
GNUSTREAM: A P2P MEDIA STREAMING SYSTEM PROTOTYPE

Xuxian Jiang Yu Dong Dongyan Xu Bharat Bhargava

Department of Computer Sciences
Purdue University, West Lafayette, IN 47907
E-mail: {jiangx,dong,dxu,bb}@cs.purdue.edu

ABSTRACT

We present the design and prototype of GnuStream, a peer-
to-peer (P2P) and receiver-driven media streaming system.
GnuStream is built on top of Gnutella, and it integrates
dynamic peer location and streaming capacity aggregation.
Each GnuStream streaming session is controlled by the
receiver peer and involves a dynamic set of peer senders
instead of one fixed sender. The receiver aggregates
streaming bandwidth from the multiple senders, achieving
load distribution and fast reaction to sender capacity and
on/off-line status changes. The effectiveness of GnuStream
is demonstrated by our experiments with its prototype,
which will serve as the basis for real-world development and
evaluation of resilient P2P media streaming services.

1. INTRODUCTION

The concept of P2P has recently gained popularity thanks
to the wide deployment of P2P file sharing applications
over the Internet. We are interested in the application of
P2P to real-time media streaming, which is a more
challenging problem than ordinary file-sharing. In file-
sharing systems, a client first downloads the entire file and
then uses it, termed as the “open-after-downloading”
mode; while in media streaming systems, a client
consumes the content of a media file while the file is being
downloaded, termed as the “play-while-downloading”
mode [1].

The large volume of media data along with their stringent
timing constraint poses challenges for P2P media
streaming, which is even exacerbated by the dynamic
nature of P2P networks: a peer can get online or offline at
any time. Furthermore, a single peer sender may not be
able to contribute full streaming bandwidth to a peer
receiver, due to its limited capacity and/or its own
communication needs. As a result, the traditional single-
sender paradigm is no longer effective in P2P streaming.
Instead, a P2P streaming session has to involve a set of
peer senders, each contributing a portion of the streaming
bandwidth. In addition, different from the client-server
paradigm [2], the sender set members may change

dynamically, due to their unpredictable online/offline
status changes.

Recently, P2P streaming has been studied from other
angles. Narada [3] and PeerCast [4] are two proposed
architectures for synchronous broadcast of live media to
multiple peers. They focus on dynamic construction of a
multicast tree which connects peers requesting the live
media. However, they do not consider the limited
contribution of bandwidth from individual peers.
CoopNet [5] builds multiple distribution trees spanning
a source and all peer receivers, each tree transmitting a
separate description of the media signal. However, each
peer receiver consults the source node for its upstream
peer senders. ZIGZAG [6] organizes peer receivers into
a hierarchy of bounded-degree clusters and builds a
multicast tree based on the hierarchy. However, it
assumes that each peer only receives from one upstream
peer sender.

In this paper, we present the design and implementation
of GnuStream, a receiver-driven P2P media streaming
system. Built on top of Gnutella, GnuStream takes into
consideration the underlying P2P network dynamics and
heterogeneity. It features multi-sender bandwidth
aggregation, adaptive buffer control, peer failure or
degradation detection and streaming quality
maintenance. To the best of our knowledge, GnuStream
is the first prototype with all the features above. The rest
of paper is organized as follows: Section 2 gives an
overview of GnuStream. Section 3 presents the
implementation of GnuStream, followed by
experimental results in Section 4. Finally, Section 5
concludes this paper.

2. SYSTEM OVERVIEW

2.1. System Environment

Figure 1 shows the GnuStream system environment: The
underlying P2P network is Gnutella. Suppose peer P1 is
looking for media file X. After calling the Gnutella
lookup service, P1 locates four candidate senders P2-P5.

If the aggregated bandwidth of P2-P4 (contributing
different amounts of bandwidth as indicated by the edge
thickness) is sufficient for streaming X in full quality, P5
will become a standby sender, to be called upon to take
over the load of degrading/disconnected peer senders
during the streaming session.

2.2. System Features

GnuStream has the following salient features, which are
either missing or not yet implemented in other P2P
media streaming systems:

(1) Integration with P2P lookup substrate:
GnuStream leverages Gnutella as its lookup substrate,
making it readily deployable in the current Gnutella P2P
network environment.

(2) Multi-sender aggregation: Instead of relying on
one single sender, GnuStream distributes streaming load
among multiple peer senders. The following two load
allocation policies have been implemented in
GnuStream:

• Even allocation: to distribute streaming load
evenly among peer senders. This policy is suitable
for a well-provisioned and homogeneous
environment such as company Intranet.

• Proportional allocation: to distribute streaming
load in proportion to the current capability of peer
senders. This policy is more flexible and adaptive
than even allocation, making it suitable for a
dynamic and heterogeneous environment such as
the wide-area Internet.

(3) Receiver data collection: The receiver coordinates
the arrival of different media data segments, and re-
constructs media data in their original and continuous
order before feeding them to the media player.

(4) Detection of peer status change: GnuStream uses
periodic probing and soft states to detect any changes in
the status of peer senders, including peer disconnection,
failure, and bandwidth degradation.

(5) Recovery from failure or degradation: If a current
peer sender is detected as suffering from failure or
bandwidth degradation, GnuStream will migrate all or
part of its streaming load to another peer sender or a
standby peer sender (such as P5 in Figure 1). Therefore,
the set of active peer senders in one streaming session
will change dynamically during the session.

(6) Buffer control: To accommodate the dynamic set of
peer senders and the end-to-end network congestion,
GnuStream implements a suite of buffer control
mechanisms which involves more concurrency and
scheduling complexity than the traditional buffer control
mechanisms in client-server streaming.

3. DESIGN AND IMPLEMENTATION

In this section, we present a “zoom-in” description of
GnuStream’s design and implementation, highlighting
its layered architecture and buffer control mechanisms.

3.1. Three-layer Architecture

GnuStream consists of three layers: Network
Abstraction Layer, Streaming Control Layer and Media
Playback Layer. The architecture is shown in Figure 2.

 (1) Network Abstraction Layer (NAL): NAL masks
underlying P2P network peculiarities and provides a
generic and uniform interface of P2P lookup substrate.
NAL performs efficient peer and content discovery for
P2P media streaming. Furthermore, NAL makes
GnuStream not only deployable in Gnutella, but also
portable to other P2P networks.

(2) Streaming Control Layer (SCL): SCL deals with
the dynamics and heterogeneity of P2P networks. At the
core of GnuStream, SCL performs the key functions of
bandwidth aggregation, data collection, and status
change detection and recovery. The dynamic peer

Figure 2: GnuStream architecture

Gnutella
Network

P2
P3

P4

Figure 1: GnuStream system environment

P1 P5

sender set is also maintained and adjusted by SCL. The
goal is to maintain the maximum streaming quality
despite the dynamics in the underlying P2P network.
Buffer management (to be described in the next section)
is the critical technique to achieve this goal.

(3) Media Playback Layer (MPL): To be adaptable to
the aggregated streaming bandwidth, MPL performs
media quality adaptation based on the media data
collected by SCL. The technique of double buffering is
used between media decoder and player for efficiency
and low switching overhead. MPL also enables the
“plug-n-play” of different media players with minimum
modification.

3.2. GnuStream Implementation

We have implemented GnuStream using Microsoft
Visual C++ 6.0 and leveraging the open source Gnutella
client, namely Gnucleus.

The most challenging aspect of our implementation is
buffer management. Traditional buffer control in the
client-server paradigm cannot be applied directly, due to
the P2P network dynamics. Figure 3 illustrates the
buffer hierarchy in GnuStream to deal with P2P network
dynamics, in which the control buffer is the core of
buffer control mechanisms. Double display buffers and
decode buffer reside in MPL, which speed up display
and reduce the synchronization overhead between MPL
and SCL. Data collection buffer at SCL is used to
eliminate data overflow and underflow and smooth the
data arrival jitter in the presence of multiple peer
senders.

Inside the control buffer, to coordinate the multiple peer
senders, a delicate buffer model is implemented to
enforce the real-time property of media streaming.
Under this model, we manipulate the control buffer
using different control pointers. The offset pointer
indicates the amount of data already consumed. End-of-
data indicates the trunk of continuous data available in

the buffer. End-of-buffer indicates the end or maximum
size of buffer. SCL adjusts the data feeding rate to the
decoder and thus the display frame rate is tunable
according to current aggregated streaming bandwidth
from the multiple peer senders. With this model, SCL is
also able to monitor the streaming progress and thus
compute system parameters such as the next frame
needed and expected bit-rate from each peer sender.

4. EXPERIMENTS

We create a local experimental testbed using multiple
desktop PCs with XEON CPU 2.00 GHz, each equipped
with 1.00G RAM and 3COM 3C920 100Mbps
Integrated Fast Ethernet Controller. Some of them are
configured as peer senders while the others are
configured as the requesting receivers. We limit the
maximum streaming bandwidth from each sender to
60KB/s. Figure 4 is a snapshot showing the status of
peers participating in Gnutella network, as well as the
video image from the receiver of a P2P streaming
session.

(1) P2P streaming session setup Before a P2P
streaming session starts, the receiver uses the following
equation to compute the aggregated streaming
bandwidth and then determines how many peer senders
are needed.

ByteperBitsRatenCompressio

RatePlaybackSamplingYUVPixelperBitsSizeFrame

BandwidthMediaArrival

∗
∗∗∗

=

The test media clip in our experiments has the following
parameters: image size 352*240, frame rate
30frames/second, YUV sampling 4:2:0, 8 bits per pixel,

Figure 4: A snapshot of GnuStream in operation

Display Buffer

Decoder Buffer Control
 Buffer

Data Collection Buffer

Figure 3: Buffer management hierarchies

Playback Buffer

Display Buffer

and compression rate 26:1. The resultant streaming
bandwidth is approximately 143.0KBps. Therefore, the
receiver contacts three peer senders (discovered by
Gnutella lookup service), each willing to provide a
streaming bandwidth of 60KBps. The receiver then
initiates the streaming session and receives full-quality
streaming quality.

(2) Buffering for continuous media playback To
achieve continuous and jitter-free media playback, the
receiver performs buffering both before and during the
media playback. The initial buffering delay can be
determined by the following equation:

)30(:

:

11

0

fpstypicallyRateFramePlaybackPFR

RateFrameArrivalAFR

where

otherwise
PFRAFR

PFRAFRif

FramesOfNumber

DelayInitial

��

�
�

�

−

≥
=

Our test video clip has 1680 frames. Suppose the AFR is
25 fps, we can compute the initial buffering delay to be
11.2 seconds. Note that during the initial buffering, all
peer senders transmit media data at the same rate as their
contributed streaming bandwidth. In addition, notice that
the aggregated streaming bandwidth (3*60KBps) is
greater than the playback rate (143.0KBps): each peer
sender will exploit the residual bandwidth to pre-
transmit media data which will be buffered by the
receiver during the media playback.

(3) Peer failure detection and recovery During the
streaming session, we intentionally turn off the Gnutella
services on one of the peer senders, in order to test the
responsiveness of GnuStream’s peer failure recovery
function. In the 27th second of the streaming session,
Peer 3 is turned off. It takes GnuStream approximately
1.0 second to detect and recovery from the failure, as
shown in Figure 5. Notice that Peer 3 (represented by
the magenta curve) is replaced by Peer 4 (cyan curve),
which has been a standby sender during the first 26
seconds. The detection and recovery latency is a result
of the tradeoff between system reactivity and peer
probing overhead. We note that there is no interruption
to media playback even during the 1.0 second period of
sender set adjustment, thanks to the buffer control
mechanisms of GnuStream.

5. CONCLUSIONS

P2P media streaming is expected to be widely deployed
in P2P networks such as Gnutella. In this paper, we
present the design and implementation of GnuStream, a
P2P and receiver-driven media streaming system which

is readily deployable in Gnutella network. GnuStream is
aware of the dynamics and heterogeneity of P2P
networks, and leverages the aggregated streaming
capacity of individual peer senders to achieve full
streaming quality. GnuStream also performs self-
monitoring and adjustment in the presence of peer
failure and bandwidth degradation. Our experiments
have demonstrated the effectiveness of GnuStream
buffer control mechanisms in maintaining both
continuity and quality of P2P streaming sessions.
Finally, GnuStream is an open source software system,
which can be used as a basis for the implementation and
evaluation of more advanced and complex features of
P2P media streaming.

We have released GnuStream at:
http://www.cs.purdue.edu/homes/jiangx/GnuStream/

Figure 5: Peer failure detection (in 27th second) and
recovery (Peer 3 replaced by Peer 4)

6. REFERENCES

[1] D. Xu, M. Hefeeda, S. Hambrusch and B. Bhargava, “On
Peer-to-Peer Media Streaming”, IEEE ICDCS 2002, July
2002.
[2] T. Nguyen and A. Zakhor, “Distributed Video Streaming
Over Internet”, SPIE/ACM MMCN 2002, Jan. 2002.
[3] Y. Chu, S. Rao and H. Zhang, “A Case for End System
Multicast”, ACM SIGMETRICS, June 2000.
[4] H. Deshpande, M. Bawa and H. Garcia-Molina,
“Streaming Live Media over a Peer-to-Peer Network”,
Stanford Database Group Technical Report (2001-20), Aug.
2001.
[5] V. N. Padmanabhan, H. J. Wang, P.A. Chou and K.
Sripanijkulchai, “Distributing Streaming Media Content Using
Cooperative Networking”, ACM NOSSDAV, May 2002.
[6] D. A. Tran, K. A. Hua and T. T Do “ZIGZAG: An
Efficient Peer-to-peer Scheme for Media Streaming”, IEEE
INFOCOM2003, April 2003.

