
BISTRO: Binary Component Extraction
and Embedding for Software Security Applications

Zhui Deng, Xiangyu Zhang, and Dongyan Xu

Department of Computer Science and CERIAS, Purdue University, West Lafayette, IN 47907
{deng14,xyzhang,dxu}@cs.purdue.edu

Abstract. In software security and malware analysis, researchers often need to
directly manipulate binary program – benign or malicious – without source code.
A useful pair of binary manipulation primitives are binary functional component
extraction and embedding, for extracting a functional component from a binary
program and for embedding a functional component in a binary program, respec-
tively. Such primitives are applicable to a wide range of security scenarios such as
legacy program hardening, binary semantic patching, and malware function anal-
ysis. Unfortunately, existing binary rewriting techniques are inadequate to sup-
port binary function carving and embedding. In this paper, we present BISTRO, a
system that supports these primitives without symbolic information, relocation in-
formation, or compiler support. BISTRO preserves functional correctness of both
the extracted functional component and the stretched binary program (with the
component embedded) by patching them in a systematic fashion. We have im-
plemented an IDA Pro-based prototype of BISTRO and evaluated it using real-
world Windows software. Our results show the effectiveness of BISTRO, with
each stretched binary incurring low time and space overhead. Furthermore, we
demonstrate BISTRO’s capabilities in various security applications.

1 Introduction

In software security and malware analysis, researchers often need to manipulate binary
code – benign or malicious – without source code and symbolic information. One pair
of complementary binary manipulation primitives is to (1) extract a re-usable functional
component from a binary program and (2) embed a value-added functional component
in an existing binary program. We call these primitives binary component extraction
and embedding. The primitives are useful in a wide range of software security scenar-
ios. In security hardening of legacy binaries, binary component embedding enables the
retrofitting of legacy or close-source software with a third-party functional component
that performs a value-added security function such as access control. In binary seman-
tic patching, binary programs from different vendors may leverage the same functional
component. Suppose one vendor identifies a vulnerability in such a component and re-
leases a patched version for its own program; whereas other vendors are not aware of
the vulnerability or have not patched their products. We can apply binary component
extraction to carve out the patched component from a patched program and replace the
vulnerable version of the same component in an un-patched program using binary com-
ponent embedding. In malware analysis, binary component extraction and embedding

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 200–218, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

BISTRO: Binary Component Extraction and Embedding 201

supports “plug and play” of malicious functions extracted from malware captured in
the wild. One can even “stitch” multiple extracted malware functions to compose a new
piece of malware – a capability that might help enable strategic cyber defence.

Binary component extraction and embedding poses significant challenges. Brute
force extraction and insertion of binary functions will most likely fail. Instead, both the
extracted component and the target binary program need to be carefully transformed.
For example, instructions in the target binary need to be shifted to create space for the
embedded function; when a function is extracted from its origin binary, the instructions
in it need to be re-positioned and re-packaged; accesses to global variables need to be
re-positioned; function pointers need to be properly handled; and indirect jumps/calls
need to have their target addresses recalculated. These problems are especially chal-
lenging when the binary component or the target binary program is not relocatable,
which is often the case when dealing with legacy or malware binaries.

Despite advances in binary instrumentation and rewriting, existing techniques are
inadequate to address the binary component extraction and embedding challenges. Dy-
namic binary instrumentation tools such as PIN, Valgrind, DynamoRIO [2] and QEMU
perform instrumentation only when a binary program is executed on their infrastruc-
tures. They do not generate an instrumented, stand-alone binary for production runs.
Static binary rewriting tools such as Diablo [4], Alto [5], Vulcan [30], and Atom [7]
can generate instrumented, stand-alone binaries. However, they require symbolic infor-
mation or that the binaries be generated by special compilers.

More lightweight techniques exist that do not require symbolic information or spe-
cial compilers [8–13]. Among them, some create trampolines at the end of a target
binary in which instrumentation is placed and then use control flow detours to access
the trampolines [8–10]. The others duplicate the body of a target binary program in its
virtual memory space and only the replica is instrumented. The original binary body
is retained in its original position to provide a kind of control flow forwarding mech-
anism [11–13]. However, none of these techniques supports extraction of binary com-
ponent or implanting an extracted component in another binary. Many of them cause
substantial space/performance overhead. To the best of our knowledge, none of them
has been successfully applied to large-scale Windows applications or kernel code. A
more detailed comparison is presented in our technical report [1].

Recently, researchers proposed approaches that focus on identification, extraction
and reuse of components from binaries. Inspector Gadget [29] performs dynamic slic-
ing to identify and extract components from malware. The extracted component might
have incomplete code path coverage due to the limitation of dynamic analysis. BCR [16]
adopts a combination of static and dynamic approach to extract a function from a bi-
nary. However, it uses labels to represent jump/call targets, thus does not preserve the
semantic of indirect jumps/calls. ROC [23] uses dynamic slicing to identify reusable
functional components in a binary but does not extract them. These approaches do not
aim to reuse extracted components for enhancing legacy binaries. Moreover, they can-
not extract components from non-executable binaries (e.g., malware corpse) due to the
use of dynamic analysis.

In this paper, we present BISTRO, a systematic approach to binary functional
component extraction and embedding. BISTRO automatically performs the following:

202 Z. Deng, X. Zhang, and D. Xu

(1) extracting a functional component, with its instructions and data section entries non-
contiguously located in the virtual address space, from an original binary and (2) em-
bedding a binary component of any size at any user-specified location in a target binary,
without requiring symbolic information, relocation information, or compiler support.
For both extraction and embedding, BISTRO preserves the functionalities of the tar-
get binary program and the extracted component by accurately patching them. BISTRO

performs extraction and embedding efficiently and the “stretched” target binary after
embedding only incurs small time and space overhead.

We have developed a prototype of BISTRO as an IDA-Pro [21] plugin. We have
conducted extensive evaluation and case studies using real-world Windows applica-
tions (e.g., Firefox and Adobe Reader), kernel drivers, and malware. Our evaluation
(Section 6) indicates BISTRO’s efficiency and precision in patching extracted compo-
nents and target binaries. Moreover, the stretched target binary incurs small perfor-
mance overhead (1.9% on average) and space overhead (10.9% on average). We have
applied BISTRO to the following usage cases: (1) We carve out patched components
from a binary and use them to replace their vulnerable versions in other applications,
achieving binary semantic patching (Section 6.2); (2) We stitch malicious functions
from an un-executable Conficker worm [14] sample and compose a new, executable
malware (Section 6.3); and (3) We demonstrate the realistic threat of trojan-ed kernel
drivers with malicious rootkit functions embedded in benign driver – using real-world
drivers and rootkits1.

2 Overview and Assumptions

An overview of BISTRO is shown in Figure 1. BISTRO has two key components: binary
extractor and binary stretcher.

Binary
Extractor

Original binary program Q
Component to extract

Binary
StretcherTarget

binary P

Stretched binary
program
P’ = P + c

Component c

To be called
independently

Independent
Component

Fig. 1. Overview of BISTRO

The binary extractor is responsible for extracting a designated functional component
c from an original binary Q. c includes both code and data of the functional compo-
nent. The extractor does so by removing the unwanted code and data from Q and then
collapsing the remaining data and code into a re-usable component c that occupies a
contiguous virtual address region. More importantly, the instructions in c are properly
patched for repositioning. We note that c can either be called as a library function or be
embedded directly in another binary program.

The binary stretcher is responsible for stretching the target binary P to make “room”
(holes in its address space) to embed a function component. As shown in Figure 1,
the stretcher takes the target binary P and the to-be-embedded component c as input;
stretches P , and patches the code in P to allow the embedding of c. The output of the
stretcher is a “stretched” binary P ′ = P + c ready for execution.

1 Due to lack of space, Case (3) is presented in our technical report [1].

BISTRO: Binary Component Extraction and Embedding 203

Summary of Enabling Techniques. Both the binary extractor and stretcher are based
on the same binary stretching algorithm (Section 3). The overarching idea is to shift
instructions for creating space (stretcher) or squeezing out unwanted space (extractor).
The algorithm focuses on patching the control transfer and global data reference in-
structions by precisely computing the adjusted offsets. For instance, if a component
with size |c| = n is inserted, all the original instructions following the insertion point
will be shifted by n bytes, and control transfers to any of the shifted instructions need
to be incremented by n.

To address the challenge of handling indirect calls and call back functions invoked
by external libraries, we develop another algorithm (Section 4.1) that stretches a sub-
ject binary at the original entries of functions that are potential targets of indirect calls,
creating small holes (usually a few bytes) to hold a long jump instruction to forward
any calls to those functions to their shifted locations. These holes must not be shifted
by any stretching/shrinking operations. They always stay in their original positions and
thus are called “anchors”. Our algorithm precisely takes into account these anchors
when performing stretching/shrinking. To handle indirect jumps, we leverage an effi-
cient perfect hashing scheme to translate jump targets dynamically. These techniques
are used to patch indirect jumps/calls in both extracted components and target binaries.

Assumptions. We make the following assumptions (hence stating the non-goals of
BISTRO): (1) The user, not BISTRO, will predetermine the semantic appropriateness
of embedding component c in target program P . Furthermore, he/she will decide the
specific location to insert c. This can be practically done by performing reverse engi-
neering on P . For example, to harden P with some security policy enforcement mech-
anism based on control flow [6], the user can reconstruct the control flow graph of P ,
collect its dominance and post-dominance information, and decide proper locations to
insert c. (2) The identification of c in the original binary Q is done a priori through man-
ual or automated techniques, such as Inspector Gadget [29], binary slicing [15], binary
differencing [31], and BCR [16]. While we will present our experience with functional
component identification in our case studies (Section 6), the identification technique
itself is outside the scope of this paper. (3) Binaries can be properly disassembled (e.g.,
by IDA-Pro) before being passed to BISTRO. This assumption is supported by the large
number of real-world, off-the-shelf binaries in our experiments. Although we currently
do not handle obfuscated or self-modifying binaries, we note that, in addition to IDA-
Pro, other conservative disassembling [13, 35] and unpacking [34] tools can also be
used as the pre-processor of BISTRO to handle more sophisticated binaries.

3 Basic Algorithm for Binary Extraction/Stretching

In this section, we present the basic algorithm (Algorithm 1) executed by both the bi-
nary extractor and stretcher of BISTRO. For the time being, we assume (1) there is
no indirect control transfer and (2) global data is directly referenced in an instruction
using its address. The algorithm takes the subject binary and a list of virtual address
intervals called snippets representing (1) the holes to be created in the binary in the
case of stretching or (2) the unwanted instruction/data blocks in the case of shrinking

204 Z. Deng, X. Zhang, and D. Xu

(extraction). First, for each byte in the binary, the algorithm computes a mapping be-
tween its original index in the binary and its corresponding index after the snippets are
inserted/removed. After that, the algorithm patches address operands in control trans-
fer and global data reference instructions, and copy each byte to its mapped location
according to the mapping.

Practical Challenges. To make BISTRO work for real-world large-scale software, we
still need to overcome a number of practical challenges not addressed by Algorithm 1.
Solutions to these challenges will be presented in the next few sections.

– The target of an indirect control transfer instruction (e.g., call eax) is computed
during execution and takes different values depending on the execution path. Such
an instruction cannot be patched by Algorithm 1.

Algorithm 1. Basic binary stretching/shrinking algorithm
Input: P – the subject binary; it has size and base addr fields to represent its size when loaded into memory and

base loading address, respectively.

M – a list of address intervals represent code/data to be inserted/removed, sorted increasingly by their location;
each interval has addr, len and type fields, denoting the location, size and type respectively. Type “INSERT”
means inserting right before addr; “REMOVE” means the block starting at addr is to be removed.

Output: P ′ – the stretched/shrunk binary.

1: function BASICSTRETCHING(P, M)
2: map← ComputeMapping(P,M)
3: P ′ ← PatchTarget(P,map)
4: end function

5: function COMPUTEMAPPING(P, M)
6: offset ← 0
7: m←M.begin()
8: for i← 0 to P.size do
9: if m.addr == P.base addr + i then
10: if m.type == INSERT then
11: offset ← offset + m.len
12: else if m.type == REMOV E then
13: offset ← offset −m.len
14: i← i + m.len
15: end if
16: m←M.next()
17: end if
18: map[i]← i+ offset
19: end for
20: return map
21: end function

22: function PATCHTARGET(P, map)
23: P ′ ← {nop, nop, ..., nop}
24: for i← 0 to P.size do

25: if map[i] �= ⊥ then
26: if P [i] is instruction then
27: ins← P [i]
28: for each data address operand op in ins do
29: target ← op.addr− P.base addr
30: off ← map[target]− target
31: op.addr ← op.addr + off
32: end for
33: if ins is near call/jump then
34: target ← i + ins.len + ins.target
35: off ← map[target]− target
36: off ′ ← map[i+ ins.len]− (i+ ins.len)
37: ins.target ← ins.target + off − off ′

38: else if ins is far call/jump then
39: target ← ins.target − P.base addr
40: off ← map[target]− target
41: ins.target ← ins.target + off
42: end if
43: P ′[map[i]]← ins
44: else if P [i] is data then
45: P ′[map[i]]← P [i]
46: end if
47: end if
48: end for
49: return P ′

50: end function

– Function pointers may be present in data or in an instruction as an immediate
operand. These function pointers might be passed as parameters to external libraries
as callback functions. If a function is relocated due to stretching, the external library
will call back to a wrong address. All these have to be properly handled to ensure
correctness of binary stretching/shrinking.

– Accesses to global data may be via data pointers (e.g., mov ebx, ptr data;
mov eax, [ebx+4]). The addresses of data are not known until runtime. These
instructions cannot be patched using Algorithm 1 either.

BISTRO: Binary Component Extraction and Embedding 205

4 Handling Indirect Control Transfer

Handling indirect jumps and calls is one of the key challenges in the design of BISTRO.
The difficulty is that the jump/call target cannot be known statically and thus is hard
to patch. To understand the challenge, consider the example in Figure 2. On the left,
there are three objects that are connected via pointers, with two of type B and one
of type A. On the right, part of function foo() is presented. The function takes two
parameters stored in eax and ebx denoting pointer values. These two pointers may
be aliased to each other. If so, ecx at 0x4302B2 gets the value 0x400340 defined at
0x4302A0, and then eventually the call instruction at 0x4302BD acquires the function
pointer 0x444142. However, if the two pointer parameters are not aliased, the call in-
struction may get a completely different target, making statically patching it difficult.

.rdata:0x400300 0x444142 //int (*fp)();

.rdata:0x400304 36 //int x;
…
.rdata:0x400324 0 //int y;
.rdata:0x400328 0x400300 //void * p;
…
.rdata:0x400340 1 //int y;
.rdata:0x400344 0x400324 //void * p;
…
.rdata:0x40040A “BAD\0” //char * s

Class A a;

Class B b1

Class B b2

mov [eax], 0x400340
…
mov ecx, [ebx]
mov edx, [ecx+4]
mov eax, [edx+4]
call [eax]

//eax=&b2

//ebx aliased to eax
//edx=400324
//eax=400300
//*(a.fp)()

.text:0x4302A0

.text:0x4302B2

.text:0x4302B6

.text:0x4302BA

.text:0x4302BD

//foo (eax, ebx):

Fig. 2. An example showing indirect call handling in binary stretching/extraction.

A naive solution is to identify and patch any constant value in the binary that appears
to be a jump/call target. But this is not safe as such values may not be jump/call targets.
Notice in the example, there is a null-terminated string “BAD” at address 0x40040A.
With the little endian representation in x86, this string has the same binary value as
the function pointer at 0x400300. Without type information, it is impossible to know
whether the value is a string or function pointer. Failure to identify and patch a function
pointer leads to broken control-flow, changing the semantics of the target binary. Mis-
classifying a string as a function pointer leads to undesirable changes to data. While it
is plausible to leverage recent advances in binary type inference to type constants in a
binary [17–20], the involvement of aliasing as in the example makes such analysis very
difficult. In fact, IDA-Pro [21] failed to recognize the function pointer for this case.

If a binary has a relocation table and it does not perform any address space layout
self-management such as through a packer, the relocation table will provide the posi-
tions of all constant values that are jump/call targets for BISTRO to patch them, thus
lead to a sound and complete solution to binary stretching/shrinking. However, relo-
cation table may be absent or contain bogus entries in legacy and malware binaries.
Hence, for the rest of the paper, we do not assume the presence of relocation tables in
our design and evaluation. Next, we describe how to handle indirect calls in Section 4.1
and indirect jumps in Section 4.2.

4.1 Handling Indirect Calls

Indirect calls are very common in modern binaries to leverage the flexibility of function
pointers. We have discussed the difficulty of handling function pointers at the beginning

206 Z. Deng, X. Zhang, and D. Xu

of Section 4. In fact, there is a more challenging situation, in which a binary may pass its
function addresses to external library functions which call back the provided functions
(e.g., a user function cmp() is provided as a parameter to an external library function
qsort()). In this case, if a function entry has changed due to stretching or shrinking,
its invocation sites are outside the body of the binary and thus beyond our control. It
is difficult to patch call back function pointer parameters before they are passed on to
libraries for two reasons. First, a function pointer might not directly appear as a pa-
rameter. It could be a member of a structure passed to an external library. It may even
require several layers of pointer indirection to access its value. Patching that is chal-
lenging. Second, for many external library functions, we cannot assume the availability
of their prototype definitions, it is hence difficult to know their parameter types.

To handle indirect calls including call back functions, we propose to stretch the target
binary to make small holes at the entry point of each function that may be an indirect
call target. These holes are called anchors; they should not be moved during stretch-
ing/shrinking. Inside an anchor, we place a jump instruction that jumps to its mapped
new address in the stretched/shrunk binary, which is the new entry of the function. As
such, we do not need to identify or patch any function pointers in the binary.

Since an anchor must be placed at a fixed address in the stretched binary, it could
coincide with instructions that get shifted to that address. To ensure correctness, we put
a jump right before an anchor to jump over it. We call the jump the prefix of an anchor.

(b) stretching w/o anchor

//cmp ()
push ebp
…
push 0x400120
call sort
…

…
400120:
400122:
…

400160:

401680:
401685:

40

app.exe

//cmp ()
push ebp
…
push 0x400120
call sort
…

…
400120:
400125:
…

400169:

401689:
40168E:

40+
9

jmp 400125
jmp 400169

anchor

(c) stretching w/ anchor

app.exe

//qsort() msvcrt.dll
…
//eax= 0x400120
call eax
…

AF8614:

…
//cmp ()
push ebp
mov ebp, esp
add esp,…
…

push 0x400120
call sort
…

400120:
400122:
400126:
…

401640:
401645:

(a) original binary

app.exe

//qsort() msvcrt.dll
…
//eax= 0x400120
call eax
…

AF8614:

//qsort() msvcrt.dll
…
//eax= 0x400120
call eax
…

AF8614:

Fig. 3. Stretching with Anchors. The shaded area in (b) is the 40-byte snippet inserted.

Consider the example in Figure 3(a). The call-back function cmp() is invoked in-
side qsort(). The entry address of function cmp() in the original binary is 0x400120.
When we stretch without anchors (Figure 3(b)) in function qsort(), the indirect call
to cmp() at 0xAF8614 will incorrectly go to 0x400120 in the shaded area. When we
stretch with anchors (Figure 3(c)), an anchor containing the jump instruction will be
placed at 0x400120. Any indirect call that goes to the original entry address of cmp(),

BISTRO: Binary Component Extraction and Embedding 207

0x400120, will be redirected to the actual function body at the new entry address. The
jump instruction preceding 0x400120 is its prefix.

Anchor-Based Algorithm. With the presence of anchors, fixing control flow transfer
instructions becomes more challenging than in Algorithm 1. We hence devise a new al-
gorithm (Algorithm 2). The idea is to divide the stretching/shrinking operation into two
phases. In phase one, the subject binary program is stretched/shrunk using Algorithm 1
to create space for the inserted snippets or removed blocks. Then the stretched/shrunk
binary is further stretched to insert anchors using a similar procedure. Separating the
two phases substantially simplifies the interference of anchors.

Algorithm 2. Anchor-based stretching algorithm.
Input: P – the subject binary; it has size and base addr fields to represent its size when loaded into memory and

base loading address, respectively.
M – a list of code/data snippets to be inserted/removed, sorted increasingly by their location; each snippet has
addr, len and type fields, denoting the location, size and type respectively.
A – a list of anchors to be placed, sorted increasingly by their location; each anchor has addr and len fields,
denoting the location and the content size, respectively.

Output: anchor map – the mapping between the indices after placing snippets and their corresponding indices after
anchors are placed.
prefixlen[a] – the prefix length of an anchor a.

1: function STRECHINGWITHANCHOR(P, M,A)
2: map← ComputeMapping(P,M)
3: Pt ← PatchTarget(P,map)
4: anchor map← ComputeAcMapping(Pt, A)
5: P ′ ← PatchTarget(Pt, anchor map)
6: end function

7: function COMPUTEACMAPPING(P, A)
8: offset ← 0
9: ac← A.begin()
10: i← 0
11: while i < P.size do
12: curaddr← P.base addr + i + offset
13: if ac.addr == curaddr then
14: prefix← i− SIZEOF(JMP)

15: if P [prefix] is not the start of an instruction then
16: prefix← start of instruction before prefix
17: end if
18: prefixlen[ac]← i− prefix
19: i← prefix
20: offset ← offset + ac.len + prefixlen[ac]
21: ac← A.next()
22: else
23: anchor map[i]← i + offset
24: i← i+ 1
25: end if
26: end while
27: return anchor map
28: end function

Pruning Anchors. Potentially, we can create anchors for all function entries to guar-
antee that we never miss any necessary function call forwarding. However, this is not
efficient. In fact, we only need to create anchors for the subset of functions that could
be the possible target of some indirect call. Assuming a 32-bit machine, we construct
the subset with the following criterion: Any four-byte data value or any four-byte im-
mediate operand in an instruction is considered a possible indirect call target, if it is
equal to one of the function entries. We obtain this subset by sequentially scanning data
and code sections. Our pruning heuristic is very effective in practice. For example, the
code section size of gcc in SPEC CPU 2000 benchmark suite is over 1MB, with over
2000 functions; after pruning, there are only 271 functions left that need anchors.

Embedding a Component with Anchors. If an extracted component contains a func-
tion that may be invoked by an indirect call in the component, BISTRO will create an
anchor in the target binary at exactly the same address of the function entry in the com-
ponent’s original binary to allow proper forwarding. If the anchor conflicts with some

208 Z. Deng, X. Zhang, and D. Xu

existing anchor in the target binary, BISTRO will integrate the two overlapping anchors
into an arbitration function and redirect control flow to the function instead. The func-
tion further determines which real target it should forward the call to. The calls from
the target binary and those from the to-be-embedded component are distinguished by
setting a flag. The arbitration function uses the flag to decide the real forwarding target.

In some rare cases, the space between two function entries might not be enough to
hold the anchors. In such cases, instead of using the jump instruction for redirection, we
use a software interrupt instruction, which takes only one byte. When an indirect call
reaches the old function entry, a software exception will be generated and intercepted
by our exception handler, which will redirect the control flow to the new function entry.

4.2 Handling Indirect Jumps

Indirect jumps are different from indirect calls as the jump targets may not be function
entries, but rather anywhere in the binary. If we adopt the anchor approach, there would
be too many anchors needed. One might leverage some heuristics such as that indirect
jumps usually receive their targets from jump tables and thus simply patch the jump
table entries. However, this is unsafe because of the difficulty of determining jump
table boundaries. A jump table may not be distinguishable from regular data. Hence,
we propose a different approach. Specifically, we insert a code snippet right before
each indirect jump to translate the jump target to its mapped address in the stretched
binary at runtime, as shown in the example below.

jmp eax
−→

mov eax, mapping[eax - old_base]
add eax, new_base
jmp eax

Note that the example is just for illustration. In our implementation, we use perfect
hashing for address lookup, which will be explained later, and preserve the flag register
during translation. Since a complete byte-to-byte mapping is computed in Algorithm 1,
any indirect jump target could be properly translated and handled by this method. Ob-
serve that additional instructions need to be added to perform translation. We can easily
handle this by stretching the subject binary to accommodate those instructions.

Branch Target Set Pruning. Although the translation using a complete mapping guar-
antees safety, it also introduces significant memory overhead. Each byte in the original
binary requires 4 bytes to represent its mapped address. In fact, we only need a subset of
the mapping: the stretched/shrunk binary will be safe as long as the mapping contains
translation for every possible indirect jump target.

We construct the set with the following criterion: any four-byte data value or any
four-byte immediate operand in an instruction is considered a possible indirect jump
target, if the value falls in the range of some code section. We further prune the set
by removing the values that point to the middle of an existing instruction. Note that
the strategy is safe for long/set jumps as their jump targets are acquired at runtime.
This pruning strategy is very effective in practice. For example, the code section size
of Adobe Reader X (AcroRd32.exe) is over 800KB, with over 260K instructions; after
pruning, there are only 3635 possible branch targets left.

Perfect Hash Translator. The remaining challenge is to achieve fast translation. Note
that after pruning, the jump target set becomes a sparse set in the address space. As a

BISTRO: Binary Component Extraction and Embedding 209

compromise between memory consumption and runtime overhead, we choose to use
perfect hashing for translation. A perfect hash function maps a set of keys to another
set of integer values without any collision. It guarantees O(1) translation time. We use
gperf [22] to generate the perfect hash function for the jump target set and compile it
into a linkable .obj file that can be embedded in the target binary through BISTRO.

A perfect hash function may require more space than the N keys to achieve O(1)
translation time. In practice, we find the size of generated perfect hash functions ac-
ceptable. For example, for the 3635 branch targets of Adobe Reader, the generated hash
function is about 152KB, which is about 11% of the size of the Adobe Reader binary.

5 Handling Data References

Binary extraction/stretching may cause relocation of data entries, so we need to ensure
the correctness of instructions referencing those data. We discuss how to address this
problem from the perspectives of the target binary and the component to be embedded.

Compared to the component, the target binary is usually more complex and involves
a lot of global data references. To handle this problem efficiently, we group data in the
binary as continuous data blocks. If a data block might be indirectly accessed, we will
make sure the block is not re-located to avoid patching data accesses, by wrapping the
block in an anchor. Note that the number of data access instructions is much larger
than the number of indirect jumps/calls. Otherwise, if the data block is only directly
accessed, we allow it to be relocated (by Algorithm 1). We use the following criterion: if
the value of any four-byte data, or any four-byte immediate operand (in an instruction)
that is not directly used as an address falls in the range of a data block, then this block
might be indirectly accessed using data pointers and hence should not be re-located.

In contrast, data entries extracted as part of the to-be-embedded component are most
likely to be relocated. For example, if they are sparsely distributed in the address space,
the BISTRO extractor (Section 2) will collapse them into a contiguous block, causing
relocation. We adopt a method similar to the dynamic jump target translation scheme
to translate data reference addresses. We add a comparison before translation to avoid
translating stack or heap accesses. According to our experience, only 2% of dynamic
memory references need to be translated. We further use offline static peephole scanning
to identify references that surely access stack and avoid instrumenting them completely.

6 Evaluation

We have implemented BISTRO for Win32 PE binaries as an IDA-Pro plug-in. We
have addressed a variety of engineering challenges such as virtual space layout re-
arrangement with a large embedded component, patching PE header, import and export
tables, and re-generating relocation table. We omit the details due to space limitation.

6.1 Performance: Efficiency and Overhead

We first evaluate the performance of BISTRO by stretching (1) real-world Windows-
based applications and (2) SPEC CPU 2000 binaries. Our experiments are done on a

210 Z. Deng, X. Zhang, and D. Xu

Table 1. Performance results of stretching Windows software and SPEC CPU 2000 binaries

Binary Instr. Indirect Indirect Call/Jump Targets: Data Blocks: File Size (KB) Initial Mem. Image Size (KB) Run Time (s) Stretching
Count Jumps Calls Anchors(%) Data Anchors(%) Orig: Stch’ed growth(%) Orig: Stch’ed growth(%) Orig: Stch’ed overhead(%) Time (s)

SPEC CPU 2000 benchmarks
164.gzip 19825 19 103 98: 23 (23.47%) 163: 1 (0.61%) 86.5: 98.5 13.87% 424: 440 3.77% 83.2: 84.6 1.68% 0.752
175.vpr 54595 53 106 229: 31 (13.54%) 404: 1 (0.25%) 232: 248.5 7.11% 248: 268 8.06% 64.5: 64.6 0.16% 0.755
176.gcc 337033 456 260 3855: 271 (7.03%) 2580: 14 (0.54%) 1264: 1393 10.21% 1348: 1480 9.79% 33.3: 33.9 1.8% 1.420
181.mcf 20566 36 103 144: 25 (17.36%) 100: 2 (2.00%) 76.5: 85.5 11.76% 100: 108 8% 40.2: 40.4 0.5% 0.685
186.crafty 65375 56 130 312: 29 (9.29%) 247: 1 (0.40%) 283: 298.5 5.48% 1344: 1360 1.19% 38.2: 38.9 1.83% 0.935
197.parser 44554 36 112 155: 27 (17.42%) 463: 1 (0.22%) 164: 173.5 5.79% 352: 360 2.27% 83.1: 83.5 0.48% 0.754
252.eon 114249 50 441 1659: 1253 (75.53%) 1455: 1 (0.07%) 499: 575 15.23% 592: 668 12.84% 42.7: 44.7 4.68% 0.950
253.perlbmk 164093 148 211 2166: 499 (23.04%) 1293: 6 (0.46%) 626: 743 18.69% 648: 764 17.9% 63.3: 67.9 7.27% 1.118
254.gap 129464 35 1357 816: 625 (76.59%) 1142: 1 (0.09%) 452.5: 492 8.73% 896: 936 4.46% 35.4: 37.2 5.08% 1.001
255.vortex 132034 66 145 446: 71 (15.92%) 738: 1 (0.14%) 561: 585 4.28% 588: 612 4.08% 50.6: 51.1 0.99% 1.050
256.bzip2 21360 36 101 145: 25 (17.24%) 150: 1 (0.67%) 87.5: 99 13.14% 172: 184 6.98% 73.4: 74.6 1.63% 0.714
300.twolf 64669 41 106 193: 30 (15.54%) 391: 2 (0.51%) 253: 263 3.95% 296: 304 2.7% 93.2: 93.6 0.43% 0.809
177.mesa 143679 211 552 2675: 473 (17.68%) 942: 5 (0.53%) 549.5: 652.5 18.74% 568: 672 18.31% 64.9: 65.6 1.08% 0.990
179.art 23353 38 103 149: 26 (17.45%) 103: 2 (1.94%) 85.5: 94.5 10.53% 104: 112 7.69% 32: 32.3 0.94% 0.690
183.equake 21824 38 101 146: 27 (18.49%) 116: 1 (0.86%) 88.5: 97 9.6% 104: 112 7.69% 26.1: 26.1 0% 0.720
188.ammp 61214 39 128 224: 70 (31.25%) 279: 1 (0.36%) 235.5: 245.5 4.25% 252: 264 4.76% 88.7: 88.3 1.92% 0.780
Average - - - - (24.80%) - (0.60%) - 10.09% - 7.53% - 1.90% -

Real-world Windows-based Software
putty 107220 57 662 942: 291 (30.89%) 93: 1 (1.08%) 444: 496 11.71% 472: 524 11.02% - - 0.865
gvim 561626 294 5111 3893: 1004 (25.79%) 5081: 22 (0.43%) 1950.5: 2150 10.23% 2008: 2212 10.16% - - 2.121
notepad++ 272434 159 4302 4897: 2695 (55.03%) 3394: 7 (0.21%) 1584: 1864 17.68% 1660: 1940 16.87% - - 1.480
Adobe Reader 273710 146 2543 3635: 2160 (59.42%) 3037: 11 (0.36%) 1445.9: 1702.4 17.74% 1472: 1728 17.39% - - 1.556
Chrome 230234 82 1280 1842: 933 (50.65%) 930: 6 (0.65%) 1211: 1338 10.49% 1240: 1368 10.32% - - 1.391
Average - - - - (44.36%) - (0.55%) - 13.57% - 13.15% - - -

Dell Inspiron 15R laptop with Intel(R) Core(TM) i5-2410M 2.30GHz CPU and 4GB
memory, running Windows 7 SP1. For the SPEC CPU 2000 benchmark suite, we use
the “win32-x86-vc7” config file which includes all integer benchmark binaries and four
floating-point benchmark binaries. We compile the benchmark suite using Visual Stu-
dio 2010, with full optimizations. To test BISTRO on non-relocatable binaries, we set
“/DYNAMICBASE:NO” switch for the compiler to prevent it from generating relocat-
able binaries. The application binaries are readily available and we do not know about
their compilers. Although the binaries of Adobe Reader and Chrome web browser carry
relocation tables, we ignore them for testing our solutions for non-relocatable binaries.

We measure the following performance metrics: (1) space overhead – for both binary
file and initial memory image – of a stretched binary compared with its original version,
(2) runtime overhead of the stretched binary, and (3) time for BISTRO to stretch the
binary. In particular, we are interested in the overhead incurred by BISTRO itself, not by
the execution of the embedded components. As such, we embed a minimal component
(a one-byte snippet) into each subject binary in our experiments. To create a “worst-
case” scenario, we insert it at the beginning of each binary so that every byte in the
binary gets shifted, which entails all indirect control transfer targets in the binary to be
redirected. The measured overhead is hence the upper bound of overhead.

For each SPEC 2000 binary, we run both its original and stretched versions, and
compare their execution time and file/initial image size. We do not measure the execu-
tion time of the Windows applications because they are all interactive. We experience
no perceivable overhead when using their stretched versions.

The results are shown in Table 1. From the Indirect Jumps and Indirect Calls 2

columns, we observe that indirect calls are very common in application binaries, in-
dicating that they might be C++ programs. Further investigation confirms our specu-
lation, indicating BISTRO’s effectiveness for binaries compiled from C++ programs.

2 We exclude indirect calls to external library functions through import address table (IAT), as
these external targets are not handled by our redirection mechanisms.

BISTRO: Binary Component Extraction and Embedding 211

Moreover, there are much less indirect jumps than indirect calls, indicating they are
likely to have less impact on runtime overhead. Note that a small number of indirect
jumps does not imply an equally small number of potential indirect jump targets. In
fact, due to the difficulty of identifying jump table boundaries, we conservatively con-
sider any constant in a binary that appears to be an instruction address as a potential
jump target. The large number of potential jump targets and the low impact on perfor-
mance justify our design choice of using the slightly more expensive but more flexible
dynamic target translation scheme (Section 4.2), compared to the anchor scheme (Sec-
tion 4.1).

The Call/Jump Targets: Anchors column shows the number of potential indirect
call/jump targets, the number of anchors generated, and their comparison. Observe that
the number of anchors created is small, compared to the size of the potential set. For bi-
naries from C++ programs, due to the heavy use of virtual methods, it is not a surprise to
see many anchors created. The Data Blocks: Data Anchors column shows that only less
than 1% of all data blocks need to be preserved at their original locations using anchors.
From the File Size columns, we can see BISTRO only increases the file size by 10.1% on
average for SPEC programs, and 13.6% for application binaries. The overhead is dom-
inated by the perfect hash tables. The Initial Mem. Image Size columns show the initial
memory consumption when the binary is loaded into memory, which increases by only
7.5% on average for SPEC programs and 13.2% for application programs. Note that
BISTRO does not cause any additional memory overhead during execution. The Run
Time columns present the runtime overhead, which is only 1.9% on average. Except
eon, perlbmk and gap, all SPEC binaries have less than 2% overhead. The last column
Stretching Time shows the stretching time of BISTRO. The time is consistently short,
implying that BISTRO can stretch a binary at runtime when it is loaded.

6.2 Case Study I: Binary-Level Semantic Patching Using BISTRO

Code reuse is a common practice in software development. One popular approach is to
directly compile and statically link a piece of re-usable code with the target software
– either directly in the executable or in some private library – to make the software
self-contained, avoid compatibility problems, and improve performance. Indeed, devel-
opers of many popular programs (e.g., chrome and firefox) reuse code this way. The
consequence is that programs reusing the same code may have the code placed at dif-
ferent locations in their address spaces. The reused code may not even have the same
instructions if compiled by different compilers.

Table 2. Results of binary semantic patching using BISTRO

Vulnerability Patch Extracted From Vulnerable Application Patched Original File Size Patched File Size (KB) Semantic Patch Vendor Patch
(KB) w. / w.o. Reloc Available Available

CVE-2010-1205 libpng 1.2.43 → 1.2.44 (rpng2-win.exe) Firefox 3.6.6 (xul.dll) 11747.5 12371.5 / 13005 6/25/2010 7/20/2010
CVE-2011-3026 libpng 1.4.8 → 1.4.9 (rpng2-win.exe) Zoner Photo Studio 15 (Zxl.dll) 8225.1 8502.1 / 9181.6 2/18/2012 N/A

SA47322 / CVE-2012-0025 IrfanView 4.30 → 4.32 (Fpx.dll)
XnView 1.99.5 (Xfpx.dll) 356 368 / 400 12/20/2011 N/A

LeadTools 17.5 (ltkdku.dll) 138.5 143 / 151 12/20/2011 N/A

SA47388 XnView 1.98.5 → 1.98.8 (Xfpx.dll)
IrfanView 4.35 (Fpx.dll) 432 448 / 508 3/12/2012 N/A

LeadTools 17.5 (ltkdku.dll) 372.5 428.5 / 493.5 3/12/2012 N/A

SA48772 / CVE-2012-0278 IrfanView 4.33 → 4.34 (Fpx.dll)
XnView 1.99.5 (Xfpx.dll) 356 368 / 400 4/13/2012 N/A

LeadTools 17.5 (ltkdku.dll) 138.5 142.5 / 150.5 4/13/2012 N/A
SA49091 XnView 1.98.8 → 1.99 (Xfpx.dll) LeadTools 17.5 (ltkdku.dll) 372.5 428.5 / 488.5 6/15/2012 N/A

212 Z. Deng, X. Zhang, and D. Xu

However, code reuse via static linking introduces a security liability: When a piece of
re-usable code contains a vulnerability, all programs that reuse the code will suffer from
the same vulnerability. If these programs have been shipped in binary forms, the only
way to fix the vulnerability is to release multiple binary patches – one for each program
and by the corresponding vendor. However, not all vendors react to a vulnerability with
equal timeliness and some may not even be aware of the vulnerability not in their own
code. Thus it may be desirable for customers, who do not have source code access, to
patch these programs without vendors’ involvement. Binary syntactic patching, which
directly applies a patch for software A to software B sharing the same (vulnerable)
code, will hardly work, because of the different locations of the code and the syntactic
differences between the two code copies (due to different compilers used or different
call/jump targets inside the copies).

In our first case study, we show that BISTRO can enable binary semantic patching.
Assume that software A and B share a function f and the vendor of A has released a
binary patch of f for a vulnerability. Let the patched program and the patched function
be A′ and f ′, respectively. We will use BISTRO to extract f ′ from A′ and embed it to B
to replace the vulnerable version. Note that BISTRO is critical in ensuring the extracted
f ′ is properly patched and the target binary B is properly stretched to contain f ′.

We acquire a group of application binaries that leverage the same vulnerable com-
ponent using public, vendor-provided information (e.g., which libraries are used in the
software) or by finding similar binary snippets using the binary comparison tool bin-
diff [31]. Suppose at least one binary in the group, say A, has a patched version A′.
Our goal is to extract a semantic patch out of A′ and transplant it to patch the other
vulnerable binaries {B1, ..., Bn}.

We collect 6 real-world vulnerabilities, with their CVE or Secunia IDs shown in
Column 1 of Table 2. For each vulnerability, the vulnerable program(s) that has been
patched by its vendor is shown in Column 2. The file names in braces represent the files
that are patched. Column 3 shows a list of other un-patched programs with the same
vulnerabilities. Column 6 shows the patch release date for the application in Column
2, i.e. the earliest date we can extract the semantic patch. Column 7 shows the date
when the vendors for the software in Column 3 release their patches (N/A means no
vendor patch is available yet). Most of the applications used in this case study are close-
source (except libpng and firefox). Observe that most of the applications in Column 3
do not have vendor patches so far. For firefox, the new version (3.6.7) which patched the
vulnerability was released – but with a one-month latency. With BISTRO, we can fix all
these vulnerable applications as soon as one vendor releases the corresponding patch.

Failure of Syntactic Patching. We first verify that simple syntactic patching does not
work – that is, using an existing binary differencing tool that generates and applies
patches (e.g., xdelta, bsdiff, bspatch, etc.) will not properly patch B1...n. For each vul-
nerability in Table 2, we use bsdiff to extract the syntactic difference between the pair of
shared functions (f and f ′) in the versions in Column 2 as a patch, and use bspatch to
apply it to the corresponding vulnerable applications in Column 3. None of the resultant
binaries works. Further inspection shows that syntactic patches cannot properly fix the
call/jump targets that are different among copies of the same reused code.

BISTRO: Binary Component Extraction and Embedding 213

Patch Transplanting. We have developed a binary semantic patching tool based on
BISTRO and bindiff. The identification of the vulnerable function f in A and B1...n

and the patched function f ′ in A′ is omitted here since it is not the main focus of this
paper. Details are presented in our technical report [1]. We use BISTRO to extract f ′

from A′ as the semantic patch for f . For each vulnerable binary B, we use BISTRO

to cut out f and then stretch the resulting binary to implant f ′ at the same starting
address of f . BISTRO ensures the correctness of both f ′ and the patched binary B′

by properly stretching and patching control transfer instructions and data references.
Our patching tool tries to avoid extracting dependent functions or global data entries
of f ′ (i.e., functions being called and global data accessed by f ′) as much as possible
by redirecting them to their counterparts in the target binary B. Since f ′ is a patched
version of f , they likely share the same dependencies. For example, for each function
invocation to function g′ inside f ′, if bindiff is able to identify the matching function
g in B, our tool will automatically redirect the invocation in the extracted patch to g,
without extracting g′. To be conservative, g and g′ must be fully matched. Otherwise,
g′ will be extracted as part of the semantic patch.

We evaluate our patching tool on the subjects in Table 2. We apply our tool in two
different ways to stress-test the robustness of BISTRO: first, we use the relocation infor-
mation when it is present in the binary; second, we do not use relocation information at
all. In both runs, the patching is successful: the patched applications work well and no
longer suffer from the corresponding vulnerabilities. Columns 4 and 5 show the file size
changes. We note that the patches are not large, each consisting of tens to hundreds of
instructions. However, it is not straightforward to generate them independently because
of the nature of the vulnerabilities being patched.

The first two vulnerabilities are in libpng, which is widely used in various software
to read, write and render PNG images. The two vulnerable applications in Column 3
have libpng statically linked in their private DLLs (xul.dll and Zxl.dll). To patch these
DLLs, we extract the semantic patch from rpng2-win.exe, a sample application in the
libpng package. The remaining four vulnerabilities lie in libfpx, a library to handle the
Flashpix (.fpx) image format. For the four vulnerabilities, only the first one was patched
by the maintainer of libfpx; the other three were patched by individual developers who
use libfpx. However, as shown in the table, individual developers only care about patch-
ing the libfpx code in their own applications. Using our binary semantic patching tool,
users of the un-patched applications can transplant the patches and eliminate the vul-
nerabilities without the help of application developers.

6.3 Case Study II: Malware Stitching Using BISTRO

In the second case study, we demonstrate how BISTRO helps in the study of cyber at-
tacks and counter-attacks. Specifically, we use BISTRO to compose a new, executable
malware by stitching 3 separate functional components extracted from a non-executable
sample of the Conficker worm [14]. It is an unpacked version without relocation infor-
mation. Based on the published technical report of Conficker [14] and manual code
inspection, we identify the code and data associated with the following 3 components:

– DNS API hijacking. This component prevent DNS query of the web sites in a
blacklist by hijacking the functions Query Main, DNSQuery A, DNSQuery W and

214 Z. Deng, X. Zhang, and D. Xu

DNSQuery UTF8 in dnsapi.dll. The result is that those web sites will no longer be
accessible using their domain names.

– Code injection. To hijack the functions in dnsapi.dll used by a process (e.g., Inter-
net Explorer), the malware must inject itself into the address space of the process.
This component performs the injection. It takes the process identifier (PID) of the
target process and the path of the malware as parameters.

– Process identification. This component gets a process’ PID using its process name
and provide the PID to the code injection component.

It takes us 60 minutes to manually identify the three components above. After that
we use BISTRO to extract the components from the Conficker sample. We then create
a dummy DLL to serve as the container of those components. Next, we use BISTRO

to embed the 3 components into the empty DLL, right before the DllMain() function.
After that, we add instructions to function DllMain() to invoke the inserted components.
The invocation code first checks if the current process is the target process. If so, it will
invoke the DNS API hijacking component to hijack the DNS query. If not, it will call
the process identification component to find the PID of the target process, and then
call the DLL injection component to inject itself into the target process for DNS API
hijacking. The whole composition process takes us about 30 minutes.

To verify the functionality of the newly composed malware, we select two applica-
tions as our targets (in two experiment runs): Internet Explorer and FlashFXP (an FTP
client). After being loaded, the malware injects itself into the target processes. Then, in
the target application, we try to access web site avast.com, which is blacklisted by Con-
ficker [14]. Interestingly, the access was not blocked at first (namely, the malware did
not succeed). After debugging, we found that it was due to a bug in Conficker’s original
code: the hijacked DNSQuery W() has one unnecessary instruction which sets a wrong
return value. We point out that we would not have spotted the problem, had we not made
these components executable and observed their runtime behavior. After removing this
instruction using BISTRO, both IE and FlashFXP are successfully compromised: they
can no longer access avast.com due to a DNS query error.

7 Discussion

BISTRO cannot work on self-modifying, self-checking or obfuscated binaries. Self-
modifying binaries generate instructions dynamically during runtime, which could not
be statically patched using BISTRO. Self-checking binaries use checksum or other in-
tegrity checks to detect changes made to their code by BISTRO. Obfuscated binaries
in many cases cannot be properly disassembled. However, we note that all other static
binary rewriting/instrumentation techniques face the same challenge.

Our anchor and branch target set pruning criteria assume the constants in a binary
represent a superset of all possible indirect control transfer targets. This assumption
should hold for binaries generated by common compilers. One exception is position
independent code (PIC), which obtains addresses at runtime and uses them to compute
indirect control transfer targets. All PIC we encountered has the form of making a call
and then obtaining the return address from the stack (e.g., call $+5; pop eax), which

BISTRO: Binary Component Extraction and Embedding 215

is the address of the instruction right after the call. We identify all such instructions
and insert snippets to adjust the addresses to their mapped addresses. Also, special
compilers or hand-written binaries might violate our assumption. For example, in the
instruction sequence mov eax, Target; add eax, 5; jmp eax, the actual target is Target
+5 instead of the constant Target; our pruning heuristic will miss the actual target. For
such binaries, we can choose not to prune the anchor set or the branch target set.

Currently, BISTRO only supports Win32 PE binaries. However, the design is general,
without relying on specific features of Win32 PE.

8 Related Work

The most related work is discussed in Section 1 (with details in [1].) In this section,
we discuss other related work in the general area of binary manipulation. They fall into
three categories: (1) static binary rewriting, (2) dynamic binary rewriting, and (3) binary
component identification, extraction and reuse.

Static Binary Rewriting. Static binary rewriting is widely applied to many scenarios,
such as in-lined reference monitors [33], software fault isolation [24, 25, 6, 26], binary
instrumentation [10, 9, 11, 5, 7, 4], binary obfuscation [36, 37] and retrofitting security
in legacy binaries [27, 12]. Most of these rewriters require the binary to be compiled by
specific compilers, or contains symbolic information.

PEBIL [11], REINS [33], STIR [13] and SecondWrite [12] are recently developed
rewriters targeting stripped binaries. However, they all aim at rewriting a single binary,
so they all keep the original code and data sections in place. In contrast, BISTRO sup-
ports “transplanting” binary components from one or more binaries to a target binary,
which requires rewriting and combining multiple binaries. Keeping original code and
data sections in place may result in address space conflicts and hence is not an option for
BISTRO. Detour-based techniques [10, 8, 9] are lightweight and can work on stripped
binaries. However, they cannot patch non-trivial jumps/calls that are repositioned.

Dynamic Binary Rewriting. Dynamic binary rewriters [2, 3, 28] are generally more
robust as they do not require specific compilers or symbolic information. It is possible
to apply them to conduct binary stretching and transplanting. However, we choose to
use a static approach mainly because of the following two reasons: (1) Dynamic binary
rewriters usually have much higher run time overhead than static ones. (2) It is more
difficult to deploy a instrumented binary using dynamic approaches, as the rewriter
itself must be deployed along with the binary.

Binary Component Identification, Extraction and Reuse. Recently, researchers
proposed to identify, extract and reuse components from binaries for security appli-
cations [29, 16, 23]. Kolbitsch et al. proposed Inspector Gadget [29], which performs
dynamic slicing on a malware binary to identify and extract the slice pertinent to a spe-
cific malicious functionality, and wrap the slice into a stand-alone binary that could be
reused later to execute the malicious functionality. Inspector Gadget is able to extract
component from self-modifying code, which is not supported by BISTRO due to the
limitation of static binary manipulation. Using dynamic slicing, Inspector Gadget also
avoids the problem of handling indirect calls/jumps in BISTRO as all call/jump targets

216 Z. Deng, X. Zhang, and D. Xu

are directly known in the slice. However, the slice may not cover all possible code paths,
which could result in incorrect execution when the user provides an input that would
lead to a code path which is not included in the slice. Compared to Inspector Gadget,
BISTRO statically extracts the component from the binary, which involves handling of
indirect calls/jumps but provides better code path coverage.

Caballero et al. proposed BCR [16] to identify and extract a function from a bi-
nary using a combination of static and dynamic analysis. The extracted function, in
the format of disassembly, is wrapped in a C file to be reused. BCR statically disas-
sembles the designated function starting at its entry point; when encountering indirect
call/jumps, BCR utilizes dynamic execution trace to find the call/jump targets. Dur-
ing the extraction, BCR rewrites all calls/jumps to use labels. Using labels implies that
indirect call/jump can only have one target, which may not always hold in practice. Al-
though BCR specially handles indirect jumps that use jump tables, there are other forms
of multiple-target indirect calls/jumps such as function pointers and vtables. Compared
to BCR, BISTRO preserves the original semantic of indirect calls/jumps when perform-
ing component extraction, hence does not suffer from this problem.

Neither Inspector Gadget nor BCR could extract components from non-executable
binaries (as in Section 6.3) because they are based on dynamic analysis. This is a very
common case in malware analysis, where a given malware sample may not run due
to various reasons (e.g., missing dependent libraries, missing inputs). In such a case,
BISTRO can still perform component extraction statically. Moreover, neither Inspector
Gadget nor BCR supports reusing extractedcomponents to enhance legacy binaries (as
in Section 6.2), as they lack the capability of embedding instructions that invoke the
components into the target binary. BISTRO is able to handle such a scenario by per-
forming both binary component extraction and embedding.

Lin et al. proposed ROC [23] which uses dynamic slicing to identify reusable func-
tional components in a binary. Different from BISTRO, ROC only invokes the identified
components from the same binary; it does not support extracting a component for reuse
in a different binary.

9 Conclusions

We have developed a new pair of binary program manipulation primitives called BISTRO

for extracting and re-packaging a functional component from a binary program; and for
embedding a functional component in a target binary program, respectively. We address
the challenges of patching control transfer instructions and data references to preserve
the semantics of both the extracted component and the stretched binary program, espe-
cially indirect calls and jumps. BISTRO incurs low runtime overhead (1.9% on average)
and small space overhead (11% on average). The extraction and embedding operations
are highly efficient, with less than 1.5s for most cases. We have applied BISTRO to two
security application scenarios, demonstrating its efficiency, precision, and versatility.

Acknowledgements. We thank the anonymous reviewers and our shepherd, Pratyusa
Manadhata, for their insightful comments. This research has been supported by DARPA
under Contract 12011593. Any opinions, findings, and conclusions in this paper are
those of the authors only and do not necessarily reflect the views of DARPA.

BISTRO: Binary Component Extraction and Embedding 217

References

1. Deng, Z., Zhang, X., Xu, D.: BISTRO: Binary Component Extraction and Embedding for
Software Security Applications. CERIAS Technical Report TR 2013-3, Purdue University
(June 2013)

2. Bruening, D.: Efficient, transparent, and comprehensive runtime code manipulation. Ph.D.
dissertation. MIT (2004)

3. Bellard, F.: Qemu, a fast and portable dynamic translator. In: USENIX ATC 2005 (2005)
4. De Sutter, B., De Bus, B., De Bosschere, K.: Link-time binary rewriting techniques for pro-

gram compaction. In: TOPLAS 2005 (2005)
5. Muth, R., Debray, S., Watterson, S., De Bosschere, K.: Alto: a link-time optimizer for the

compaq alpha. In: SPE 2001 (2001)
6. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity principles, imple-

mentations, and applications. In: TISSEC 2009 (2009)
7. Eustace, A., Srivastava, A.: Atom: A flexible interface for building high performance pro-

gram analysis tools. In: USENIX ATC 1995 (1995)
8. Buck, B., Hollingsworth, J.K.: An api for runtime code patching. In: IJHPCA 2000 (2000)
9. Romer, T., Voelker, G., Lee, D., Wolman, A., Wong, W., Levy, H., Bershad, B., Chen, B.: In-

strumentation and optimization of win32/intel executables using etch. In: USENIX Windows
NT Workshop (1997)

10. Hunt, G., Brubacher, D.: Detours: Binary interception of win32 functions. In: USENIX Win-
dows NT Symposium (1999)

11. Laurenzano, M., Tikir, M., Carrington, L., Snavely, A.: Pebil: Efficient static binary instru-
mentation for linux. In: ISPASS 2010 (2010)

12. O’Sullivan, P., Anand, K., Kotha, A., Smithson, M., Barua, R., Keromytis, A.D.: Retrofitting
security in COTS software with binary rewriting. In: Camenisch, J., Fischer-Hübner, S., Mu-
rayama, Y., Portmann, A., Rieder, C. (eds.) SEC 2011. IFIP AICT, vol. 354, pp. 154–172.
Springer, Heidelberg (2011)

13. Wartell, R., Mohan, V., Hamlen, K., Lin, Z.: Binary stirring: Self-randomizing instruction
addresses of legacy x86 binary code. In: CCS 2012 (2012)

14. Porras, P., Saidi, H., Yegneswaran, V.: Conficker c analysis. SRI International (2009)
15. Johnson, N., Caballero, J., Chen, K., McCamant, S., Poosankam, P., Reynaud, D., Song, D.:

Differential slicing: Identifying causal execution differences for security applications. In:
IEEE S&P 2011 (2011)

16. Caballero, J., Johnson, N., Mccamant, S., Song, D.: Binary code extraction and interface
identification for security applications. In: NDSS 2010 (2010)

17. Balakrishnan, G., Reps, T.: Analyzing memory accesses in x86 executables. In: Duesterwald,
E. (ed.) CC 2004. LNCS, vol. 2985, pp. 5–23. Springer, Heidelberg (2004)

18. Slowinska, A., Stancescu, T., Bos, H.: Howard: A dynamic excavator for reverse engineering
data structures. In: NDSS 2011 (2011)

19. Lee, J., Avgerinos, T., Brumley, D.: Tie: Principled reverse engineering of types in binary
programs. In: NDSS 2011 (2011)

20. Lin, Z., Zhang, X., Xu, D.: Automatic reverse engineering of data structures from binary
execution. In: NDSS 2010 (2010)

21. Hex-Rays, Ida pro disassembler,
http://www.hex-rays.com/products/ida/index.shtml

22. Schmidt, D.: Gperf: a perfect hash function generator. More C++ gems (2000)
23. Lin, Z., Zhang, X., Xu, D.: Reuse-oriented camouflaging trojan: Vulnerability detection and

attack construction. In: DSN 2010 (2010)

http://www.hex-rays.com/products/ida/index.shtml

218 Z. Deng, X. Zhang, and D. Xu

24. Wahbe, R., Lucco, S., Anderson, T., Graham, S.: Efficient software-based fault isolation. OS
Review (1994)

25. McCamant, S., Morrisett, G.: Evaluating sfi for a cisc architecture. In: USENIX Security
2006 (2006)

26. Erlingsson, Ú., Abadi, M., Vrable, M., Budiu, M., Necula, G.: Xfi: Software guards for
system address spaces. In: OSDI 2006(2006)

27. Prasad, M., Chiueh, T.: A binary rewriting defense against stack based buffer overflow at-
tacks. In: USENIX ATC 2003 (2003)

28. Scott, K., Kumar, N., Velusamy, S., Childers, B., Davidson, J., Soffa, M.: Retargetable and
reconfigurable software dynamic translation. In: CGO 2003 (2003)

29. Kolbitsch, C., Holz, T., Kruegel, C., Kirda, E.: Inspector gadget: Automated extraction of
proprietary gadgets from malware binaries. In: IEEE S&P 2010 (2010)

30. Srivastava, A., Edwards, A., Vo, H.: Vulcan: Binary transformation in a distributed environ-
ment. Tech. Rep., Microsoft Research (2001)

31. Flake, H.: Structural comparison of executable objects. In: DIMVA 2004 (2004)
32. Falliere, N., Murchu, L., Chien, E.: W32. stuxnet dossier. White paper, Symantec Corp.,

Security Response (2011)
33. Wartell, R., Mohan, V., Hamlen, K., Lin, Z.: Securing untrusted code via compiler-agnostic

binary rewriting. In: ACSAC 2012 (2012)
34. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: malware analysis via hardware virtual-

ization extensions. In: CCS 2008 (2008)
35. Nanda, S., Li, W., Lam, L., Chiueh, T.: BIRD: binary interpretation using runtime disassem-

bly. In: CGO 2006 (2006)
36. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection. In: ACSAC

2007 (2007)
37. Popov, I., Debray, S., Andrews, G.: Binary obfuscation using signals. In: USENIX Security

2007 (2007)

	BISTRO: Binary Component Extraction and Embedding for Software Security Applications
	1 Introduction
	2 Overview and Assumptions
	3 Basic Algorithm for Binary Extraction/Stretching
	4 Handling Indirect Control Transfer
	4.1 Handling Indirect Calls
	4.2 Handling Indirect Jumps

	5 Handling Data References
	6 Evaluation
	6.1 Performance: Efficiency and Overhead
	6.2 Case Study I: Binary-Level Semantic Patching Using BISTRO
	6.3 Case Study II: Malware Stitching Using BISTRO

	7 Discussion
	8 Related Work
	9 Conclusions
	References

