicle

and its defense strategy, the control software is still subject

to tampering. Attack detection requires comparison of true

and faulty signals, thus necessitating redundancies. Many

model and model-free based approaches can be used to detect

system fault as summarized in [17]. Failure in the system

can be relatively easy to detect provided that not all system

components are compromised. With a redundant controller

and an intelligent decision unit, even if the main controller is

faulty the system has been shown to survive [18]. To achieve

a high security level, redundant software and hardware are

needed. If the vehicle is assumed to be vulnerable to attacks,

then the attack scope can encompass the entire software and

hardware components. However, if an extra ECU hardware

is retrofitted to the vehicle with no access channel from

the outside, it is shielded from the attacker. In this manner,
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the vehicle still operate as intended with its original control

software, while the control signal can also be used to enable

comparison against the retrofitted ECU for attack detection

and response.

In this work, we propose a generic security framework

called BlueBox, which can be retrofitted to a range of multi-

rotor UAVs. Instead of changing the original control system,

an external piece of hardware was used to monitor the vehicle

with minimum modification to the original system. From

vehicle source code or through binary reverse engineering

[19], [20], the vehicle’s control logic can be extracted.

Independently implementing the control and sensing logic

on the external hardware enables high-accuracy error de-

tection. A smooth variable structure filter (SVSF) was used

to estimate system states and identify system parameters,

which is proven to be robust to model uncertainty and

noise. Combining the software and hardware redundancy,

the framework was able to detect a variety of attacks on the

sensor, controller, vehicle dynamics, actuator, and controller

operating system. The vehicle was able to fully recover

to normal operation once the attacks were detected. We

implemented this framework on a 3DR IRIS+ quadcopter

running ArduPilot 3.3 on NuttX operating system. Five

different types of attacks were tested on the system and the

attacks were identified and nullified.

II. BLUEBOX DESIGN

A. Definition of Security

Before describing our approach in detail, it is important

to establish the criteria of security for a UAV system. The

system is said to be secure when it satisfies three properties,

confidentiality, integrity and availability [10].

1) Confidentiality (or Secrecy): refers to the restricted in-

formation availability to only authorized personnel/agent. For

UAVs, this type of security is usually ensured by the ground

station software, regardless of the means of communication

(satellite, cellular, radio, etc.). Breach of confidentiality will

result in the information being exposed to a third party,

and expose the system to other types of threats. Possible

attacks including compromising the communication link and

the human operator.

2) Integrity: refers to the information trustworthiness

in the system. For UAVs, various methods like tro-

jan code or exploit subroutines of the software, jam-

ming/capturing/editing signals can compromise the data in-

tegrity, with or without compromising the confidentiality

first. With various detection mechanisms already available,

this type of attack is hard to launch without sufficient knowl-

edge of the target system, but will cause the most significant

damage to the vehicle if successful. Loss of integrity can

lead to the vehicle being affected or even controlled by

the attacker while the operator receives false or deceptive

information.

3) Availability: refers to the availability of the information

or the control of the system. If the integrity is compromised,

the availability will be affected as the attacker could influence

the system partially or in the most extreme case, take over

the system.

B. Threat Model and Attacks

As an aerial unmanned vehicle, a quadcopter utilizes

multiple sensors to help to maintain its posture and ability to

maneuver. Through the onboard sensor fusion algorithm, the

raw data from inertial measurement unit (IMU) is converted

into the quadcopters roll, pitch, and yaw angles. With data

from barometer and GPS, the longitude, latitude, and altitude

values of the quadcopter can also be measured. With this

information, the flight control system can then control four

different rotors to produce necessary thrust forces to let

quadcopter either maneuver or maintain position according

to users command.

Based on the above description, a quadcopter can be

attacked from various aspects. We focus on exploiting the

different aspects of the control system’s physical dynamics

rather than just the cyber perspective. These attacks can be

implemented by trojaning the control software. Four attack

models are proposed here:

1) Sensor Attack: The raw sensor reading in the control

software or the result from sensor fusion algorithm is being

hijacked by the attacker. This results in the quadcopter lose

the ability to acquire authentic information about its posture,

altitude, and location. This attack will mislead the control

algorithm to accept wrong control input. In this attack model,

it is assumed that the sensor hardware is not compromised.

2) Controller Attack: In this attack model, the flight

control software is compromised. The controller output could

be either modified or replaced by the attacker. For even

stealthier attacks, for example, the attacker could modify the

conditional parameters to force the control software branch-

ing into a different execution path that leads to undesirable

behavior. These attacks could lead to loss of stability or

control.

3) Actuation Attack: Proper actuation is crucial to the

vehicle since it provides the necessary control authority for

maneuvering. Flight control software is usually designed

based on detailed knowledge about the actuation dynamics.

The attacker could sabotage the physical component of

the vehicle through human channels, for example installing

propeller blades with an incorrect angle of attack. The

actuation could also be compromised by integrity attacks

such as modifying driver software for more stealthy attacks

or directly hijacking the controller’s output to take over the

vehicle.

4) Vehicle Dynamics Attack: Similar to actuation system,

the vehicle dynamics properties such as mass and moment

of inertia are considered in the vehicle’s design process.

Illegal payloads or unbalanced mass distribution could result

in shortened flight time or undesirable maneuverability.

5) Operating System Attack: This type of attack can be

categorized as denial-of-service (DoS) attack. By exploiting

the vulnerabilities in the control software, the attacker could

effectively alter the behavior of the operating system of the
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flight controller such as slow down the control loop, kill a

process or crash the system.

C. BlueBox Approach

1) overview: To defend against the above mentioned se-

curity threats, we propose the cross-layer security framework

BlueBox. It contains an external computing unit, with both

hardware and software, that is retrofitted onto the original

system and can access information within the original system

but not the other way around. Once any abnormal status has

been detected, it will immediately isolate the most suspicious

component and make a decision such as takeover the control,

return to start-point or land directly. The BlueBox does not

have the full attack detection capability on its own. However,

by running the redundant sensor fusion and control algorithm

on the redundant hardware, BlueBox can detect changes in

the original system by comparing instantaneous outputs in

real-time, while itself is shielded from attackers. The entire

diagnosis process is designed with both cyber and physical

domain approaches in mind, hence the name cross-layer.

2) Retrofitting: The retrofitting of a vehicle with BlueBox

requires very minimum software and hardware modifications.

For software retrofitting, we enable the original system to

send necessary data to BlueBox. For hardware retrofitting,

we rewire the actuation system through BlueBox hardware

and add wirings to allow BlueBox to directly access the

sensor. The software component of the BlueBox consists of

sensor fusion algorithm, controller, parameter identification,

states estimation and a decision-making module. The archi-

tecture diagram is shown if Fig.1.

3) Detection Mechanism: BlueBox’s detection mecha-

nism is described as follows. At vehicle takeoff, the estimator

will update the vehicle’s physical parameters. After a short

period of time (<30 seconds in our testing), the vehicle

can proceed its mission and the BlueBox starts fault/attack

detection. As the foundation of a feedback control system,

safeguard of feedback is critical. Based on binary code

reverse engineering and Platform Independent Executable

Trace technology [20], we can infer the control and sensing

algorithms from the original system and independently im-

plement them for BlueBox. Through a direct wiring from the

sensor, BlueBox extracts sensors raw data for reference states

calculation. It is used to be compared with the feedback from

original system to determine if the sensor fusion result or

code in the original system has been modified. The decision

engine will integrate the error between the two measurements

within a fixed time window and identifies sensor attacks

using thresholding. BlueBox sensor fusion results are also

fed to its internal controller and SVSF based estimator for

further security diagnosis and attacks detection. To increase

the level of security, extra redundant sensors can be added

and sensor hardware failure can be detected [6].

In the case of a quadcopter, 4 PWMs (Pulse Width

Modulation) as the control commands from original system

are captured by BlueBox peripheral interrupt. After the

sensor check, if an evident discrepancy of motor commands

between BlueBox and captured value has been detected by

the decision engine, the threat diagnosis would consider the

original controller’s integrity compromised and moreover,

takeover the vehicle control. In cyber aspect, some higher

level attacks, such as software-layer attacks, timer modifi-

cation or interrupt vector re-mapping, can also be detected

since all of them cause control commands discrepancy.

Based on the above two checks, the cyber level safety

can be ensured and system integrity can be preserved.

Other potential attacks could be delivered on the physical

system. In particular, for actuation system safety, BlueBox

observes motors thrust based on the vehicle dynamics. If the

motor/rotor is broken or the driver circuit is compromised

by integrity attacks, fault tolerant control can be employed

to ensure the system’s availability. In contrast to actuation

system attack, physical properties attack is more stealthy

since it usually won’t directly affect flight mission. Instead,

it changes the system sensitivity or increases the power

consumption. With fine-tuned system parameter at takeoff,

the estimator could detect changes in system parameters.

Therefore any illegal payload attachment during flight time

could be identified immediately. Depending on batteries

capacity, either return to home position or landing could

guarantee the safety of the vehicle.

III. SYSTEM MODELING
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Fig. 2. Quadcopter coordinate system definition. In our implementation, a
3DR IRIS+ is used. a, b, c and d denotes the distances from the motor to
the center of mass.

The Smooth Variable Structure Filter (SVSF) is a method

for parameter and state estimation that was first proposed in

2007 [21] and proven to be robust to model uncertainties. The

advantage of SVSF is that it could obtain state estimation as

well as parameter identification simultaneously [22]. SVSF

has the ability to identify the source of model uncertainty and

improve estimation performance based on this knowledge.

Thus, it has been considered as a better alternative to RLS.

[23]. Similar to many existing detection methods, we use

estimation error (residual) to detected changes in the system.
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A. Vehicle Dynamics

The coordinates definition is shown in Fig. 2. With the

rigid body assumption, the vehicle’s dynamics model can

be described using standard Newton-Euler equation. The

dynamics can be described as

ṗ = v,

mp̈ = Rf b +mge3,

Ṙ = Rω̂b,

Iω̇b + ωb × Iωb = τ b.

(1)

where p = [x, y, z]T and v are the vectors describing the

vehicle’s position and velocity in the earth frame, m is the

mass of the vehicle, g is the gravity acceleration, R ∈ R
3×3

is the rotation matrix, f b = [0, 0, Fz]
T is the total force

vector in the body frame, e3 is the unit vector [0, 0, 1]T ,

ωb = [p, q, r] is the angular velocity in the body frame, ·̂
denotes the skew-symmetric matrix mapping from x̂y to x×
y, I ∈ R

3×3 is the full inertia matrix of the vehicle and

τ b = [Tx, Ty, Tz]
T is the total torque vector in the body

frame.

The motor dynamics can be approximated by a first order

system

Ẇ = −αW +Kmu (2)

where W is the squared angular velocity, α is the pole

location, Km is the lumped gain, and u is the input voltage.

We can model the thrust and drag force of each rotor as

Ti = KT iWi, (3)

Qi = KQiWi. (4)

where i is the motor index, KT i and KQi are the lift and

drag coefficient of each individual rotor.

The entire system model can be written into the following

discrete form

xk+1 = F(xk,uk,wk), (5)

yk+1 = Hxk + vk. (6)

where x = [x, y, z, ẋ, ẏ, ż, φ, θ, ψ, p, q, r,W1,W2,W3,W4]
T

is the state variables vector, u = [u1, u2, u3, u4]
T is the

vector of input voltage to the motors, w is the disturbance,

y is the output, v is the measurement noise, k represents the

time step, kdt and dt is the sampling time. Since the velocity

of the motor are not measured, the output matrix H takes

the form H = [Hu 0] = [I12 0], where I12 is a 12 × 12
identity matrix and 0 is a 12× 4 zero matrix.

B. SVSF State Estimator

The SVSF state estimator uses a discontinuous corrective

action to drive down the error, which is similar to sliding

mode observer. The estimation consists of two steps. A

prediction model F̂ is used first to generate the a priori

estimation x̂k|k−1, then a corrective term Kk was added to

generate the a posteriori estimation x̂k|k and subsequently

the output ŷk|k. With a zero width smoothing layer in the

corrective term Kk, the error signal is referred as chattering.

The a posteriori chattering will decay over time, however, the

a priori chattering is caused by the magnitude of the model

uncertainties and can be used to point out the source and

magnitude of modeling error [24].

Since the system has fewer measurements than its states,

a reduced order estimator can be constructed [24]. We can

partition the system states as:

x =

[
xu

xl

]
(7)

where xu = [x, y, z, ẋ, ẏ, ż, φ, θ, ψ, p, q, r]T are the measur-

able states of the system and xl = [W1,W2,W3,W4]
T are

the unmeasurable rotor velocity.

Since Hu is identity matrix, the system can be partitioned

and written with measurements and unmeasurable states as:[
yk

xlk

]
=

[Fuk
(yk−1,xlk−1

,uk−1,wk−1,vk−1)
Flk(yk−1,xlk−1

,uk−1,wk−1,vk−1)

]
(8)

The unmeasurable states can be recovered by inversing the

Fuk
and Flk . A temporary estimation can be constructed as:

σk−1 =

[
σuk−1

σ̂lk−1

]
=

[
yk−1

F̂−1
uk

(yk,yk−1,uk−1)

]
(9)

The a priori state estimation can be calculated as:

x̂k|k−1 =

[
x̂uk|k−1

x̂lk|k−1

]
=

[F̂uk
(σ̂k−1,uk−1)

F̂lk(σ̂k−1,uk−1)

]
(10)

The a posteriori estimation is given as:

x̂k|k = x̂k|k−1 +Kk (11)

with corrective action

Kk = (|exk|k−1
|+ γ|exk−1|k−1

|) ◦ sgn(exk|k−1
) (12)

where the a priori and a posteriori estimation error are

exk|k−1
= σk−1 − x̂k|k−1, (13)

exk|k = σk−1 − x̂k|k. (14)

Notice the unmeasurable states error contains model un-

certainty from F̂−1
uk

due to the absence of explicit mea-

surements, however this uncertainty will decay as model

parameters update.

For a quadcopter, F̂−1
uk

is given as:

F̂−1
uk

= P−1Ĉ(xk,xk−1) (15)

where P is the force mapping matrix for the motor with

frame dimensions a, b, c, d described in figure 2.

P =

⎡
⎢⎢⎣

1 1 1 1
−a d a −d
−b c −b c
−1 −1 1 1

⎤
⎥⎥⎦ (16)
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and Ĉ is given as:

Ĉ(xk,xk−1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

żk−żk−1+dtg
ˆ

(
KT
m )(Cθk−1Cφk−1)dt

pk−pk−1−dt ˆ(I1)qk−1rk−1

ˆ
(
KT
Ix

)dt

qk−qk−1−dt ˆ(I2)pk−1rk−1

ˆ
(
KT
Iy

)dt

rk−rk−1−dt ˆ(I3)pk−1qk−1

ˆ
(
KQ
Iz

)dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

where (̂·) denotes the combined estimated parameter,

Ix, Iy, Iz,m are the moment of inertias and mass of the

vehicle, I1 =
Iy−Iz
Ix

, I2 = Ix−Iz
Iy

, I3 =
Ix−Iy

Iz
and dt is

the sampling time. The estimated control forces are

F̂ = Pσ̂lk−1
(18)

The a priori chattering is given as

Chk|k−1 =

dt

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

Δ
(
KT
m )

(Cψk−1Sθk−1Cφk−1 + Sψk−1Sφk−1)F̂1

Δ
(
KT
m )

(Sψk−1Sθk−1Cφk−1 − Cψk−1Sφk−1)F̂1

Δ
(
KT
m )

(Cψk−1Cφk−1)F̂1

0
0
0

Δ(I1)qk−1rk−1 +Δ
(
KT
Ix

)
F̂2

Δ(I2)pk−1rk−1 +Δ
(
KT
Iy

)
F̂3)

Δ(I3)pk−1qk−1 +Δ
(
KQ
Iz

)
F̂4

−Δ(α1)Ŵ1k−1
+Δ(Km1 )

u1
−Δ(α2)Ŵ2k−1

+Δ(Km2
)u2

−Δ(α3)Ŵ3k−1
+Δ(Km3

)u3
−Δ(α4)Ŵ4k−1

+Δ(Km4 )
u4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(19)

Using the chattering of ż and the law of large numbers,

Δ
(
KT
m )

can be calculated as

Δ
(
KT
m )

= Σn+l
n

(
Chżk|k−1

dtCψk−1Cφk−1F̂1

)
(20)

where l is some large number of samples.

For Δ(I1) and Δ
(
KT
Ix

)
in Chpk|k−1

, since there are two

variables, two segments of sample are needed. Let

C̄H1 =

[
Σn+l

n Chpk|k−1

Σn+2l
n+l+1Chpk|k−1

]
(21)

and

PR1 =

[
Σn+l

n qk−1rk−1 Σn+l
n F̂2

Σn+2l
n+l+1qk−1rk−1 Σn+2l

n+l+1F̂2

]
(22)

The model uncertainty can be calculated as[
Δ(I1)

Δ
(
KT
Ix

)

]
= PR−1

1 C̄H1 (23)

The remaining model uncertainties for I2, KT

Iy
, I3,

KQ

Iz
,

αi and Kmi can be calculated using similar approach. The

parameters can be updated using the calculated uncertainties

as (̂·) := (̂·) +Δ(·). After a period of parameter fine tuning,

the model parameter will converge to their respective true

value. Individual physical parameters Ix, Iy , Iz , m, KT , KQ,

can be solved from the combined parameters if necessary.

C. FDD and FTC

As stated earlier, the chattering error generated by SVSF

can be used to evaluate model uncertainty and detection sys-

tem fault. After the initial parameter fine-tuning, parameters

will stop updating and stay as constants. By estimating the

model uncertainty, we can select a bound β̂ to smooth out

the estimation chattering. If any failure or attacks occur, the

magnitude of the a priori chattering will increase and the fault

can be detected [24]. If an illegal payload was attached to the

vehicle during flight, ż chattering would have a significant

increase and the attack can be detected. Similar strategies

can be used for detecting changes in Ix, Iy and Iz .

For detecting motor failure, if a motor was damaged or

overtook by an adversary, the thrust estimation will deviate

from its expected value. The expected motor thrust can be

calculated from its voltage command from the controller,

then compare with the thrust estimation from SVSF. There-

fore the residual of the motor thrust can be used for detection.

The detection algorithm for vehicle dynamics and motor

thrust will integrate the error/residual between the estimation

and the command/measurement. If the error integral exceeds

a threshold, the detection flag will be raised.

To compensate for a failed motor, FTC technique was

used to stabilize the vehicle. If motor i is detected to be

faulty, similar to [4], the output to that motor will remain

unchanged. With the corresponding thrust estimation T̂i and

its estimated input v̂i, we can redistribute the control torque

to stabilize the roll and pitch angle. The control effort for z,

roll, pitch yaw are given as:⎡
⎢⎢⎣

uz
uroll
upitch
uyaw

⎤
⎥⎥⎦ = Pu (24)

If motor 1 fails, with it thrust input estimation v̂1, the

control output can be remapped as:

u+
1 =

⎡
⎢⎢⎣

v̂1/uz 0 0 0
v̂1/uz .25 .25 0

(uz − 2v̂1)/2uz .25 −.5 0
(uz − 2v̂1)/2uz −.5 .25 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

uz
uroll
upitch
uyaw

⎤
⎥⎥⎦ (25)

Other motor failure can be compensated similarly.

The BlueBox software was implemented on an STM32F3-

DISCOVERY board (http://www.st.com) and was retrofitted

to a 3DR IRIS+ quadcopter (https://3dr.com). The original

firmware was modified to let the Pixhawk flight controller

send all the measurements via a serial port. The controller

output was captured from the PWM output. Only 8 physical
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wires modification was done. Specifically, an I2C bus tie-

line connection and 4 PWM channels rewiring must be done

for BlueBox sensor feedback receiving and control command

checking respectively.

IV. RESULTS AND EVALUATION

Before deploying the full functionality of the BlueBox,

the accuracy of the parameter estimation was verified. The

vehicle mass estimation is presented here. An initial guess

of 1282 grams based on the manufacturer’s specification

was chosen. The actual weight of the vehicle was measured

at 1317.2 grams. The on-line parameter estimation during

a take-off is shown in Fig. 3. Before take off, error was

introduced but quickly reduced after lift-off. The estimation

error before 10-second mark was due to the errors from other

parameter estimations such as motor thrust coefficient. The

estimation converged within 20 seconds and showed good

accuracy.
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Fig. 3. The vehicle mass estimation during a take off. The estimation
show good accuracy and fast convergence despite of initial error introduced
before take off.

Five attacks were designed to test different aspects of

BlueBox’s detection and recovery capability. For each exper-

iment, one of the five planned attack methods is applied to the

quadcopter. The test ground is chosen to be an outdoor empty

space for safety concerns. Relevant experimental results are

presented in this section for discussion and evaluation.

A. Sensor Attack

For the experiment purpose, the quadcopter used has

been flashed with a retrofitted version of the flight control

software. The sensor fusion algorithm of this system has

been trojaned so that the calculated attitude of the vehicle

can be manipulated by the attacker. The sensor data hacking

is triggered by a remote command through a common

communication protocol MAVLink. During the flight test,

the quadcopter will initially stay on its hovering position.

Once the attack is triggered, BlueBox will detect the sensor

measurement discrepancy and subsequently takes over the

control of the vehicle.

During the course of experimentation, a variety of sensor

manipulations were tested. For the purpose of demonstra-

tion, 3 degrees direct addition to the angle measurement is

presented. Other attacks such as position, velocity, and ac-

celeration on different degrees of freedoms or a combination

of them were also tested and easily detected.

In the experiment, a comparison test of BlueBox on/off

was demonstrated in Fig. 4.
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Fig. 4. Figure a) describes the performance of the quadcopter under sensor
attack with BlueBox deactivated. When sensor attack is triggered, a 3-degree
offset is added to the roll angle from the sensor fusion result. Without
BlueBox protection, the vehicle drifted in the negative x direction. Figure
b) shows when BlueBox is active, once the sensor attack was launched, the
protection was triggered within 0.5 seconds. The yellow region indicates
the detection flag of sensor attack. The vehicle maintained its position as
shown in the x− y plot.

B. Control Attack

The controller attack launched in the experiment is similar

to the sensor attack. The onboard flight control system is a

trojaned version so that the control gains can be changed

responding to an external remote command. The attack was

triggered during a loitering flight.

Aside from manipulation of control gains, many other

attacks that fall into the control attack category were also

tested. Such attacks including changing controller software

branching conditions and changing the integration limits for

integral windup prevention in the PID controller. Attacks

like branching parameter modification will not be detected

before the branching condition is met, such as landing speed

change will not occur during normal flight. The results of

gain manipulation are presented in this section for its stronger

illustration of BlueBox’s capability.

C. Motor Attack

The actuation system, specifically the ESC, is trojaned so

that one of the four motors will run at an abnormal RPM

once an external trigger signal is given. The compromised

motor provides thrust that is unknown to the control software,

therefore, the control effort cannot be realized by either the

original controller or the BlueBox. However, with trusted

state measurement, the unknown thrust can be estimated

and the control effort can be re-mapped to the vehicle

accordingly.
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Fig. 5. Figure a) describes the performance of the quadcopter under control
attack with BlueBox deactivated. Figure b) describes the performance of the
quadcopter under control attack with BlueBox activated. In both cases, the
control gain was only multiplied by 2 for the safety of the test vehicle. When
the attack is detected, the BlueBox redundant controller will take over the
vehicle. In Figure a) (BlueBox is inactive), the attack lasted for about 10
seconds. The vehicle will oscillate correspondingly and the control output
difference is shown. In the protected case (BlueBox is active), the detection
shows some false negatives due to the small difference between the control
output when the vehicle is close to stable.

To validate estimation results, we installed a hall effect

sensor which measures the instantaneous RPM of the at-

tacked motor. When the motor attack has been detected,

the decision-making module will enable FTC function to

maintain the vehicle stability in roll and pitch directions.

Consequently, the quadcopter could land safely.

FTC can handle cases with not only one faulty motor, but

also up to three faulty motors according to the work done

by Mueller et al. [25]. Therefore, BlueBox’s FTC function

actually possesses greater potential than the attack case we

presented here.

In this experiment, the instantaneous motor speed and cor-

responding estimation result, attack launching and detection

flag status, and yaw angles were recorded and plotted.

D. Vehicle Dynamics Attack

For the experiment of vehicle dynamics attack, the inertia

along the z-axis of the quadcopter was altered. This is

achieved by attaching an extra weight to the quadcopter

through a string. The experiment can be considered to have

two stages. When the quadcopter is flying at a lower altitude

with the string relaxed, the vehicle dynamics are not changed

since the extra payload is not applied on the quadcopter yet.

When the quadcopter flies to a higher altitude, the weight is

pulled by the vehicle, the vehicle dynamics is then considered

to be changed.

As described in the system modeling section, a change in

the quadcopter’s total mass will cause a noticeable change

in the chattering signal given by the SVSF estimator. The

feasibility of this concept has been well illustrated by the

experiment results of this section.

The actual and estimated z-axis velocities were recorded

and plotted.
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Fig. 6. These two figures describe the quadcopter’s performance under
motor attack with BlueBox activated. Once the motor attack is triggered,
the PWM signal of one motor is controlled by the trojaned ESC. The
attack is detected by BlueBox within about 0.75 seconds after the attack is
launched. The FTC is activated subsequently. With a compromised motor,
the quadcopter lost its yaw control as described in Figure b), while roll and
pitch angle are maintained.
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Fig. 7. This figure describes the detection of vehicle dynamics attack. Once
the extra payload is attached, the estimation of velocity along z-axis will be
different from the actual velocity. The attack detection flag is then raised and
the control is taken-over by BlueBox. In realistic settings, BlueBox could
either drive the quadcopter back to start-point or initiate landing directly. In
this test case, no specific action was taken.

E. Software Attack

We experimented three different software attack tech-

niques: the control process shutdown, the system interrupt

table remap, and the system timer slowdown. These attacks

will alter the program execution differently.

In our experiments, we exploit real software vulnerability

in the control program [26] to trigger our attacks. The first

two attacks lead to crashing control processes by sending a

processes termination command or changing hardware I/O

addresses into invalid addresses. On the other hand, the

last attack makes the control process scheduled infrequently.

Therefore, the control program cannot run or read sensor

values in time. If BlueBox receives no command or sensing

information in time, it will consider the system compromised.

In this experiment, the PWM signal and the attack detec-

tion flag are recorded and plotted for each attack.

556

Authorized licensed use limited to: Purdue University. Downloaded on September 13,2021 at 14:33:54 UTC from IEEE Xplore.  Restrictions apply. 



1800

2000

System software attacks
OS attack launch
PWM check
Motor1 BlueBox control command
Motor1 Premairy control command

1400

1800

PW
M

35 40 45 50 55
Time (s)

1600

1800

a)

b)

c)

Fig. 8. Figure (a)-(c) describe three different software attacks. In case
(a), the ArduPilot process is terminated when the attack is triggered. (a)
shows that the attack is immediately detected by BlueBox since the PWM
signals are no longer updated by the original control system. In case (b),
the system’s interrupt table is remapped by the attacker. This will crash the
flight control system software. Similarly, the attack is easy to detect as it
can be seen from (b). In case (c), the slowed timer will produce a great
discrepancy in both sensor reading and controller output. In all cases, the
original control system is taken-over by BlueBox once the attack is detected,
and thus crashing is prevented.

V. CONCLUSION

In this work, a generic retrofitting framework called

BlueBox for enhancing UAV cyber-physical security is pre-

sented. Instead of altering the software on the target vehicle,

BlueBox runs on a separate piece of hardware. Leveraging

software redundancy and diversity, it is able to detect the

discrepancy in sensing and control outputs on the target

vehicle. The external hardware implementation provides the

target vehicle with extra security features without increasing

its attack surface. Combining the estimator and vehicle

dynamics, stealthy attacks exploiting the physical properties

can also be detected and responded to. The framework was

deployed and tested on a 3DR IRIS+ quadcopter, five differ-

ent types of attacks targeting the vehicle’s sensing, control,

dynamics and operating system software were implemented.

BlueBox’s ability to successfully detect and defend against

these attacks was demonstrated on real flight tests. BlueBox

can be conveniently applied to a variety of UAVs and be

ported to other autonomous vehicles (e.g., an unmanned

ground vehicle), as shown in our ongoing work.

REFERENCES

[1] I. H. Beloev, “A review on current and emerging application possibil-
ities for unmanned aerial vehicles,” Acta Technologica Agriculturae,
vol. 19, no. 3, pp. 70–76, 2016.

[2] M. B. Kelley, “The stuxnet attack on iran’s nuclear plant
was ’far more dangerous’ than previously thought,” Nov 2013.
[Online]. Available: http://www.businessinsider.com/stuxnet-was-far-
more-dangerous-than-previous-thought-2013-11/

[3] H. Aguilar-Sierra, G. Flores, S. Salazar, and R. Lozano, “Fault
estimation for a quad-rotor mav using a polynomial observer,” Journal
of Intelligent & Robotic Systems, vol. 73, no. 1-4, pp. 455–468, 2014.

[4] F. Sharifi, M. Mirzaei, B. W. Gordon, and Y. Zhang, “Fault tolerant
control of a quadrotor uav using sliding mode control,” in Control and
Fault-Tolerant Systems (SysTol), 2010 Conference on. IEEE, 2010,
pp. 239–244.

[5] M. Saied, B. Lussier, I. Fantoni, C. Francis, H. Shraim, and
G. Sanahuja, “Fault diagnosis and fault-tolerant control strategy for
rotor failure in an octorotor,” in Robotics and Automation (ICRA),
2015 IEEE International Conference on. IEEE, 2015, pp. 5266–
5271.

[6] G. Heredia, A. Ollero, M. Bejar, and R. Mahtani, “Sensor and actu-
ator fault detection in small autonomous helicopters,” Mechatronics,
vol. 18, no. 2, pp. 90–99, 2008.

[7] Z. Birnbaum, A. Dolgikh, V. Skormin, E. OBrien, D. Muller, and
C. Stracquodaine, “Unmanned aerial vehicle security using recursive
parameter estimation,” Journal of Intelligent & Robotic Systems,
vol. 84, no. 1-4, pp. 107–120, 2016.
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