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Abstract—In an Infrastructure-as-a-Service cloud, tenants
rely on the cloud provider to provide “value-added” services
such as data security and reliability. However, this provider-
controlled service model is less flexible and cannot be cus-
tomized to meet individual tenants’ needs. In this paper, we
present StorM, a novel middle-box service platform that allows
each tenant to deploy tenant-specific security and reliability
services – in virtualized middle-boxes – for their cloud data.
With such middle-boxes, StorM divides the responsibilities of
service creation between tenants and the provider by allowing
tenants to customize their own cloud data polices and the
provider to offer corresponding infrastructural support. In
developing StorM, we address key challenges including network
splicing, platform efficiency, and semantic gap. We implement
a StorM prototype on top of OpenStack and demonstrate three
tenant-defined security/reliability middle-box services, with low
performance overhead (< 10%).

Keywords-Cloud Computing; Cloud Storage; Middle-box;
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I. INTRODUCTION

Infrastructure-as-a-Service (IaaS) clouds (e.g., Amazon

EC2) offer “one size fits all” virtual hardware platforms

for tenants to deploy their applications in a scalable, cost-

effective manner. However, providing all guests the same,

non-customizable set of resources (i.e., virtualized block

volumes, CPU, and networking) deprives tenants of any

control over their in-cloud data. As a result, tenants have

to rely on cloud service providers (CSPs) to implement

and support each and every cloud data security/reliability

service, such as access control, encryption/decryption, and

fault tolerance.

Unfortunately, the sharp division of administrative do-

mains in IaaS clouds – tenants can only administer virtual

machines (VMs) while relying on CSPs to provide services

to their cloud data – raises several problems for tenants.

For example, concerns over the security and privacy of

the underlying server-side resources have made consumers

hesitant to move to public clouds [1], [2]. Sensitive files

and proprietary code, stored in the cloud may be leaked,

and since tenants are at the mercy of the services offered by

CSPs (e.g., full disk encryption), the tenants cannot further

enhance the security and reliability of their data.

One (seemingly straightforward) solution may be to de-

ploy such services (e.g., data encryption, access control)

by tenants in each of their VMs. However, despite the

possibility of doing so, there are limitations in such an “end-

point” based approach, which pushes the service deployment

and maintenance burden back to the tenants. For example,

the same set of services need to be deployed and managed in

each VM – by the tenant. Further, such services inevitably

compete for resources with the tenant’s primary workloads

running in the same VM, causing nontrivial performance

impact. A recent survey of 500 CIOs at medium-scale

organizations confirms that 76% of management issues, such

as missing SLA and increasing costs, are due to software

agents running inside guest VMs [3, Part II]. As a result,

organizations tend to favor non-intrusive (relative to the

production VMs) but customizable approaches to cloud

data management – to achieve both high efficiency and

security/reliability.

To this end, we present StorM, a novel middle-box
platform for deploying tenant-defined security/reliability ser-

vices for the tenant’s in-cloud data storage. StorM is inspired

by the recent trend in networking research to employ middle-

boxes for network security, agility, and scalability [4]–

[7]. Specifically, StorM provides virtualized middle-boxes,

which operate between tenant VMs and the cloud storage in-

frastructure. The service logic (e.g., access logging, encryp-

tion, and replication) of a middle-box is defined by the tenant

but the creation and operation of the middle-box is taken

care of by the cloud provider. StorM offers infrastructure-

level support to deploy isolated yet dependable middle-box

services on behalf of tenants, which run transparently to

both in-VM workloads and back-end cloud storage.

Development of StorM is complicated by several chal-

lenges faced by existing cloud platforms. (1) A CSP main-

tains two separate networks – one for the tenant VM traffic

known as the instance network and the other for the storage

traffic called the storage network. The isolation prevents

middle-boxes, which must access the instance network to

communicate with clients, from operating on the storage data

flowing through the storage network. We solve this problem

by designing a novel network splicing approach to allow

middle-boxes to securely process storage traffic without

breaking isolation. (2) Middle-box-based approaches require

data redirection, which incurs end-to-end latency. To avoid

performance degradation, StorM introduces a novel active-
relay system which allows storage network packets to be

acknowledged by middle-boxes – short-cutting the path to

storage servers and allowing the data source to continuously

send data packets without delay. (3) Tenant VMs operate
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Figure 1: A typical IaaS cloud architecture with separate

storage and instance networks.

at a file and directory granularity while middle-boxes must

intercept storage network packets (e.g., iSCSI) that carry

low-level storage system information such as raw data blocks

or metadata blocks. To provide meaningful monitoring and

control services, StorM bridges such a semantic gap by

enabling cloud services to construct high-level file structures

on-the-fly using each file’s metadata accesses.

We have implemented a StorM platform prototype on

top of OpenStack. While its current design is tailored for

block storage, StorM is equally applicable to other stor-

age systems such as object storage. We have also built

three security/reliability middle-box services to demonstrate

StorM’s practicality: (1) on-the-fly encryption/decryption,

(2) storage access monitoring, and (3) data replication.

These services reflect a tenant’s specific security/reliability

requirements, based on the cloud’s existing virtualization

infrastructure. Our evaluation shows that StorM successfully

solves the three challenges in the previous paragraph, while

incurring negligible overhead on the storage traffic (< 10%

in all cases). In summary, this paper makes the following

contributions:

• We identify and highlight the “one size fits all” dilemma

in current cloud systems, and motivate the need for

value-added, tenant-specific security/reliability services

provided by virtualized middle-boxes.

• We design and develop StorM to enable virtualized

storage middle-boxes. StorM addresses three key chal-

lenges: network splicing, platform efficiency, and se-
mantic gap.

• We have implemented a StorM prototype on top

of OpenStack. We have also deployed three tenant-

customized security/reliability services showing the ef-

ficacy of StorM.

• Our evaluation shows that StorM is capable of support-

ing storage security and reliability functions with low

overhead.

II. OVERVIEW

A. Background

In a typical IaaS cloud architecture, such as OpenStack,

large pools of computing, storage, and networking resources

are controlled through a cloud controller. On-demand com-

puting resources are provided to tenants by provisioning

VMs with configurable CPU, memory, and disk sizes.

Networking is a critical component in cloud infrastruc-

tures. In Figure 1, we illustrate the most common datacenter

networking setup: an instance network and a storage net-

work. The most complex network architecture lies in the

instance network, including advanced network technologies

such as software-defined networking (SDN) using Open

vSwitch [8], virtual LAN, tunneling technologies, and nu-

merous network security features to allow multi-tenancy,

isolation, and security. In contrast, the storage network is

relatively simple and usually separated from the instance

network, providing basic connectivity which carries storage

I/O traffic originating from tenant VMs to the storage

servers.

Cloud storage services, such as block storage and object

storage, are provided over the network. Object storage (e.g.,

provided by Amazon S3 and OpenStack Swift) is ideal

for cost effective, scale-out storage, and normally used for

backup, archiving, and data retention. Block storage (e.g.,

Amazon EBS, OpenStack Cinder) offers raw volumes which

are used as VMs’ disks and allow tenants to configure them

with the file systems of their choice. In this paper, we mainly

focus on block storage, however, StorM’s design is equally

applicable to object storage.

B. Opportunities and Challenges

The goal of StorM is to support the deployment of tenant-
defined storage security/reliability services via virtualized
middle-boxes. The proposed approach has several benefits

over the traditional methods of offering such services, i.e.,

either installed inside tenant VMs or one-size-fits-all services

by cloud providers.

First, StorM enables tenants to implement and customize

many services, such as data management, maintenance, and

protection, in virtualized middle-boxes without any modifi-

cations to their production VMs. Second, StorM-supported

middle-boxes are themselves minimal VMs running tenant-

specific service programs, and thus these middle-boxes

avail the same benefits as conventional VMs. For example,

middle-boxes can be dynamically provisioned with more

memory, CPU, or even hardware acceleration support. More

importantly, StorM facilitates the chaining of services of-

fered by middle-boxes to create a service bundle that would

be impossible to achieve via traditional service methods. For

example: a tenant concerned about data security and audit

logging can request both storage monitoring and encryption

service middle-boxes. StorM chains these middle-boxes so
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that after the storage monitor records the I/O access, the

data is passed through the encryption box to encrypt the

data written to disk. These services, like VMs, can be

scaled up and down, depending upon the traffic load, making

them truly elastic. Further, advanced network technologies

provided in the VM network are leveraged to protect and

isolate storage middle-boxes, belonging to different tenants.

Finally, StorM moves such services out of the tenant’s

VMs, and by doing so reduces performance overhead due

to interference between services and the foreground applica-

tions. Our experiments show that even with sufficient com-
puting resources, the performance of foreground applications

could be significantly affected by “value-added” services,

such as encryption/decryption, running in the same VM,

confirming the findings of one recent survey [3, Part II].

Our evaluation (Section V) shows that moving these tasks

into a dedicated middle-box greatly mitigates such impact.

To provide any meaningful service to tenants, middle-

boxes need to access the storage network’s traffic. However,

the storage network and instance network, as shown in

Figure 1, are designed to be isolated. Storage packets from

the VMs are immediately put on the storage network,

preventing them from being received by middle-box VMs

on the instance network. The first challenge of StorM is to

splice these two networks and forward storage traffic along

a specific path across these two networks. To address this

challenge, the StorM platform creates a new forwarding

plane to route storage traffic via the middle-boxes using

both conventional and SDN-based flow steering techniques.

Further, by taking advantage of SDN-enabled networking,

StorM provides on-demand middle-box service scaling by

dynamically adding or removing middle-boxes on the stor-

age traffic path by programming SDN switches.

Tenant-defined middle-box implementations depend upon

an API to retrieve block-level I/O data and operations from

the received storage packets and present them to services

for processing. Afterwards, “manipulated” data packets are

forwarded to the next-hop. Such data processing and packet

rerouting introduces latency that threatens to offset the

benefits of StorM. Therefore, the second challenge of StorM

is to reduce this overhead. StorM uses a multi-threaded,

high throughput design and also develops a new technique

called active-relay that further avoids data processing and

forwarding delays. The key idea enabling this approach is

that instead of naively relaying packets to their next-hop,

the middle-box immediately acknowledges the data source,

which could be a tenant VM or another middle-box, once

the data packets are received. By doing so, the following

packets originating from the data source will not be delayed

by the subsequent data processing and next-hop forwarding

inside the middle-box. This further separates the production

VM’s operation from the middle-boxs’ because the VM

observes its storage packets being handled via a single

storage subsystem. Our performance evaluation results show
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Figure 2: Architecture of StorM.

that such improvements significantly reduce the latency of

the storage traffic.

Lastly, the storage packets going into middle-boxes only

carry block-level information such as disk sectors, raw

data blocks, and inode information. Middle-boxes offering

encryption/decryption can work at this granularity, however

other services such as access monitoring and intrusion detec-

tion require higher-level file semantics which are present in

the packet. Storage middle-boxes take advantage of inherent

storage subsystem information such as file system types

and disk layouts to accurately reconstruct the mapping from

low-level block accesses to high-level file operations. Our

case study in Section V-B implements a storage monitoring

middle-box and demonstrates that this mapping not only

recovers the high-level file operations, but also provides

more details of the file system internal operations which can

be used to analyze suspicious behaviors in the file system.

C. Assumptions

A cloud infrastructure (e.g., OpenStack) typically consists

of two types of nodes – controller nodes and compute

nodes. Like most efforts in this space [9], we assume that

cloud providers (including the controller and physical cloud

infrastructure) are trusted. Since the StorM components

reside on the physical cloud infrastructure, they are also

trusted and protected by cloud providers. Once middle-boxes

are deployed, their network connectivity is isolated to only

the storage network (controlled by CSPs) and connections

from local CSP administrators; and they are transparent to

the programs (including malicious programs) running in

the tenants’ VMs. Finally, the tenants’ VMs, which are

facing the external network, are not trusted. Attackers may

compromise a tenant’s VM, and subsequently try to access

its in-cloud data storage.

III. DESIGN

Figure 2 shows the three main components of StorM.

The first component, network splicing, is part of the cloud

infrastructure, and enables the seamless and transparent

deployment of virtualized middle-boxes and ensures the

isolation and security of any “cross-network” traffic. The

last two components, packet interception and semantics

reconstruction, are offered as an API to middle-boxes to
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intercept the storage network traffic from inside the middle-

box, and then interpret the iSCSI packets (if required) to

build higher-level views from the low-level data. These

high-level semantics are required to implement middle-box

services such as storage access monitors.

A. Network Splicing

The storage network and instance network, as shown in

Figure 1, are usually isolated in cloud deployments. While

this design keeps the storage networking simple, it prevents

the storage traffic from using many common networking

services. To allow storage traffic to benefit from storage

services running inside VM middle-boxes, the storage traffic

must be selectively brought into the instance network, where

it can be tunneled through the middle-boxes. To solve this

problem, we develop a novel solution that splices both

storage and instance network. We break the network splicing

problem into three sub problems – a) connection attribution,

b) selective flow routing from storage to instance network,

and c) steering flows through middle-boxes, and describe

our solutions below:

Connection Attribution The StorM platform allows

tenants to selectively decide which VM’s storage traffic

should be routed through specific middle-boxes, offering

various services such as monitoring, encryption/decryption,

and replication. Using each tenants’ high-level routing poli-

cies, the StorM platform automatically determines which

flows should be steered through middle-boxes. To be able

to offer fine-grained selection of flows, StorM has to solve

the connection attribution problem.

Connection attribution refers to the process of automati-

cally identifying which VM is attached to which persistent

storage connection and sending VM I/O data to the storage

server. On the tenants’ side, the connection attribution allows

tenants to specify fine-grained routing policies, e.g., asking

for middle-box services for a few select VMs or shared

among all VMs. On the provider side, it allows StorM to

distinguish one tenant’s storage traffic from the other tenants

and provide isolation and security to the storage traffic.

However, achieving this on-demand network splicing is

difficult due to the way cloud systems such as OpenStack

set up storage connections. Cloud systems typically use

the iSCSI protocol to communicate between storage clients

(called iSCSI initiator) and the server (iSCSI target). Since

an iSCSI initiator runs on the host (compute node) instead

of tenant VMs, the connection information bears only the

host IP and port and destination IP and port, obfuscating

the VM details attached to the connection. The mapping of

the 4 tuples to the actual VM owning that storage connection

information is buried deep inside the iSCSI implementation.

To solve this problem, StorM first gathers the information

about the virtual block devices (also known as IQN numbers)

that are attached to a tenant VM. This information is stored

in the hypervisor. This allows StorM to know which VM is

attached to which virtual device. Another mapping exists in

the system that glues virtual devices to specific storage traffic

source ports. To collect this information, StorM modifies

the source code of storage connection software to expose

the port number along with the IQN number. In particular,

we modified the iSCSI “Login Session” code to expose

TCP connection information [10]. These series of mappings

enable StorM to identify each storage connection, allowing

it to offer fine-grained tenant policies.

Storage to Instance Network Once we identify the

storage connections or flows to be routed through middle-

boxes, StorM must selectively bring those flows into the

instance network, where storage middle-boxes can process

the flows. When the middle-boxes are finished processing,

StorM moves the flows back to the storage network to go

to the storage server. At the surface, this may appear like a

typical routing problem, however in practice, StorM must

overcome several constraints of cloud networking while

guaranteeing the isolation and security of this traffic.

StorM creates a pair of storage gateways as the ingress

and egress points for a tenant’s storage traffic inside the

instance network. One storage gateway selectively sends IP-

based storage traffic from the storage network to the instance

network and the other vice-versa. To ensure the isolation

and security of this traffic, these two gateways are created

in a tenant’s network space (a virtual isolated network

domain reserved to a tenant), and are thus invisible to the

outside world. StorM operates entirely within a tenant’s

isolated virtual network. Hence a trusted cloud provider will

apply existing network isolation techniques (e.g., names-

pace, security groups) to secure the tenant’s virtual network

(inaccessible to eavesdroppers without compromising the

hypervisor).

StorM provides storage traffic redirection – from a VM’s

storage traffic node to the ingress gateway, or from the egress

gateway to the storage node – via the conventional network

address translation (NAT) rules. StorM sets up these NAT

rules on the host running each tenant VM and the host

running the storage gateways. Since the storage network and

instance network are completely isolated, during redirection,

StorM prevents the exposure of IP addresses inside the

storage network from appearing in the instance network. To

do so, StorM applies a series of IP masquerading rules both

at the ingress and egress gateways to make the IP addresses

consistent. On the ingress gateway, the source IP address

of storage traffic is translated to the ingress gateway’s

IP address via IP masquerading, while the destination IP

address is translated to the egress gateway’s IP address. As

a result, the middle-box VMs will only see the redirected

storage traffic coming from the ingress gateway and going

to the egress gateway (or the reverse).

The storage gateways can be created on any compute

nodes as long as these nodes have both storage and instance
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Figure 3: An example of StorM’s new forwarding plane.

network interfaces installed. To reduce the routing latency, it

is preferable to place the ingress gateway physically close to

the VM’s storage traffic node, and the egress gateway close

to the storage server node.
Notice that, for all VMs on a single host, 3 fields out of the

4-tuples of the iSCSI TCP connection are the same (except

the source port). Connection attribution determines which

VM is bound to which iSCSI TCP connection established on

the host. However, the source port field can only be known

after the connection is established. Since StorM applies NAT

rules to route flows towards the storage gateway, NAT rules

which match only the 3-tuples will route all storage flows

on the host towards the storage gateway.
To solve this problem, StorM introduces an atomic at-

tachment operation to VM storage volumes using storage

middle-boxes: Before attaching a volume, StorM installs the

NAT rules on the VM’s host; thus during the volume attach-

ment operation, the very first (and the subsequent) packets

of that storage connection follow the established NAT rules.

After the connection is established, StorM removes the NAT

rules to ensure that they will not influence any following

volume attachments. Note that the removal of NAT rules

does not impact established flows, which still follow their

existing NAT rules (if any). StorM uses a mutex lock to

ensure the atomic operations across all above steps. As

volume attachment (and detachment) occurs less frequently

on a compute node and is fast to finish, this mutex lock has

little impact on the overall performance of the system.

SDN-enabled Flow Steering After passing through the

storage gateways, storage traffic flows traverse one or more

middle-boxes selected by the tenant, offering various storage

services. StorM’s job is to steer the flows through middle-

boxes and provide on-demand services which can dynam-

ically add or remove middle-boxes for an existing storage

traffic flow. To this end, StorM designs and develops an

SDN-based flow steering method on the instance network.

StorM relies on a centralized SDN controller that controls

a set of virtual switches, to which middle-box VMs are

connected. These virtual switches as well as their associated

middle-boxes constitute the forwarding chain of a storage

traffic flow. StorM dynamically configures the forwarding

chain by inserting flow rules in the corresponding SDN-

enabled virtual switches that match the storage traffic 4-

tuples. No additional configurations are required in the

middle-boxes except enabling the IP forwarding function.

As shown in Figure 3, the basic forwarding unit of the

chain consists of three components: the middle-box, its

previous hop (a virtual switch, where storage traffic comes

from), and the next hop (another virtual switch, where stor-

age traffic goes after leaving the middle-box). For example:

for a flow that has to traverse through two middle-boxes

MB1 and MB2, the first chain {OVS1, MB1, OVS1′} brings

the flows to MB1 and the second chain {OVS1′, MB2,

OVS2′} takes it to MB2 and then to the egress gateway.

Note that the OVS1′ is the destination hop in the first chain,

but becomes the source hop in the second chain – this is how

StorM combines chains to setup arbitrary network paths. The

reverse path follows the same idea. By installing these flow

rules in the SDN-enabled virtual switches, StorM can route

storage traffic to any number of virtualized storage middle-

boxes.

B. An Efficient API

With the help of network splicing, StorM brings the

storage traffic to the storage middle-boxes. At this point,

the middle-boxes have to intercept and process these flows

to offer various services. To this end, StorM designs highly

efficient packet interception and interpretation APIs. These

APIs provide meaningful storage I/O data to services execut-

ing inside middle-boxes while avoiding as much overhead

as possible.

Since storage flows passing through middle-boxes do

not target any local processes inside the middle-box, their

packets are directly sent to the FORWARD chain of the

middle-box kernel to be transmitted on the outgoing network

interface. To retrieve these packets, an intuitive but costly

approach is to setup a hook (with a callback function) along

the packets’ kernel path. We refer to this method as the
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passive-relay approach.

Though simple, the passive-relay approach leads to non-

trivial overhead in intercepting flows, especially for flows

with heavy I/O loads. This is due to the frequent system calls

to copy packet data from the kernel to user mode – one per

packet. To optimize this process, StorM proposes an active-
relay approach. Instead of simply relaying received data to

the next hop, the active-relay approach acknowledges the

data source actively.

Essentially, the active-relay approach breaks the original

single TCP connection into two: one connects the middle-

box to the ingress gateway, and the other connects the

middle-box to the egress gateway. Any received packets

of one connection are acknowledged immediately by the

middle-box, and then sent to the other connection for the

next-hop forwarding after the packets have been processed

by the storage services. By doing so, the active-relay ap-

proach shortens the packet acknowledgment path, and thus

accelerates the packet transmission rate, which is not delayed

by the subsequent data processing and forwarding.

As the active-reply breaks one connection into two, state

inconsistency between them could happen if packets are

not properly delivered by any one of the connections. We

solve this problem by storing a copy of the received packets

in the middle-box’s non-volatile memory, until the packets

are delivered and acknowledged by their next hop(s). Some

situations (TCP connection failure, storage VM crash, and

storage media error) could also result in a data transmission

failure. While such failures may impact a tenant VM’s

storage service, they are handled by existing fault-tolerance

techniques readily deployable alongside StorM.

To establish the connection from the ingress gateway to

the middle-box, NAT rules are deployed in the middle-box

to redirect storage traffic flows (coming from the ingress

gateway) to a local port, where the pseudo-server process
listens. The TCP connection from the middle-box to the

egress gateway is created by the pseudo-client process,

which simply connects to the egress gateway with the

corresponding destination IP and port. Both processes pro-

vide iSCSI parsing logic, and read and write interfaces
to the storage service processes. Note that the active-relay

approach leverages the kernel’s TCP stack for data copying

between the kernel and the user space. This approach is more

efficient, because the TCP handler packs several packets

together for each copy.

C. Semantics Reconstruction

Tenant VMs operate at a granularity of files and direc-

tories, but middle-boxes which are processing raw storage

data packets (e.g., iSCSI) can only observe low-level infor-

mation such as disk sectors, blocks, and inodes information.

However, many middle-boxes offering services such as mon-

itoring and IDS require access to higher-level views for their

operation. This is an instance of the semantic gap problem,

and thus StorM must reconstruct the high-level file structures

using the file metadata present in the storage packets.

StorM generates an initial high-level system view of a

file-system and supplies it to the middle-boxes when the

block device is attached to its tenant VM. This system view

describes the organization of the specific file system (e.g.,

Ext4 or NTFS) on that disk, including the layout of metadata

and raw data and the mappings between directories and

files to their data locations. Metadata accesses, such as file

creation, deletion, and renaming, may update this high-level

system view. By keeping track of metadata accesses, StorM

is able to maintain an up-to-date file system view. This

allows the middle-boxes to convert low-level data accesses

into high-level file operations, which is essential for fine-

grained data reliability services, such as the data replication

middle-box developed in Section V-B3.

D. Policies

StorM’s high-level policies allow tenants to deploy virtu-

alized storage middle-boxes in a highly-customizable man-

ner. The following policies must be specified by tenants prior

to using middle-boxes: (1) which VMs and their associated

volumes will use the middle-box services, (2) the middle-

boxes’ storage service types and virtual resources (e.g.,

vCPU number and memory size), and (3) the organization of

these middle-boxes (i.e., how middle-box VMs are chained

for each volume).

StorM provides an interface for tenants to submit these

policies to the cloud provider, and the StorM platform,

accordingly, parses the policies and deploys the middle-

box services. Specifically, the platform first provisions the

required middle-box VMs on the compute hosts with the

specified VM templates. Then, the platform retrieves the

connection attributions for each volume and generates and

installs the forwarding rules according to the organization

specification. Lastly, StorM connects the volumes to their

VMs with the middle-box services enabled.

IV. IMPLEMENTATION

We have implemented a prototype of StorM (∼10,000

LOC) on top of OpenStack Icehouse. The new forwarding

service consists of a centralized SDN controller and monitors

installed on each compute host. The SDN controller first

gathers related information (e.g., connection attribution),

and then generates the flow rules for the virtual switches

on the flow path. Next, the flow rules are installed in the

virtual switches of the corresponding compute nodes by the

monitors.

The packet interception API runs inside each storage

middle-box. We have implemented the active-relay approach

for StorM’s highly efficient API. The active-relay leverages

Linux’s SCSI target framework to implement the pseudo-

server process. The pseudo-client process is built with the

help of the Open-iSCSI framework. The iSCSI parsing logic
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of Open-iSCSI is reused to decapsulate and encapsulate

iSCSI packets, when either process receives or sends iSCSI

packets.

We have implemented StorM’s semantics reconstruction

functions for Linux Ext series (2, 3, and 4) file systems

on iSCSI-based storage networking. StorM uses Linux’s

dumpefs2 tool to construct an initial file-system view. The

reconstruction function updates the mappings between the

low-level data blocks and its high-level files using metadata

accesses, thus maintaining an up-to-date system view. The

mappings are further extracted and stored in a Hash table

for fast searching, such as in IDS or monitoring services.

V. EVALUATION AND CASE STUDIES

We have deployed StorM in a cloud testbed based on

OpenStack. Our test cloud cluster contained 10 physical

machines each with two Intel Xeon quad-core processors

and 32 GB memory. Each machine was installed with two

1 Gigabit Ethernet cards, connecting to the storage network

and instance network, separately. We used OpenStack Ice-

house and deployed compute services as well as StorM on

each physical machine and one block storage volume service

(OpenStack’s Cinder) on one of the physical hosts. A 1

TB SATA disk was used for creating a physical volume,

and multiple volume groups were created from the physical

volume through OpenStack’s Cinder service. The instance

network used GRE tunneling for inter-host VM traffic, and

tenant networking was provided by OpenStack’s Neutron

service.

A. Performance Evaluation

The goal of our performance evaluation is to determine

how much overhead (both latency and throughput overhead)

StorM incurs on the storage traffic. This would be caused

by the extra level of indirection StorM has introduced on

the tenant’s storage traffic and the data processing (for

security and reliability) within middle-boxes. To measure

the overhead of StorM, we used the I/O micro-benchmark

called Fio [11]. Fio generates and measures a variety of

file and block operations, and it can vary both I/O request

sizes (the amount of data read/written in a given transaction)

and parallelism (the number of threads issuing I/O requests

simultaneously).

Traffic Redirection Overhead First, we measured the

redirection overhead by comparing two cases – LEGACY

with MB-FWD. Specifically, in LEGACY, we ran all tests

without the StorM platform, and allowed the tenant VM to

communicate with the storage target node directly. In MB-

FWD, we used StorM platform to direct the storage traffic

to the middle-box, but the middle-box did not perform any

processing on the storage packets.

We ran all Fio tests on the tenant VM (2 vCPUs and 4

GB memory). A 20 GB volume was created and attached

to this VM. We deployed one middle-box for this VM’s

storage volume, and the configuration of the middle-box VM

was the same as the tenant VM – with 2 vCPUs and 4 GB

memory. To measure the routing impact in the worst case,

we placed the middle-box VM and the tenant VM as well as

the ingress and egress storage traffic gateways on different
physical nodes.

We then measured this setup for two cases: For the

LEGACY case, a direct path from the tenant VM to the

storage target server was used (i.e., the baseline without

StorM). In the MB-FWD case, StorM introduced 3 extra

hops – the traffic traveled from the tenant VM to the ingress

storage traffic gateway, the middle-box VM, the egress

storage traffic gateway, and the storage target server. Note

that the middle-box did not perform any processing, allowing

us to measure only transmission overhead.

We varied the I/O request size of Fio from 4 KB to 256

KB to measure the performance (in IOPS) and latency (in

milliseconds). A representative I/O operation pattern was

chosen — 50% write and 50% read mixed in a random

access manner. One Fio thread was used for each test case

– any routing overhead will be directly reflected by the single

thread’s I/O performance and latency. We ran each test 10

times and took an average to avoid any variability in the

network. The variation among the 10 repetitions is less than

5%.

In Figure 4, we observed that the workload’s performance

under MB-FWD was lower than LEGACY. This is to be

expected as the packet routing does cause some additional

overhead (a common problem for all middle-box based

solutions). Particularly, as the I/O size increased, the per-

formance gap increased — from 7% (4 KB) to 18% (256

KB). This is because an I/O request with a larger size

contains more packets, and the latency of this I/O request

aggregates the routing delays of all packets. The I/O latency

in Figure 7, shows similar results – MB-FWD resulted in

slightly increased I/O latency due to the longer forwarding

path. Recall that this is the worst case for traffic redirection
as all forwarding hops of MB-FWD were distributed across

different physical hosts. We find that the routing overhead

can be reduced by ∼20% by placing the ingress traffic

gateway close to the tenant VM and the egress gateway

close to the storage target server (e.g., in the same physical

host). Also, (because the middle-box is not performing any

processing) StorM’s active-relay approach is not in use, and

as we will show next, this effectively avoids most routing

overhead.

Another key observation is that the intra-host packet trans-

fer contributes more to the routing overhead than the inter-

host packet transfer. The main reason for this behavior is due

to the fact that the virtualization driver, for copying network

packets (from hypervisor to guest VMs), is less efficient —

it uses a single thread per VM’s virtual interface and usually

causes high CPU utilization. A hardware solution (e.g., SR-

IOV) could greatly reduce this overhead.
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threads (16 KB size). Lower is better.

Middle-box Processing Overhead Next, we measured

the overhead resulting from data processing inside stor-

age middle-boxes. Data processing overhead can be fur-

ther broken down into two parts: data extraction overhead

(by StorM’s API), and data processing overhead (by se-

curity/reliability service logic). In this section, we focus

on the performance overhead of StorM’s API, and discuss

the data service processing overhead in Section V-B. To

demonstrate a measurable storage service overhead, we ran

a “stream cipher” service inside the middle-box, which

operates on each bit of the raw data (the details of the

service are described in Section V-B). We then used the

Fio to generate I/O as described previously. Here, we com-

pared three approaches: MB-PASSIVE-RELAY refers to as

the passive-relay approach (as described in Section III-B),

MB-ACTIVE-RELAY refers to the (default) active-relay

approach, and MB-FWD as described previously (with no

processing inside the middle-box).

Confirming our previous intuition, Figure 5 shows that

MB-PASSIVE-RELAY added additional overhead on top

of the MB-FWD overhead, ranging from 3% to 13% as

the I/O size increased from 4 KB to 256 KB. This was

caused by the extra computation added to the packets delays,

resulting in the low performance. Larger I/O size results in

more overhead for of the same reason — the performance

degradation aggregates from all packets of the large I/O

request. These results further justify the need for StorM’s

active-relay approach.

In contrast, our proposed MB-ACTIVE-RELAY approach

led to the same performance as MB-FWD when the I/O size

was small (e.g., 4 KB and 16 KB), and better performance
when the I/O size became larger. Figure 5 shows a 14% per-

formance improvement when the I/O size was 256 KB. The

reason for this improvement in performance is because the

active-relay approach shortens the packet acknowledgment

path — reduced from four hops to only one hop. Compared

with MB-FWD, Figure 8 shows the average I/O latency of

MB-ACTIVE-RELAY reduced by 11% with the I/O size of

256 KB.

In Figure 6, we increased the Fio thread number from

4 to 32 to simulate parallelism in the tenant’s application.

We observed that, compared with MB-FWD, the IOPS

number of MB-ACTIVE-RELAY increased by 39% when

the workload had 32 threads. Likewise, Figure 9 shows that

the average I/O latency of MB-ACTIVE-RELAY reduced

by 30%. In this case, even compared with LEGACY, the

overhead caused by MB-ACTIVE-RELAY was much less

than 10%.

In summary, the packet routing for storage middle-boxes

introduces up to 18% performance overhead in the worst

case, but this overhead can be mitigated using StorM’s

active-relay approach, which shortens the packet acknowl-

edgment path. Compared with the LEGACY case, the overall

performance overhead under MB-ACTIVE-RELAY is less
than 10% in all of our measurements.
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I/O Access ID Operation File Size

1 read /mnt/box/. 4096

2∼34 read META: inode_group_90 4096

35∗ read /mnt/box/name1/. 4096

...

71∗∗ read /mnt/box/name9/. 4096

72∗∗ write /mnt/box/name9/7.img 16384

...

287∗ write /mnt/box/name1/1.img 32768

...

294∗ write mnt/box/name1/1.img 4096

295∗ write /mnt/box/name1/1.img 24576

296 write inode_group_90 4096

Table I: Reconstructing the high-level file operations from

the block-level accesses.

B. Security/Reliability Service Case Studies

In this section, we provide the detailed design and eval-

uation of three storage services that we have built to offer

as middle-boxes. These services show the efficacy of StorM

that allows seamless development and transparent deploy-

ment of tenant-defined storage security/reliability services.

1) Case 1: Storage Access Monitor: The goal of the

storage access monitor is to allow tenants to set an alert on

sensitive files and directories, and the middle-box will log

all accesses made to these marked resources. Tenants can

either periodically request the logs created by the middle-

box to see if any unauthorized attempts are made on it or

set the policies inside the middle-box to be directly notified

on any access. This middle-box provides a crucial service to

tenants: even if tenant VMs are compromised and malware

attempts to access the sensitive data, those accesses will be

logged by the storage monitor inside the middle-box. The

access logs can be used to perform post-attack investigation,

and access pattern can be used to detect such malware in

future.

A storage service executing inside a middle-box can only

observe low-level block I/O accesses, hence the storage

access monitor must reconstruct the high-level operations

from the low-level block accesses in order to enforce tenant

policies expressed in files and directories. As described

in Section III-C, StorM provides the middle-boxes with

semantic reconstruction APIs. Using this service, we built a

monitoring engine, a multi-threaded daemon running inside

the middle-box, which performs three steps: The first step

is Classification, where the classification process determines

whether an access is to a file’s content or metadata using the

file system view provided by StorM. The Update phase asks

StorM to update its file system view from any intercepted

metadata. Lastly, the Analysis phase logs (or raises an alarm)

accesses to monitored files or directories.

Synthetic Attack Scenario To demonstrate the accuracy

and usefulness of the storage access monitor, we first present

a synthetic use case. An iSCSI volume was attached to a

tenant VM, and mounted under “/mnt/box”. The volume

ID Operation File Size

1∗ write /mnt/box/name1/1.img 4096

2∗∗ read /mnt/box/name9/7.img 4096

Table II: File operations in the tenant VM

was formatted to Linux Ext4, where 10 folders, “name0”

to “name9”, were created. Each folder contained ten files

from “1.img” to “10.img”. We then attached the monitoring

middle-box to the tenant VM, and file operations were issued

in the tenant VM; two of them are shown in Table II. With

the help of the monitoring engine, these file operations are

successfully reconstructed and logged in the middle-box as

shown in Table I.

We observed that a high-level file operation in the tenant

VM may generate several block-level accesses captured by

the monitoring middle-box. For example: when the tenant

VM reads “7.img” in the directory “name9”, the file system

first reads the inode metadata of directory “name9” and

the data blocks under this directory. Then, the content of

“7.img” is read from the data blocks. We also observed

that the written messages could be cached in the VM’s

local buffer for some time. As a result, the block-level

I/O access sequence is different from the file I/Os — the

write operations may delay all the read operations. Notably,

in addition to logging sensitive file accesses, this monitor

provides detailed file system level activities. It can further

be utilized to debug abnormal system behaviors (e.g., the

write blowup issue in certain file systems [12]) and optimize

file system performance.

Real-world Malware Scenario We also applied the storage

access monitor to perform a real-world malware behavior

study. We chose HEUR:Backdoor.Linux.Ganiw.a, a Linux

backdoor Trojan detected by Kaspersky [13] in 2015. We

mainly studied the installation process of this malware with

the help of the storage access monitor.

When the malware was executed with root privileges,

the storage monitor observed the creation of several files

and directories. The main steps are listed in Table III.

Not surprisingly, this malware installed its startup scripts in

“/etc/init.d” to ensure the malware would be launched auto-

matically at the system startup. The malware also linked the

start scripts to different system run levels (1-5). Moreover,

the malware replaced “selinux” with its own copy and tried

to launch the fake one at the system startup. To hide from

checks, the malware replaced several system tools such as

“netstat”, “ps”, “lsof” and “ss” with their trojan version.

In addition to detecting created files during the malware’s

installation process, the storage monitor also observed sev-

eral important files read by the malware. For example, the

malware accessed the GeoIP database by reading the file

“/usr/share/GeoIP/GeoIPv6.dat”. Later, it called the SAX

(Simple API for XML) driver by reading the Python file

“/usr/lib/python3.4/xml/sax/expatreader.py” (a Python mod-

81



Step 1 cp “#!/bin/bash\n<path_to_malware>”
/etc/init.d/DbSecuritySpt

Step 2 ln -s /etc/init.d/DbSecuritySpt
/etc/rc[1-5].d/S97DbSecuritySpt

Step 3 cp <path_to_malware>
/usr/bin/bsd-port/getty

Step 4 cp “#!/bin/bash\n/usr/bin/bsd-port/getty”
/etc/init.d/selinux

Step 5 ln -s /etc/init.d/selinux
/etc/rc[1-5].d/S99selinux

Step 6 cp <path_to_malware> /bin/netstat
cp <path_to_malware> /usr/bin/lsof
cp <path_to_malware> /bin/ps
cp <path_to_malware> /bin/ss

Table III: File system accesses by the backdoor malware.

ule in C). We concluded that this malware called the Python

functions from its C (or C++) code for parsing XML docu-

ments, and it tried to get the machine’s location information

using its IP or hostname. We note that the revealed file access

patterns of malware can then be used by the middle-box for

future detection of the same malware.

2) Case 2: Data Encryption: To allow tenants to keep

their data confidential, we have implemented a storage

encryption middle-box. The goal of this middle-box is to

encrypt the tenant data before it is written to the disk and

decrypt it when the data is requested. Implementing this

functionality inside a middle-box offers additional flexibility

to tenants to decide when encryption should be performed

and what algorithm should be used (as opposed to depending

on the cloud provider for this service). Further, instead of

deploying encryption services for each VM, multiple VMs

belonging to the same tenant can share the same encryption

middle-box (improving performance with less management

overhead).

We have implemented a widely used block cipher in the

encryption middle-box by leveraging dm-crypt — a well-

known disk encryption subsystem in the Linux kernel. We

deployed it in the kernel space of the encryption middle-box.

By passing tenants’ storage flows to the encryption middle-

box, data encryption and decryption for the corresponding

tenant VMs’ volumes was easily achieved.

We compared the middle-box encryption solution with

a traditional tenant-side encryption solution (by installing

the encryption system in the tenant VM). The same AES

cipher with 256 bits keys were used for both solutions. A

20 GB volume was created and attached to the tenant VM for

both scenarios. Note that the client-side encryption requires

configuring the volume’s format to enable the encryption

approach. However, the middle-box solution does not have

this requirement; it is transparent to the tenant VM.

To test the decryption and encryption, we ran a simple

FTP server in the tenant VM to download/upload a large

file from/to the attached volume, respectively. We observed

that both tenant-side and middle-box encryption solutions

nearly reach the maximum storage bandwidth. The average

bandwidth (both read and write) was around ∼88 MB

85.0%

25.1%

37.1%

25.0%

24.4%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Performed by the

Tenant VM

Performed by the

MB VM

C
P

U
 U

ti
li
z
a
ti
o
n

Target Server

MB VM

Tenant VM

Figure 10: CPU utilization breakdown (with FTP).

1.34 1.34 1.34 1.34 1.29 1.23 

 -

 0.50

 1.00

 1.50

 2.00

read ops/s append

ops/s

file creation

ops/s

file deletion

ops/s

read rate

(MB/s)

write rate

(MB/s)

N
o

rm
a

li
z
e

d
 P

e
rf

o
rm

a
n

c
e

Performed by the Tenant VM

Performed by the storage middle-box VM

Figure 11: The application-level performance comparison

(with PostMark).

for the tenant-side solution and ∼84 MB for the middle-

box solution. Interestingly, the middle-box solution led to

much lower overall CPU resource utilization as shown in

Figure 10. Note that the overall CPU utilization of the

middle-box solution was the sum of the CPU utilization from

the tenant VM, the middle-box VM, and the storage target.

On the contrary, the overall CPU utilization of the tenant-

side solution only involved the tenant VM and the storage

target.

The middle-box solution reduced the overall CPU utiliza-

tion by 20% due to the CPU savings in the tenant VM. To

confirm this, we used a more realistic application workload,

PostMark, which generates many small file operations to

simulate an email server. With the same configuration as

above, Figure 11 showed the performance (operations per

second) of the decomposed components of PostMark. Com-

pared with the client-side solution, the middle-box solution

improved the performance of each component, ranging from

23% to 34%. Upon deeper investigation, we found that this

was because outsourcing encryption to a middle-box short-

ens blocking time for application threads. Dm-crypt may

hold application threads on spinlocks (wasting CPU cycles)

while encrypting/flushing writes blocks to disk. However,

the middle-box makes this application-side process much

faster: once data is acknowledged by the active-relay, the

application threads continue.

3) Case 3: Data Reliability: We have implemented a

tenant-defined replica dispatch service in a storage middle-

box. Data storage replication provides data redundancy that

can be used for improved performance and fault tolerance

(if the main storage backup system fails). Our data replica

dispatch middle-box service can also be highly customized.

For example, tenants can selectively replicate important files

rather than the whole array with customizable replication

levels (e.g., two or three replicas). In addition, tenants

can leverage multiple replicas to achieve enhanced read

throughput.

For write I/O operations, in addition to forwarding the

data to the original volume, our replication service copies ex-

actly the same I/O data in advance to other backup volumes
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that are attached to the middle-box. Importantly, to keep the

state consistent across all replicas, we strictly ensure that

a same sequence ordering of write I/O operations on all

volumes. On the other hand, for read I/O operations, the

replication service alternatively chooses one of the available

replicas for reading data. As a result, the read throughput

aggregates from all available replicas. Once a replica is not

responsive for some reason, it will be eliminated from future

operations. The unfinished reads of that failed replica are

served from one of the other active replicas.

To evaluate the tenant-defined replication service, we set

up a realistic environment, shown in Figure 12, with one

VM hosting a database server and four tenant VMs sharing

the server (all belonging to the same tenant). We ran MySQL

on the server VM associated with a 20 GB volume attached

as the database disk. Each tenant VM ran Sysbench — an

OLTP benchmark accessing the MySQL database with six

requesting threads in complex mode (both read and write).

We set the replication factor to three, where the replication

middle-box was attached to two replicas (20 GB each). At

runtime, we injected an error (at the 60th second) to one

of the replicas to make it unavailable (by closing the iSCSI

connection). Figure 13 shows the running status of MySQL

before and after that replica fails. We observed that once

the replica failed the replication service removed the failed

replica and ensured the database server continuously worked

properly using the two other available replicas. The average

performance of MySQL after the failure dropped a little due

to lower read parallelism with less replicas, but compared to

the non-replication case using only one store, we observed

80% performance improvement using three replicas because

of aggregated read throughput.

Our case studies demonstrated that many storage security

and reliability services can be offered via middle-boxes to

cloud tenants. Moreover, StorM is capable of providing the

development and deployment platform for these middle-

boxes.

VI. RELATED WORK

Offering security and system services via middle-boxes

has been around for almost a decade. However, the arrival

of software-defined networking (SDN) and the possibility

of deploying middle-boxes dynamically, instead of a static

chain, has renewed researchers’ interest in middle-boxes. In

recent works [14], [15], researchers have identified chal-

lenges in deploying middle-boxes in a SDN-enabled network

and shown why straightforward deployment of middle-boxes

in SDN networks would be problematic. Our work on de-

signing and implementing StorM is along the same direction:

we investigated the possibility of offering tenant-defined

services in the cloud storage network via middle-boxes and

discovered that existing cloud systems lack mechanisms to

support them.

Previous research has proposed various security mecha-

nisms as cloud services to protect VMs, applications, and

security groups. SSC [16] did allow the deployment of

tenant-specific storage security services, but their approach

required these protections to be installed inside of tenant

VMs running on a modified cloud platform. In contrast, we

proposed the first storage security platform that allows the

deployment of tenant-specific storage services via virtualized

middle-boxes in the cloud.

Cryptographic solutions [17] have been proposed to pro-

tect the data in clouds. One common cloud data encryption

solution involves service providers encrypting customers’

data [17], [18] — the approach that major cloud service

providers, like Microsoft, Google, and Yahoo have adopted.

EMC provides its Encryption-as-a-Service (EaaS) cloud ser-

vice [19], which enables client-side encryption. To comple-

ment these existing solutions, our StorM provides a flexible

platform, where various encryption techniques (among other

storage services) can be built upon. This allows tenants

to flexibly choose the cryptographic algorithms that they

want to implement inside a middle-box, depending on their

security/storage needs.

In addition to cryptographic solutions, previous research

has also looked into disk monitoring and logging solutions,

such as the host-based IDS solutions Tripwire [20] and

FWRAP [21]. Host-based disk IDS solutions required a

trusted OS, but advanced kernel rootkits can break that

assumption. To overcome this problem, Virtual Machine

Introspection (VMI) based techniques were proposed such

as XenAccess [22] and other systems [23], [24]. These intro-

duced a set of monitoring libraries running in the privileged

domain (dom0 or the VMM itself) and tracked guest-level

activities such as virtual disk accesses. In contrast to these

services that required access to the privileged domain or

changes inside the tenant VM, StorM’s monitoring service

requires no support from the tenant VM and instead executes

monitoring code in a separate, isolated VM (the middle-

box).

To ensure storage reliability at the block level, existing

vendor-specific solutions depend on hardware adapters (e.g.,

EMC’s SRDF, and NetApp’s SnapMirror) to replicate en-

tire storage arrays. Further, network-based replication (e.g.,
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EMC’s RecoverPoint), using an appliance that sits at the

edge of the network, takes multiple arrays and servers

into account. CYRUS [25] and CDStore [26] provide user-

controlled file-level data reliability by dispersing users’

backup data across multiple clouds. However, each of

these solutions requires client-side software, and in contrast,

StorM requires no software inside the tenant VM, and allow

tenants to flexibly choose the data replication services on

demand in a transparent and seamless manner.

VII. CONCLUSIONS

In this paper, we have presented StorM, a storage se-

curity/reliability service platform for the multi-tenant cloud

systems. StorM allows each tenant to deploy tenant-defined

storage security/reliability services in the form of virtu-

alized middle-boxes that transparently reside between the

tenant VMs and storage servers. To enable this storage

service platform, we addressed three main challenges —

network splicing, platform efficiency, and semantic gap. We

implemented a prototype of StorM on top of the popular

OpenStack cloud system. We also built three middle-box

services to demonstrate the efficacy of StorM— storage

access monitor, data encryption, and data replication. Our

evaluation results demonstrate that StorM provides tenants

with customized, value-added storage services with low

performance overhead.
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