
Provenance-Aware Tracing of Worm Break-in and Contaminations: A
Process Coloring Approach∗

Xuxian Jiang, AAron Walters, Florian Buchholz†, Dongyan Xu
Yi-Min Wang‡, Eugene H. Spafford

CERIAS and Dept. of Computer Science † Dept. of Computer Science ‡ Microsoft Research
Purdue University, W. Lafayette, IN 47907 James Madison Univ., Harrisonburg, VA 22807 Redmond, WA 98052
{jiangx, arwalter, dxu, spaf}@cs.purdue.edu buchhofp@jmu.edu ymwang@microsoft.com

Abstract

To investigate the exploitation and contamination by
self-propagating Internet worms, a provenance-aware
tracing mechanism is highly desirable. Provenance un-
awareness causes difficulties in fast, accurate identifica-
tion of a worm’s break-in point, and incurs significant log
inspection overhead. This paper presents the design, im-
plementation, and evaluation of process coloring, an effi-
cient provenance-aware approach to worm break-in and
contamination tracing. More specifically, process color-
ing assigns a “color”, a unique system-wide identifier, to
each remotely-accessible server or process. The color will
then be either inherited by spawned child processes or dif-
fused indirectly through process actions (e.g., read/write
operations). Process coloring brings two major advan-
tages: (1) It enables fast color-based identification of a
worm’s break-in point even before detailed log analysis;
(2) It naturally partitions log data based on their colors,
effectively reducing the volume of log data that need to
be examined for worm investigation. A tamper-resistant
log collection method is developed based on the virtual
machine introspection technique. Our experiments with a
number of real-world worms demonstrate the advantages
of processing coloring.

1 Introduction

In the combat against worms, the following tasks are
critical to the understanding of a worm’s exploitation de-
tails and to the recovery of an infected host from worm
contaminations: (1) identifying the break-in point, namely
the vulnerable, remotely accessible service via which the

∗This work was supported in part by gifts from Microsoft Research
and grants from the National Science Foundation OCI-0438246, OCI-
0504261, CNS-0546173.

worm infects the victim and (2) determining all contami-
nations and damages inflicted by the worm during its resi-
dence in the victim. To perform these tasks, various intru-
sion analysis tools can be used. For example, BackTracker
[16] is an advanced forensic tool that traces back an intru-
sion starting from a “detection point” and identifies files
and processes that could have affected that detection point.
The tool takes the entire log file of the host as input for
back-tracking.

Log-based intrusion analysis tools face the follow-
ing challenges: (1) Many tools [3, 16, 27] rely on
an externally-determined detection point, from which a
forensic investigation will be initiated towards the break-in
point of the intrusion. However, due to a worm’s possibly
long “infection-to-detection” duration, it may be days or
even weeks later when such a detection point is identified.
It is therefore desirable that the log data carry more infor-
mation and provide “leads” to trigger more timely investi-
gations. (2) Current operating systems lack a provenance-
aware mechanism to pre-classify the log data before log
analysis. On the other hand, log data generated by the sys-
tem may be of large volume. The uncategorized bulk log
data are likely to result in long duration and high overhead
in worm investigation. (3) Many log-based tools do not
address tamper-resistant log collection, which is essential
in dealing with advanced worms. As shown in Section
2.3, a commonly used mechanism for collecting system
call traces, syscall wrapping, can be easily circumvented.

In this paper, we present the design, implementa-
tion, and evaluation of process coloring, an efficient
provenance-aware approach to worm break-in and con-
tamination investigation. More specifically, process color-
ing associates a “color”, a unique system-wide identifier,
to each remotely-accessible server or process - a potential
worm break-in point. The color will be either inherited
directly by any spawned child process, or diffused indi-
rectly through the processes’ actions (e.g., read or write
operations). As a result, any process or object (e.g., a file

or directory) affected by a colored process will be tainted
with the same color, as recorded in the corresponding log
entry. Process coloring naturally leads to the following
two key advantages:
Color-based identification of a worm’s break-in point
All worm-infected processes and contaminated objects
will be tainted with the same color as the original vulnera-
ble service, which is exploited by the worm as the break-in
point. By simply examining the color of any worm-related
log entry or any worm-affected object, the break-in point
of the corresponding worm can be immediately identified
before detailed log analysis.
Natural partition of log data The colors of log entries
provide a natural way to partition the log. To reveal the
contaminations caused by a worm, it is no longer neces-
sary to examine the entire log file. Instead, only log entries
with the same color as the worm’s entry point will need to
be inspected. Such partition can substantially reduce the
volume of relevant log data, and thereby improve the effi-
ciency of worm investigation.

The practicality and effectiveness of process color-
ing are demonstrated using a number of real-world self-
propagating worms and their variants. For each of these
worms, we are able to fast identify the vulnerable net-
worked service exploited by the worm. Moreover, reduc-
tion of inspected log data is achieved in each worm exper-
iment. For example, for a detailed SARS worm [2] break-
in and contamination investigation, only 12.1% of the en-
tire log data need to be inspected. Our prototype also ad-
dresses the important requirement of tamper-resistant log
data recording. We adopt a technique similar to Livewire
[13] and develop an extension to the UML virtual machine
monitor (VMM) for tamper-resistant logging.

The rest of the paper is organized as follows: Section
2 provides an overview of the process coloring scheme,
whose implementation is presented in Section 3. Experi-
mental evaluation results are presented in Section 4. Other
applications and possible attacks are addressed in Section
5. Section 6 discusses related work. Finally, Section 7
concludes this paper.

2 Process Coloring Approach

2.1 Initial Coloring

Figure 1 shows a process coloring view of a networked
host system running multiple servers. A unique system-
wide identifier called color is assigned to each server pro-
cess. The color assignment takes place after the server
processes have started but before serving client requests.
A worm breaking into the system will need to exploit a
certain vulnerability of a (colored) server process. Be-
cause any action performed by the exploited process will
lead to a corresponding color diffusion in the host (Section

2.2), the break-in and contaminations by the worm will be
evidenced by the color of the affected processes and sys-
tem resources and by the color of the corresponding log
entries. Each remotely-accessible service is performed by
one or more active processes in the host. For example,
the Samba service will start with two different processes
smbd and nmbd; and both portmap and rpc.statd processes
belong to the NFS/RPC service. Such processes can be
assigned the same color. However, if we need to further
differentiate each individual process (e.g., “which Apache
process is exploited by a Slapper worm?”), different col-
ors can be assigned to processes belonging to the same
service. One benefit of such assignment is that it provides
a finer granularity in log data partition.

Apache Sendmail NFS/RPCMySQL

Figure 1. Process coloring view of a system
running multiple servers

2.2 Color Diffusion Model

After the service processes are initially colored, the col-
ors will be diffused to other processes according to the op-
erations performed by the processes. To reveal worm con-
taminations, we are especially interested in process color
diffusion via system-wide shared resources, such as files,
directories, and sockets. For a worm to inflict contamina-
tion (e.g., backdoor installation), it needs to go through a
number of system calls. Hence the process colors are dif-
fused to the affected system resources via the operations
performed by the system calls.

The color diffusion model is based on our more gen-
eral process label framework [4], where audit information
(defined as process label) is propagated and preserved in a
system. We also note that process color diffusion reflects
the information flow model [8]. In this paper, we only
consider the information flow through syscall interfaces,
with the processes as subjects and intermediate resources
as objects. Other means such as using CPU utilization or
disk space availability to convey information are beyond
the scope of this paper. In the following, we describe two
types of syscall-based color diffusion:
Direct diffusion involves one process directly affecting
the color of another process. It can happen in a number of
ways: (1) Process spawning: If a process issues the fork,

vfork, or clone system call, a new child process will usu-
ally be spawned and it will inherit the color of the parent
process. (2) Code injection: A process may use code in-
jection (e.g. via ptrace system call) to modify the memory
space of another process to change its functionality. The
color of the injected process will be updated accordingly.
(3) Signal processing: A process may send a special sig-
nal (e.g., the kill command) to another process. If received
and authorized, the signal will invoke corresponding sig-
nal handling and thus affect the execution flow of the sig-
naled process.
Indirect diffusion from process s1 to s2 can be repre-
sented as s1 ⇒ o ⇒ s2, where o is an intermediate re-
source (object). Various types of intermediate resources
exist: some resources are dynamically created and will not
exist after the process is terminated (e.g., UNIX sockets);
other resources such as files can persistently exist and may
later affect another process if that process acquires some
input from these resources. To support indirect diffusion,
the system data structure for an intermediate resource will
be enhanced to record the influence of a process (i.e. its
color). Later, when another process gets input from the
“tainted” resource, the process will be tainted the same
color. Common resource types supported in current Linux
systems include files, directories, network sockets (includ-
ing UNIX sockets), named pipes (FIFO), and IPC (mes-
sages, semaphores, and shared memory).

2.3 Log Information Collection

Process coloring employs system call (syscall) inter-
ception to generate log entries and tag them with process
colors. As demonstrated in [16, 22], syscall interception
is effective in revealing and understanding intrusion steps
and actions. However, a simple syscall-based hooking
mechanism may be vulnerable to the re-hooking attack,
where attackers can easily avoid or even subvert [9] the
log collection function. Instead, our design is based on
the virtual machine introspection technique [13], where
the interception of system calls happens not in the syscall
dispatcher, but on the virtual machine virtualization path.
As such, the interceptor is an integral part of the underly-
ing virtual machine implementation (Section 3) achieving
stronger tamper-resistance. Information about each inter-
cepted system call (e.g. current process, syscall number,
parameters, return value, and return address) forms a log
entry, which is tagged with the color of the current pro-
cess.

3 Implementation

Our prototype leverages User-Mode Linux (UML), an
open-source VM implementation where the guest OS runs
directly in the unmodified user space of the host OS, and

only considers the ext2 file system1. In order to support
process coloring, a number of key data structures (e.g.,
task struct, ext2 inode info) are modified to accommo-
date the color information. Implementation details of
color setting and diffusion can be found in [14].

Safe log
collection

Guest User Space

Guest OS Kernel/UML

Pt
ra

ce

Host OS Kernel

Log file

Figure 2. Tamper-resistant log collection by
positioning the interceptor on the system
call virtualization path

The log collection mechanism is based on the underly-
ing virtual machine implementation, i.e. UML, as shown
in Figure 2. UML adopts a system call-based virtualiza-
tion approach and supports VMs in the user space of the
host OS. Leveraging the capability of ptrace, a special
thread is created to intercept the system calls made by any
process in the VM, and to redirect them to the guest OS
kernel. The interceptor for system call log collection is
located on the system call virtualization path. Therefore,
it is tamper-resistant from malicious processes running in-
side the VM. Moreover, once the interceptor has collected
a certain amount of log data (e.g., 16K), the log data will
be pushed down to the host domain. One important benefit
is that the analysis on the log file within the host domain
will not interrupt the normal execution of the VM. This
creates the possibility of external runtime system monitor-
ing based on the colors of log data.

4 Evaluation

We evaluate the effectiveness of process coloring using
a number of real-world Internet worms: Adore, Ramen,
Lion, Slapper, SARS, and their variants. Each worm ex-
periment is conducted in a virtual distributed worm play-
ground called vGround [15], which is a realistic, confined,
and scaled-down Internet environment consisting of net-
work entities and end hosts realized as VMs with process
coloring capability. vGround makes it easy and efficient
to create VMs running real-world services as well as VMs
running as service clients. vGround enables safe worm
experiments by confining all traffic within the vGround.
It also facilitates experiments with a multi-vector worm

1We are currently implementing process coloring on another VM
platform Xen [10] and we expect even better performance than our UML-
based prototype due to Xen’s para-virtualization approach.

Lion Worm Slapper Worm SARS Worm

Exploited Service BIND (bind-8.2.2 P5-9) Apache (apache-1.3.19-5) Samba (samba-2.2.5-10)
(CVE references) (CVE-2001-0010) (CAN-2002-0656) (CAN-2003-0201)

Time period being analyzed 24 hours 24 hours 24 hours
Number of log entries 129,386 293,759 166,646

Size of log data 8.0M 18.5MB 10.7MB
Number of worm-relevant log entries 66,504 195,884 19,494

Size of worm-relevant log data 3.9MB 12.2MB 1.3MB
Number of files “touched” by the worm 120,342 62 200

Percentage of worm-relevant logs 48.7% 65.9% 12.1%

Table 1. Statistics of process coloring log data in three worm experiments

(e.g., Ramen worm), which infects hosts (VMs) via differ-
ent break-in points2.

Due to space constraint, we only present experiments
with Lion, Slapper, and SARS worms. Table 1 shows key
statistics of their respective log data. Each log file con-
tains log entries collected during a 24-hour period, includ-
ing both worm-related and normal service access entries.
During each experiment, process coloring demonstrates
its key benefits: (1) We are able to identify the worms’
break-in points before performing detailed log analysis.
The break-in points are the BIND server (bind-8.2.2 P5-
9) for Lion worm, the Apache server (apache-1.3.19-5
with openssl-0.9.6b-8 package) for Slapper worm, and
the Samba server (samba-2.2.5-10) for SARS worm. (2)
The log data that need to be inspected for detailed worm
investigation is only 48.7% (Lion worm), 65.9% (Slap-
per worm), and 12.1% (SARS worm) of the total logged
events, respectively. We note that, since log entries
are naturally partitioned by their colors, increasing back-
ground service accesses (i.e. accesses to unrelated ser-
vices) in the experiments will further reduce the percent-
age of worm-related log. (3) Since the worm break-in
point (vulnerable service) is identified before log analysis,
it is possible to further filter the log entries that record nor-
mal accesses to the vulnerable service, which have known
and different footprint from that of a worm infection.

4.1 Lion Worm Contamination Investi-
gation

Figure 3 shows a process coloring view of an unin-
fected system running a BIND server vulnerable to the
Lion worm. There are also a number of other services
hosted at the same system: NFS/RPC service (portmap
and rpc.statd), printer service (lpd), and mail service
(sendmail). A different color is assigned to each service.

2For example, Ramen worm has three possible break-in points:
LPRng (CVE-2000-0917), rpc.statd (CVE-2000-0666), and wu-ftp
(CVE-2000-0573) - the last one cannot lead to a successful exploitation
as shown by our vGround experiment.

NFS/RPC Service

xinetd Service

LPD Service

Sendmail Service

DNS Service

353: portmap

378: rpc.statd

497: xinetd

533: lpd

31122: named

1: init

581: sendmail

Figure 3. A process coloring view of a vul-
nerable system BEFORE Lion infection

Process named has the color “RED”. The Lion worm is
unleashed from a different VM in the vGround3. After the
experiment, we obtain a log file whose entries are conve-
niently partitioned by their colors. Among the “RED” en-
tries whose provenance is the named process, we observe
an abnormal event that a shell process was spawned. This
is one of the contaminations inflicted by the Lion worm.
To further reduce the inspected log volume, entries gener-
ated by normal accesses to the BIND server from other
legitimate VM clients in the vGround are filtered. We
then use the remaining “RED” log entries to derive a Lion
worm contamination graph as shown in Figure 4.

We confirm that Figure 4 reveals all Lion worm con-
taminations by comparing our results with a detailed Lion
worm report [1]. The leftmost oval is the vulnerable
named daemon (PID: 31122). After a successful exploita-
tion of the named process, a worm replica is downloaded
(Circle 2 in Figure 4). The worm then overwrites all
HTML files named index.html in the system with a self-
carried HTML file for web defacement (Circle 3). Inter-
estingly, we observe from the log that the worm attempts
to execute the file replacement twice - a detail not reported
in [1]. The first attempt to replace files is within the shell

3This “seed” worm is instrumented to target the vulnerable VM for
infection. However, the worm copy transferred is unmodified.

31122:
named

1

4

2

3

1: Collecting localhost information

31383(execve): ./hack.sh

31122(execve): /bin/sh

2: Downloading a worm replica

/sbin/asp

3: Replacing all HTML files named index.html with a self−carried one

4: Installing the worm replica and inititating next round of infection

31347: ./1i0n.sh

bind
bindx.sh

and erasing some logs

Figure 4. Lion worm contaminations reconstructed from “RED” log entries

code (PID: 31181) after executing the malicious buffer
overrun code (Circle 2 and Circle 3). The second attempt
happens when the driving script ./1i0n.sh (PID: 31347) is
executed (Circle 4). The worm then tries to initiate the
next round of infection (Circle 4). In the thick dotted cir-
cle inside Circle 4, we find two “RED” dangling files bind
and bindx.sh, which are introduced by the worm but never
accessed by any worm-related process. Such anomaly de-
serves a further investigation. A forensic analysis of the
VM reveals that these two files contain the exploitation
code for the BIND vulnerability. As there is only one VM
running the vulnerable BIND service in the vGround, the
worm cannot find another host to infect and the file bind-
name.log storing IP addresses of possible victims is empty.
As a result, the exploitation code is never launched.

4.2 Slapper Worm Contamination Inves-
tigation

The Slapper worm experiment is conducted in a differ-
ent vGround. We initially assign colors to service pro-
cesses in an uninfected VM. Especially, the vulnerable
Apache service is assigned “RED”. Through direct diffu-
sion, all spawned httpd worker processes are also colored
“RED”. A process coloring view of the system before the
Slapper infection is shown in Figure 5. The experiment
involves accesses to the other services as well as normal
web accesses requesting a 2890-byte index.html file.

After the experiment, an examination on the log file
shows a flurry of “RED” log entries (> 10000) within
a very short period (1 minute) - an anomaly indicating a

Sendmail Service

crond Service

Apache Service

xinetd Service

NFS/RPC Service

453: portmap

633: xinetd

673: sendmail

697: crond

2182: crond 2183: run−parts 2193: awk

2523: httpd

2555: httpd

2556: httpd

2557: httpd

2558: httpd

2559: httpd

2560: httpd

2561: httpd

2562: httpd

2563: httpd

1: init

Figure 5. A process coloring view of a
Slapper-vulnerable system BEFORE infec-
tion

possible infection. As the “RED” color is associated with
the Apache web server, we select all “RED” log entries,
which constitute 65.9% of the entire log file. A quick
review of these log entries shows that the Slapper worm
infection has a large and distinct footprint in the infected
host. During the transmission of a Slapper worm, a uuen-
coded source file is sent from the infecter to the victim.
More specifically, the sender issues a sendch call for each
byte of the uuencoded file. Correspondingly, the receiver
uses a sys read for each byte received (total 94320 calls).
Moreover, each encoded byte is then written (the cat com-
mand) to a local file named /tmp/.uubugtraq, leading to an-
other 94320 sys write system calls. In sharp contrast, each
normal web access only generates 15 log entries, record-

2: Recovering the original
source file by uudecoding it

1: Downloading the worm
as a uuencoded file

4: Activating the worm to start next round of infection

A

B

C

A: /tmp/.uubugtraq B: /tmp/.bugtraq.c C: /tmp/.bugtraq

3: Generating the Slapper worm binary by locally compiling the source

2568: httpd

2568(execve): /bin/bash −i

2595: /tm
p/.bugtraq 192.168.2.2

2568: httpd

fd 5 after accept

2568(execve): /bin//sh

inet sock(80)

2568(execve): /bin/bash −i

2587: /bin/cat

unix sock("/var/run/.nscd_socket")

2586: /bin/rm −rf /tmp/.bugtraq.c

2588: /usr/bin/uudecode −o /tmp/.bugtraq.c /tmp/.uubugtraq

2589: /usr/bin/gcc −o /tmp/.bugtraq /tmp/.bugtraq.c −lcrypto

2595: /tmp/.bugtraq 192.168.2.2

unix sock("/var/run/.nscd_socket")

/tmp/.uubugtraq

/tmp/.bugtraq.c

2590: /usr/lib/gcc−lib/i386−redhat−linux/2.96/cpp0

2591: /usr/lib/gcc−lib/i386−redhat−linux/2.96/cc1

2592: /usr/bin/gcc 2593: /usr/lib/gcc−lib/i386−redhat−linux/2.96/collect2

/tmp/cc7Bh66a.i

/tmp/ccGXrYjN.s

/tmp/cc0u8DTM.ld2592(execve): /usr/local/bin/as2592(execve): /bin/as

2592(execve): /usr/bin/as

2594: /usr/bin/ld

/tmp/ccYTx5k2.c/tmp/ccu4v8yU.o

/tmp/.bugtraq

/tmp/cccAZX4s.o

Figure 6. Slapper worm contaminations reconstructed from “RED” log entries

ing the known normal sequence of Apache server actions.
Therefore, we remove these (“RED”) entries before con-
structing the Slapper worm contamination graph (Figure
6)4.

By comparing our results with a detailed Slapper worm
analysis [20], we confirm that Figure 6 reveals all con-
taminations by the Slapper worm. We first observe that
the worm exploits an httpd worker process (PID:2568) to
gain system access. After that, a uuencoded version of the
worm source code is downloaded (Circle 1 in Figure 6)
and uudecoded (Circle 2) to reconstruct the original code,
which is then compiled (Circle 3) to generate the worm bi-
nary. The binary is executed (Circle 4) to attempt to infect
other hosts. The collected log data further reveal that the
exploitation of the Slapper worm is rather sophisticated.
Before the httpd worker process (PID: 2568) is exploited,
23 TCP connections have already been established with
different http worker processes between the infecter and
the victim. Interestingly, 21 of these connections have
no payload; one connection is an invalid HTTP request,
which turns out to be a request to obtain the Apache server
version; and the last connection has a short interaction.
From [20], we know that one of the 21 plain connections
is used to validate the reachability of the Apache server,
while the other 20 connections are made for depleting the
Apache server pool to make sure that the two subsequent

4We note that a general intrusion may mimic the normal sequence
of service access actions [25]. However, it is more difficult for self-
propagating worms to do so because their outgoing propagation behavior
is semantically different from a normal service access.

exploitations will have the same heap layout. The first ex-
ploitation aims at reliably deriving the over-writable heap
address in the vulnerable Apache server. This heap ad-
dress is then reused in the second exploitation. All these
connections and interactions are recorded by “RED” log
entries.

SARS worm contamination investigation Due to space
constraint, the results of SARS worm experiment are pre-
sented in [14]. Only 12.1% of the log data need to be pro-
cessed to fully reveal SARS worm contaminations. SARS
worm performs rootkit and backdoor installation as well as
system information collection, reflecting the recent trend
in the underground evolution of increasingly stealthy self-
propagating worms.

5 Possible Attacks and Counter-Measures

Jamming attack A worm could intentionally introduce
many noise log entries to hide its actual intention. For
example, a worm could invoke a large number of “innocu-
ous” or unrelated syscalls just to hide its real infection at-
tempts. However, tactically speaking, these actions still
need to be considered as a part of the worm’s behavior in
the infected system, even though they may not contribute
to any real damage. Also, to the worm’s disadvantage,
these noise log entries deviate from the normal log pattern
of a specific color and will trigger an alarm. Finally, the
capability of color-based identification of a worm’s entry
point is still valid under this attack, though it will take a

more careful analysis to uncover the obfuscated intention.
Low-level attack The integrity of colors associated with
active processes and intermediate resources are critical to
worm investigation. As the current prototype maintains
the color information within the kernel of the system un-
der inspection, it is possible that this information be ma-
nipulated through certain low-level attacks. For exam-
ple, if the process color is associated with the task struct
PCB structure, a method called direct kernel object ma-
nipulation (DKOM) [5] can be leveraged to explicitly
change the color value (e.g., by writing to the special
device file /dev/kmem). Fortunately, solutions such as
CoPilot[21], Livewire[13], and Pioneer [23] have been
proposed to address the issue of kernel integrity. Another
possible counter-measure is to create a shadow structure,
which is instead maintained by the virtual machine moni-
tor (VMM) and is totally inaccessible from inside the VM.
Compared with the current prototype, the shadow solution
poses significantly greater challenge in deriving VM oper-
ation semantics from low-level information collected via
virtual machine introspection, which may affect the accu-
racy and completeness of worm investigation results.
Diffusion-cutting attack It is possible that a worm might
use a hidden channel to undermine the diffusion. For ex-
ample, a worm could use an initial part of an attack to
crack a weak password, which is later used in a sepa-
rate session to gain the system access and complete the
rest of worm contamination. Process coloring can track
any action performed within each break-in, but it can-
not automatically associate the second break-in with the
first one. However, any anomaly within the second break-
in will immediately expose the responsible login session,
which may lead to the identification of the cracked pass-
word. Based on the log data from the first break-in, the
administrator may still be able to correlate those two dis-
junct break-ins.
Color saturation attack If a worm is aware of the
coloring scheme, it might attempt to acquire more col-
ors from different services right after its break-in. As a
result, the associated colors can not uniquely identify the
break-in point. However, to the worm’s disadvantage, the
color saturation attack will immediately lead to an alarm
of color mixing - an anomaly triggering further investiga-
tion. Color saturation attack does expose a weakness of
our current prototype, which uses a single color field. Al-
though our prototype is able to accommodate multiple col-
ors (each bit in the color field represents a different color),
it is not able to differentiate between an inherited color
and a diffused color. The inherited color of a process can
only be inherited from its parent and will not be changed
by its own or others’ behavior. The diffused colors, on
the other hand, reflect the color diffusions through its own
or others’ actions (e.g., sys read/sys write). With this dis-
tinction, the inherited colors can be used to partition log

data, while the diffused colors can be used to detect color
saturation attacks and identify all color-mixing points for
further examination in affected partitions.

6 Related Work

Process coloring is inspired by the concept of transi-
tive dependency tracking [12] originally proposed for fail-
ure recovery. Process coloring also reflects the informa-
tion flow model [8]. With these concepts and models as
theoretical underpinnings, a spectrum of taint-based tech-
niques have recently been proposed: Process coloring op-
erates at the system call level to reveal worm break-in and
contamination; TaintCheck [19] works at the instruction
level to detect overwrite attacks and generate exploit sig-
natures; TaintBochs [6] focuses on lifetime tracking of
sensitive data in a system. While sharing the same design
philosophy, these techniques differ in their goals, design,
implementation, and usage.

Process coloring can be integrated into existing log-
based intrusion investigation tools [16, 18] so that they
become provenance-aware. BackTracker [16] is able to
automatically reconstruct the sequences of steps that oc-
curred during an intrusion. More specifically, starting
with an external detection point, BackTracker identifies
files and processes that could have affected this detection
point and displays chains of events in a dependency graph.
The follow-up work [18] of Backtracker proposes a for-
ward tracking capability that identifies all possible dam-
ages caused by the intrusion after the back-tracking ses-
sion. Both BackTracker and its forward tracking exten-
sion require the entire log data as input. With process col-
oring enhancement, the break-in point of a worm can first
be identified by the color of the detection point, and the
volume of input log data will be reduced by color-based
log partition, resulting in more efficient back-tracking and
forward-tracking. In addition, the colors and patterns of
log entries may provide alerts at runtime, triggering more
timely investigations.

Process coloring can also be applied to enhance file
and database repair/recovery. The Repairable File Ser-
vice [27] identifies possible file system level corruptions
caused by a root process, assuming that the administrator
has already identified such a root process. It then uses the
log to identify the files that may have been contaminated
by that process. The repairable file service implements a
limited version of the forward-tracking capability by only
tracking file system level corruptions. Meanwhile, there
has been technique in the database area [3] that is capable
of recording contaminations at the transaction level and
rolling back the damages if the transaction is later found
malicious. This technique also requires external identi-
fication of malicious processes or transactions. Process
coloring can enhance these techniques by tracking more

sophisticated contamination behavior via color diffusion,
raising anomaly alarms based on log colors and patterns,
and achieving tamper-resistant log collection.

Recent advances in virtual machine technologies have
created new opportunities for intrusion detection and re-
play [11, 13], system diagnosis [17, 26], attack recovery
and avoidance [11, 24], and data life-time tracking [6, 7].
For example, ReVirt [11] is able to replay a system’s exe-
cution at the instruction level. Time-traveling virtual ma-
chines [17, 26] provide a highly effective means of re-
examining and troubleshooting system problems. Pro-
cess coloring complements these efforts by leveraging vir-
tual machine technologies for worm break-in and contam-
ination investigation. In addition, process coloring, as
an advanced logging mechanism, can be integrated into
other VM-based networked systems to add provenance-
awareness to these systems.

7 Conclusion

We have presented the design, implementation, and
evaluation of process coloring, a novel systematic ap-
proach to provenance-aware tracing of worm break-in and
contaminations. By associating a unique color to each
remotely-accessible service and diffusing the color based
on actions performed by processes in the system, process
coloring achieves two key benefits: (1) color-based iden-
tification of a worm’s break-in point before detailed log
analysis and (2) color-based partitioning of log data. Pro-
cess coloring improves log-based worm investigation tools
by reducing the amount of log entries to be processed and
by providing color-related “leads” for more timely investi-
gation. Experiments with a number of real-world Internet
worms demonstrate the practicality and effectiveness of
process coloring.

References

[1] SANS Institute: Lion worm.
http://www.sans.com/y2k/lion.htm.

[2] SARS Worms. http://www.xfocus.net/tools/200306/413.
html, June 2003.

[3] P. Ammann, S. Jajodia, and P. Liu. Recovery from Mali-
cious Transactions. IEEE TKDE, Volume 14, Issue 5, 2002.

[4] F. Buchholz. Pervasive Binding of Labels to System Pro-
cesses. Ph.D. Thesis, CERIAS TR 2005-54, Purdue Uni-
versity, 2005.

[5] J. Butler. Direct Kernel Object Manipulation (DKOM).
http://www.blackhat.com/presentations/win-usa-04/bh-
win-04-butler.pdf, 2004.

[6] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding Data Lifetime via Whole
System Simulation. USENIX Security Symp., Aug. 2004.

[7] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum. Shred-
ding Your Garbage: Reducing Data Lifetime Through Se-
cure Deallocation. USENIX Security Symp., Aug. 2005.

[8] D. E. Denning. A Lattice Model of Secure Information
Flow. Commun. ACM 19, 5 (May), 236-243, 1976.

[9] M. Dornseif, T. Holz, and C. Klein. NoSEBrEaK - At-
tacking Honeynets. Proccedings of the 5th Annual IEEE
Information Assurance Workshop, Westpoint, June 2004.

[10] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,
A. Warfield, P. Barham, and R. Neugebauer. Xen and the
Art of Virtualization. ACM SOSP 2003, Oct. 2003.

[11] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and
P. M. Chen. ReVirt: Enabling Intrusion Analysis Through
Virtual-Machine Logging and Replay. USENIX OSDI,
Dec. 2002.

[12] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. John-
son. A Survey of Rollback-Recovery Protocols in Message
Passing Systems. ACM Computing Survey, 34(3), 2002.

[13] T. Garfinkel and M. Rosenblum. A Virtual Machine In-
trospection Based Architecture for Intrusion Detection .
NDSS 2003, Feb. 2003.

[14] X. Jiang, A. Walters, F. Buchholz, D. Xu, Y. Wang, and
E. Spafford. Provenance-Aware Tracing of Worm Break-in
and Contaminations: A Process Coloring Approach. CE-
RIAS Technical Report 2005-81, Purdue University, 2005.

[15] X. Jiang, D. Xu, H. J. Wang, and E. H. Spafford. Vir-
tual Playgrounds for Worm Behavior Investigation. RAID
2005, Sept. 2005.

[16] S. T. King and P. M. Chen. Backtracking Intrusions. ACM
SOSP 2003, Oct. 2003.

[17] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging
Operating Systems with Time-Traveling Virtual Machines.
USENIX Technical Conference, Apr. 2005.

[18] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen.
Enriching Intrusion Alerts Through Multi-Host Causality.
NDSS 2005, Feb. 2005.

[19] J. Newsome and D. Song. Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature Generation
of Exploits on Commodity Software. NDSS 2005, Feb.
2005.

[20] F. Perriot and P. Szor. An Analysis of the Slapper Worm
Exploit. Symantec White Paper.

[21] N. L. Petroni, T. Fraser, J. Molina, and W. A. Arbaugh.
Copilot - a Coprocessor-based Kernel Runtime Integrity
Monitor. USENIX Security Symp., Aug. 2004.

[22] N. Provos. Improving Host Security with System Call Poli-
cies. USENIX Security Symp., Aug. 2003.

[23] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and
P. Khosla. Pioneer: Verifying Integrity and Guaranteeing
Execution of Code on Legacy Platforms. ACM SOSP 2005,
Oct. 2005.

[24] A. Stavrou, A. D. Keromytis, J. Nieh, V. Misra, and
D. Rubenstein. MOVE: An End-to-End Solution To Net-
work Denial of Service. NDSS 2005, Feb. 2005.

[25] D. Wagner and P. Soto. Mimicry Attacks on Host-Based
Intrusion Detection Systems. ACM CCS 2002, Nov. 2002.

[26] A. Whitaker, R. S. Cox, and S. D. Gribble. Configuration
Debugging as Search: Finding the Needle in the Haystack.
USENIX OSDI 2004, Dec. 2004.

[27] N. Zhu and T. Chiueh. Design, Implementation and Eval-
uation of Repairable File Service. IEEE DSN 2003, June
2003.

