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Abstract

A large organization, such as a university, commonly
supplies computational power through multiple indepen-
dently administered computational domains (e.g. clusters).
Each computational domain faces the conflict between dy-
namic workload and static capacity. This is clearly ineffi-
cient at times when some clusters have idle nodes while oth-
ers experience excessive workload. An opportunity arises to
resolve this conflict by dynamically adapting the capacity
of clusters by borrowing idle machines of peer domains. In
this paper, we present the design, implementation, and eval-
uation of VioCluster, a virtualization based computational
resource sharing platform. Through machine and network
virtualization, VioCluster enables virtual computational do-
mains that safely “trade” machines between them without
infringing on the autonomy of either domain. Our perfor-
mance evaluation results show that dynamic machine trad-
ing between virtual domains increases their resource uti-
lization and decreases their job wait times.

1 Introduction

To meet the varied computational needs of a large orga-
nization it is often necessary to maintain multiple separate
computational domains. These domains are administered
independently, and will have software, hardware and net-
work environments customized to best serve their organiza-
tional unit. The workloads assigned to these clusters will
also vary; while one cluster is experiencing a spike in work-
load, another may be sitting idle. Clearly this is wasteful of
computational resources.

This wastage could be decreased were the organiza-
tion able to temporarily transfer resources from an under-
utilized domain to a busy one. Once the period of peak
activity has ended, these nodes could be returned to the
original domain. By borrowing resources during non-
overlapping periods of heavy usage, the throughput of each

cluster in an organization could be improved.
Realizing this goal, however, is not a simple task. Each

domain will be configured according to the requirements of
its owners. As a result nodes from different domains may
not be able to inter-operate. Machines under different do-
mains may have different software packages or user per-
missions. Worse, one domain may have access to hardware
unavailable on another, or be on a private subnet to which
other machines do not have access.

Further, organizational units may be unwilling to allow
potentially unsafe code to run on their machines, particu-
larly under a privileged account. By lending machines to
another cluster, the safety and isolation of its own jobs may
be threatened. However, without root access, it may be im-
possible for the borrowing cluster’s jobs to run.

In this paper, we present VioCluster, a novel architec-
ture which allows dynamic machine trading while avoiding
these problems. We introduce the concept of virtual compu-
tation domains (or “virtual domains” for short) which allow
a cluster to dynamically grow and shrink based on resource
demand. Under this system, the administrative privileges
of both the borrowing and lending clusters are maintained:
cluster administrators are able to configure borrowed ma-
chines as required, while not granting root privileges to oth-
ers making use of their nodes.

A VioCluster uses both machine and network virtualiza-
tion techniques to logically move machines between virtual
domains. Borrowed nodes in a VioCluster take the form of a
virtual machine (VM) running on top of a host machine lo-
cated in another physical domain. This VM process runs as
an unprivileged user, fulfilling the requirement that admin-
istrative access remains exclusively with the node owner.
However the configuration of the VM is determined by the
administrator of the borrowing domain, allowing the ability
to install software packages or hardware as required.

To users and applications, the process of borrowing
nodes is transparent. A VM running as part of a VioClus-
ter is practically indistinguishable from a physical machine
running inside the same domain.



The VioCluster system offers several contributions:

• Dynamic machine trading between mutually isolated
virtual domains. VioCluster creates software-based
network components which seamlessly connect phys-
ical and virtual machines to create isolated virtual do-
mains. Machines can be traded dynamically through
the on-demand creation, deletion, and configuration of
VMs and network components.

• Dynamic negotiation of machine trades. Each vir-
tual domain includes a machine broker which inter-
acts with other domains. Requests and offers are made
through these brokers based on workload and config-
urable lending and borrowing policies.

We have built a prototype of the VioCluster system,
and have demonstrated its effectiveness using two indepen-
dent Portable Batch System (PBS) [11] based job-execution
clusters. Our performance evaluation results show benefits
to both clusters by increasing their resource utilization and
decreasing their job execution times.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the design of VioCluster, Section 3 presents
key implementation details, Section 4 describes the experi-
ments and presents performance results, and Section 5 com-
pares VioCluster with related work. Section 6 presents the
paper’s conclusions.

2 Design

There are two key components in the VioCluster system:
the ability to create dynamic virtual domains and the mecha-
nism by which trades are negotiated. This section describes
the structure of these components, and the manner in which
they interact.

A summary of the terminology used within VioCluster is
as follows:

• Physical domain: An autonomous set of networked
computers managed as a unit. Physical domains have
a single administrator, and support a user-base per-
forming specific computational activities. For exam-
ple, a physical domain belonging to a biology depart-
ment may be optimally configured for cellular simula-
tions, while a physical domain belonging to a network
research group may be designed for shorter network-
intensive experiments.

• Virtual domain: An autonomous set composed of vir-
tual and physical machines managed as a unit. Ma-
chines in a virtual domain are connected through a vir-
tual private network, to which both virtual and physi-
cal machines have access. Virtual domains are able to

grow and shrink on demand, and to the administrator
appear to be identical to physical domains. A one-to-
one mapping exists between physical and virtual do-
mains; every virtual domain is hosted upon a physical
domain.

• Machine broker: A software agent that represents
a virtual domain when negotiating trade agreements
with other virtual domains. A machine broker consists
of a borrowing policy which determines under which
circumstances it will attempt to obtain more machines,
and a lending policy which governs when it is will-
ing to let another virtual domain make use of machines
within its physical domain. Both policies are defined
by the domain’s administrator.

Figure 1 shows an example VioCluster consisting of two
physical domains, A and B. There are virtual domains as-
sociated with each physical domain. Both physical domains
consist of 36 machines, each of which initially belongs to its
respective virtual domain. These clusters could be imagined
to belong to two university departments, or to two divisions
within a company.

Over time, the workload on each domain varies as jobs
are submitted by users. In Figure 1(a), virtual domain A is
experiencing a period of heavy demand, while virtual do-
main B is under-utilized. After negotiations between the
borrowing and lending policies of the respective brokers,
virtual domain A is able to temporarily borrow half of vir-
tual domain B’s nodes. In Figure 1(b), the workload pat-
terns are reversed, and virtual domain B is able to use nodes
located in physical domain A.

When a machine belonging to physical domain B is bor-
rowed by virtual domain A, it is used to run a virtual ma-
chine. This VM is owned by the administrator of virtual do-
main A, and will match the configuration of the machines
in physical domain A. Virtual network connections will be
made, connecting the new VM to the nodes of virtual do-
main A.

The trading process is authorized according to the bor-
rowing and lending policies within the machine brokers of
each domain. These policies are defined by the domain ad-
ministrator, and allow complete control over the access to
a domain’s resources. Without an agreement between the
brokers, the trade cannot occur.

2.1 Dynamic Virtual Domains

The use of virtualization is key within VioCluster.
Through the use of virtual machines, many of the configura-
tion and access problems inherent in machine trading can be
avoided. Additionally, virtual networking allows physical
and virtual machines to communicate transparently, making
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Figure 1. Two virtual domain trading resources. Virtual domains fluidly trade machines in reaction
to changes in workload.

network administration no more difficult than for a single
physical cluster.

2.1.1 Machine Virtualization

When transferring physical machines between domains
without the aid of virtualization, many problems may be
encountered. The set of user and group accounts on clusters
may be different, leading to access problems when running
jobs. Necessary packages and services may not be installed,
and superuser permissions may be required to customize
a machine’s configuration. Additionally, once a borrowed
machine is no longer necessary, it must be restored to its
original state before it can be used again in its original con-
text.

VioCluster virtual domains bypass all these problems
through the use of virtualization. When a physical node
is lent to another virtual cluster, all that is required is a VM
process run by an unprivileged user. The VM is created us-
ing a disk image supplied by the borrowing cluster. The user
accounts, services and software services on this image can
be configured identically to those on the virtual domain’s
physical machines. And when the machine is ready to be
returned to its original cluster, all that is required to restore

its state is the termination of the VM process.

2.1.2 Network Virtualization

Networking between nodes in a virtual domain is made pos-
sible by an enhanced version of the VIOLIN [7, 14] net-
work overlay. Traditional VIOLIN creates a virtual layer-
2 network overlay that tunnels network traffic end-to-end
between remote virtual machines. The overlay appears to
these machines to be an isolated physical Ethernet LAN.
For VioCluster, we developed Hybrid VIOLIN, which adds
the ability for physical machines to connect to this private
network. As a result, virtual and physical machines are able
to exchange network data transparently.

The underlying mechanisms of the Hybrid VIOLIN net-
work is shown in Figure 2. Virtual and physical machines
connect to the network through a distributed virtual switch.
Network traffic is sent to a local virtual switch daemon by
both virtual and physical machines, and is then forwarded
to corresponding processes on other nodes of the virtual do-
main.

Figure 2 shows a physical and virtual machine interact-
ing over a Hybrid VIOLIN network. Physical host A con-
nects to a virtual NIC running in kernel space. This NIC,
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called a TUN/TAP device, appears to applications running
on the physical host as an additional network interface. Data
sent via standard system calls to the TUN/TAP device is
then forwarded through the virtual switch daemon running
in the user space of the host. The data is then sent out onto
the virtual network.

The virtual machine running on host B, follows a sim-
ilar connection procedure. In this case, the virtual NIC is
resident in the kernel space of the virtual machine. Data is
then forwarded through a virtual switch daemon in the host
machine’s user space, and is transmitted to other machines
on the virtual network in the same way as from host A.

The virtual switch daemon receives Ethernet frames gen-
erated by the virtual network interfaces. It encapsulates
these frames inside a UDP packet, and forwards them across
the physical network to the virtual switch daemon on the
destination physical node. At the destination, the frames
are un-encapsulated and forwarded to the proper virtual in-
terface. Throughout the process, virtual network traffic is
never placed on the physical network, maintaining strict iso-
lation between domains.

The effect of the Hybrid VIOLIN network overlay is that
each virtual domain has a uniform and private IP address
space. VMs running on borrowed nodes can be assigned
IP addresses in the same range as the physical machines
belonging to the domain. Maintaining this illusion simpli-
fies the administration process and minimizes IP account-
ing. Additionally, because Hybrid VIOLIN virtualizes ad-
dresses at layer-2, arbitrary IP address spaces can be desig-
nated to virtual domains without the threat of conflicts with
the host network.

In effect, Hybrid VIOLIN creates a private virtual LAN.
Machines participating in a virtual domain have the same
access to domain services as nodes in a physical domain.
For example, all nodes on a virtual domain may have equal
access to NFS-mounted directories.

The machine and network virtualization techniques used
in VioCluster allows the isolation and safety required to
make machine trading a viable proposition for large orga-
nizations. Fully customizable machine configurations run-
ning inside isolated VMs and private networks allow virtual
domains that are borrowing nodes the flexibility to perform
their work and ensures that physical domains that are lend-
ing nodes are not forced to compromise their security.

2.2 Machine Brokering

The second major component of the VioCluster system
is the mechanism by which machine exchanges are negoti-
ated. Each domain has a software agent called a machine
broker which has the responsibility of determining whether
trades should occur. The VioCluster system supplies the
means by which physical domain administrators may de-
fine lending and borrowing policies. Wise decisions made
in these policies can lead to large benefits in overall system
throughput, while poor choices can degrade performance.

The policies used by a machine broker must be designed
with several factors in mind. Observations of the current
and past workload levels in the domain may allow predic-
tions of future demand. For example, a cluster may see pre-
dictable spikes in usage during business hours, with less
demand at night. In that case, a sensible set of policies
might borrow during the day and lend at night. Addition-
ally, knowledge of the applications run on a domain may
influence policy decisions. For example, if a cluster is used
primarily for short, network-intensive experiments, borrow-
ing nodes may lead to unacceptable communication over-
heads.

What follows are several attributes that must be specified
in the policies for negotiating machine trades:

• Reclamation: A policy must determine when a ma-
chine will be returned to its home domain. One recla-



mation policy may be to lend a machine for a specified
lease period. Once this time is over, the node must be
returned. Alternatively, a lending domain may wait un-
til a remote job has completed, or reserve the right to
reclaim machines gradually as its demand increases.
Another possible policy would be to lend a machine
for an unlimited period, on the understanding that it
will be returned when required by the owner. While
this offers flexibility to the lending domain, it requires
the borrower to be able to recover from the sudden loss
of a machine. If the borrowing virtual domain cannot
handle this situation, its borrowing policy should for-
bid such trades.

• Machine properties: The characteristics of the ma-
chine to be borrowed will have an impact on the poli-
cies of the domains involved in a trade. The machine
broker must ensure that any machine lent to another
virtual cluster has the processing power, memory and
disk space required to run a virtual machine. Since the
granularity at which resources are assigned is the ma-
chine, some properties, such as CPU power and mem-
ory, will remain constant. However others, such as
available disk space, may change and must be mon-
itored by the machine broker. Machines not capable
of running a virtual machine suitable for the tasks re-
quired may be rejected by the borrowing machine bro-
ker.

• Location: For some applications, particularly those
with high levels of communication between nodes, the
physical location of machines may affect performance.
Bandwidth and latency within a virtual domain may
be affected by the location of communicating nodes.
A borrowing policy should be aware of the communi-
cation requirements of its applications. If little com-
munication is required, it may be acceptable to borrow
nodes with high-latency or nodes with low-bandwidth
connections to the remainder of the machines. Alter-
nately, if the applications run on a virtual domain tend
to be tightly-coupled with high levels of network traf-
fic, it may be best to wait until nodes can be co-located
on a single physical domain.

3 Implementation

We have implemented a prototype VioCluster system
that uses a domain virtualization mechanism based on User
Mode Linux (UML) [18] and Hybrid VIOLIN, which is
governed by simple but effective machine brokering poli-
cies. It is worth mentioning that at the time of this writing
we have implemented a Xen [2] version of VIOLIN. Our
initial experience with VIOLIN and Xen indicate greatly
improved performance over UML.

As an example application scenario, our prototype con-
figures virtual domains as clusters managed by a PBS job
scheduler. Within each virtual domain one physical ma-
chine is designated the PBS master node and the remainder
of the machines are configured as PBS compute nodes. As
workload changes, machines are added and removed from
the virtual domain and the PBS master is re-configured to
allocate jobs to all machines in the virtual domain. It is im-
portant to note that batch scheduling is not the focus of our
work and PBS is only used as a sample application.

3.1 Domain Virtualization Implementation

User Mode Linux and Hybrid VIOLIN are well suited
to be VioCluster’s machine and network virtualization tech-
niques because of their user level execution needed for iso-
lation. In addition, Hybrid VIOLIN’s networking abilities
that support both virtual and physical machines fit VioClus-
ter’s unique needs.

Virtual Network Configuration. In our prototype, we
define a virtual domain by a Hybrid VIOLIN network. The
machines connected to each virtual domain’s virtual net-
work are a mixture of the real machines of its physical do-
main and the VMs created on nodes borrowed from other
physical domains.

Each physical machine has two NICs: one connected to
the physical LAN (eth0), and the other to the Hybrid VIO-
LIN network (tap0). Remote domains access the host via a
private non-routable IP address associated with tap0. De-
pending on the configuration of the virtual NIC, VMs can
have Internet routable IP addresses or private non-routable
IP addresses through which they can access the Internet
through a NAT router. The routing tables of the physical
machine must be aware of the virtual network configura-
tion, enabling traffic destined for the physical machine to
be sent to eth0 while virtual machine traffic is forwarded to
tap0. For this reason, administrative privileges are needed
on the physical domain to create and manage the TUN/TAP
device.

Virtual Machine Configuration. VioCluster dynami-
cally creates and destroys UML virtual machines at the re-
quest of the machine brokers. The VMs are configured by
the borrowing domain to fulfill the needs of its applications.
In the prototype system, all virtual domains use a modified
Fedora Core I root file system. This includes all libraries,
packages and applications (such as MPI and PBS) required
to function like the physical machines.

Since the VMs are nearly-identical PBS compute nodes,
small Copy-On-Write (COW) files can be used to capture
the differences in their disk images. These COW files share
a common root image and store only the minor differences
between images, such as network settings. Upon creation,
a COW system image represents an individual VM and can



be transfered to any host to be instantiated.
The prototype system uses a pool of pre-built COW file

systems. However, it would also be possible to create them
on-demand.

Virtual Machine Instantiation. The creation of a UML
virtual machine requires only user-level access to the host
machine. The root file system must be transferred, the vir-
tual switch daemon started, and the VM booted. To this end,
each physical domain maintains a user account for each peer
virtual domain that may borrow machines.

The size of the root filesystem used in the prototype is
approximately 300MB when compressed. Transferring this
across the network whenever a VM is required would be
prohibitive, so the base system is copied to each potential
host before any VM is created. As a result, only the small
(approximately 200KB) COW file must be transferred on
demand.

Once the root image is transferred, the virtual switch
daemon is started via an ssh connection. The daemon con-
tacts the peer daemons on the other hosts, and joins the dis-
tributed switch. Finally, the VM is booted via ssh, and con-
nects through the distributed virtual switch.

Virtual Machine Removal. Before a VM can be re-
moved from a virtual domain, it must be halted. There are
two ways this can be achieved: by killing the VM process or
by using the shutdown command inside the virtual machine.
Killing the process is faster, but results in a corrupted COW
file. However, the common root disk image is read-only, so
it is unaffected.

The state maintained on the VMs COW files is not im-
portant, since the VMs are used as PBS compute nodes. As
such, when we need to create a new VM, we can simply
copy the original COW file from the virtual domain admin-
istrator. This means that it is not necessary to properly shut
down VMs, making the halting process faster.

3.2 Machine Brokering Implementation

Virtual domains share resources according to contracts
agreed upon by their machine brokers. Trades are permitted
or denied in accordance with the brokers policies, based on
virtual domain demand levels. Virtual domains experienc-
ing heavy workloads propose trade offers, while those with
spare capacity advertise the capabilities of the machines
they have available. Only if the trade is acceptable to the
policies of both brokers will the proposal be accepted.

Our implementation of VioCluster uses PBS to schedule
jobs. It should be noted that our intent is not to study job
scheduling; we use PBS simply as a demonstration of Vio-
Cluster’s ability to operate in a dynamic environment. Ap-
plications running on virtual domains must be able to handle
changes in available machines. PBS, and most job sched-
ulers, can adapt to these changes and are excellent ways to

use the dynamic resources of virtual domains. When a ma-
chine is added or removed from the virtual domain the PBS
master daemon is re-configured to reflect the change. One
benefit of using a job scheduler is its inherent resilience to
node failure. Nodes can be preempted at any time without
effecting the correctness of the applications. Jobs will be
re-run by the scheduler with the only effect being on perfor-
mance. To reduce the effect of preemption on performance,
the PBS scheduler is aware of the heterogeneity of the vir-
tual domain and never schedules jobs on a mixture of virtual
and physical machines. The application’s ability to adapt is
particularly important in our case, since virtual machines
are created and destroyed on demand.

Demand Heuristic. In general, there is no requirement
for how machine brokers calculate demand. For our proto-
type, we use the PBS scheduler’s work queue as a measure
of the demand on the domain. Each virtual domain a uses a
PBS scheduler that multiplexes the set of physical machines
Pa and the set of virtual machines Va. The machine broker
queries the PBS scheduler for the number and size of jobs j

in the queue Qa. The result is used to assess the current de-
mand da, defined as the number of nodes required to satisfy
all jobs j ∈ Qa.

da =
∑

j∈Qa

jnodes required

Borrowing and Lending. Based on the calculated de-
mand da and current number of machines lent |La| or bor-
rowed |Va|, the machine broker calculates the machines
needed na.

na = da − [(|Pa| − |La|) + |Va|]

The value of na determines if it is desirable to lend, bor-
row, or return previously borrowed machines. If na is pos-
itive, virtual domain a needs to acquire na nodes; if it is
negative then virtual domain a can lend or return |na| nodes;
and if it is zero virtual domain a has exactly enough nodes
to satisfy its own demand.

The lending policy implemented in our prototype allows
up to half of the domain’s idle nodes to be borrowed by
other clusters. This allows substantial resources to be of-
fered to other domains in quiet periods, while guarding
against resource shortages during sudden spikes in demand.

Reclamation Technique. It is sometimes necessary for
a virtual domain to recover machines from other clusters,
due to sudden increases in demand. In these cases, ma-
chines are returned according to the reclamation policy
specified in the lending contract.

In our prototype, machines are returned immediately
upon request from the lending domain. Any jobs running
on these machines will be terminated, and must restart. This
recovery process is managed by the PBS scheduler. Clearly,
such preemption has a negative impact on the throughput of



the system, and steps must be taken to minimize the cost of
this interference. When possible, our scheduler runs jobs
only on physical machines belonging to the virtual domain.
Additionally, to minimize the overhead of preemption and
improve the network locality of a job, the scheduler never
schedules jobs on a mix of virtual and physical machines.

As an alternative, a gradual reclamation policy may be
implemented. Future work on VioClusters will study policy
interactions, most notably in the area of machine reclama-
tion techniques.

4 Experiments

In this section we present several experiments that show
the feasibility of VioCluster. First we measure several in-
dividual VioCluster system properties, then we show the
results of a large-scale VioCluster simulation based on the
prototype’s measured behavior, using real workload traces
from production clusters.

4.1 System Prototype Measurements

For the prototype measurements we used two clusters
on Purdue’s campus. One cluster is administered by the
nanoHub as part of the NFS Network for Computational
Nanotechnology (NCN) and the other cluster is adminis-
tered by our laboratory in the Computer Science depart-
ment. The NCN cluster is composed of dual processor
3.06GHz Intel Xeon machines with 2GB of RAM con-
nected by 100Mb/s Ethernet. The Computer Science clus-
ter is composed of 2.6GHz Intel Xeon machines with 2GB
RAM connected the 100Mb/s Ethernet. The connection be-
tween the clusters is through Purdue’s campus network. Al-
though the UML-based experiments provided good results,
our continuing work with Xen promises significantly in-
creased performance.

Metric Value
Execution Slowdown on VM 15%
VM Boot Time 40 seconds
VM Halt Time 16 seconds
VIOLIN Bandwidth Penalty 5-15%
VIOLIN Latency Penalty 5-10%

Bandwidth and Latency. From our previous work [7]
we have observed that VIOLIN networks affect communi-
cation bandwidth and latency. VIOLIN decreases the band-
width between machines by 5-15% and increases the la-
tency by 5-10%.

Computation Overhead. We have found that computa-
tion and communication intensive workloads, such as High
Performance Linpack (HPL), run 15% slower on VMs con-
nected to a VIOLIN network [14]. Less communication in-

tensive applications would experience a smaller decrease in
performance.

Image Transfer, Boot, and Halt Times. Aside from
runtime overhead, VMs require time to be setup and de-
stroyed. By using small COW filesystems and transferring
the base system images ahead of time, we can transfer the
system image to a physical host in under a second. This
short transfer time means that the VM boot time dominates
the creation process. We measured boot times for two VM
images: the first being a modified Fedora Core 1 server in-
stallation, and the second a minimal RedHat 8.0 system.
The larger image took 40 seconds to boot on the NMI clus-
ter, while the smaller took 5 seconds. Halt times were found
to be 16 seconds and 3 seconds respectively.

4.2 Simulation

Simulation Setup. Evaluating VioCluster on real work-
loads was not practical, due to the difficulty of scaling work-
loads that originally ran in months or years to run in a rea-
sonable period. We therefore developed a simulator that not
only enables us to accurately evaluate the system on large
workload traces, but also to simulate far larger clusters than
we have available.

Our simulation takes into account our measured VM
transfer, boot and halt times, as well as the computation
and communication overheads of VIOLIN. The machine
brokers use the preemptive trading policy described in sec-
tion 3.2. Each broker calculates the virtual domain’s de-
mand every hour, and then takes action based on the results.

The virtual domain’s size and usage pattern is created
using traces obtained from production machines. The two
traces used are publicly available (CTC and OSC from [21])
and are composed of a 512 CPU machine at The Cornell
Theory Center (CTC) and a 178 CPU machine at Ohio Su-
percomputing Center (OSC). What follows is the results of
the simulation, showing that by using our machine trading
mechanism and policy the perceived processing power of
both clusters is improved.

Observed Demand. Figure 3 shows the demand on each
of two virtual domains over time with and without sharing
enabled. The demand without sharing is what would be ob-
served if the load patterns were submitted to independent
clusters. It can be seen that the OSC cluster has two distinct
spikes of very high demand and the CTC cluster has many
spikes that are relatively small.

When the clusters are run with sharing enabled the vir-
tual domains are able to handle demand more efficiently.
With sharing, the large spikes of the OSC cluster are sig-
nificantly reduced while the CTC cluster is relatively unaf-
fected.

Machine Borrowing. Figure 4 shows the machines
traded between domains over time. Positive numbers in-
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dicate that the OSC virtual domain is borrowing from
CTC, while negative numbers indicate CTC borrowing
from OSC. A correspondence can be seen between the ar-
eas of high demand in the OSC domain in Figure 3 and
the number of machines borrowed from CTC. The high fre-
quency of spikes in Figure 4 could be reduced by either a
more conservative lending strategy or a more gradual recla-
mation policy.

Job Completion Times. Figures 5, 6, and 7 show the re-
sponsiveness of the system from a user’s perspective. They
show the average time between a job’s submission to the
cluster’s queue and its completion both with and without
sharing. Each figure depicts the interaction of cluster work-
loads with different qualitative properties.

Figure 5 shows the interaction between two different
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Figure 5. Average time from job submission to
job completion of qualitatively different work-
loads.

workload patters. The OSC cluster has two large spikes of
high demand, while the CTC cluster has a steady pattern of
small spikes. From the graph, we see that both clusters ben-
efit from sharing, with the OSC cluster almost completely
eliminating its spikes.

The reduction in completion time during peak demand is
due to a reduced amount of time the jobs wait in the queue.
Referring back to Figure 4, we see that during the period
of high workload, the OSC virtual domain is often able to
borrow a significant portion of the CTC virtual domain’s
nodes. The borrowed nodes allow the OSC virtual domain
to run more jobs at once reducing the average completion
time drastically.

Figure 5 shows occasional points where completion
time increases when sharing is enabled. This is caused
by jobs being preempted when a physical machine was
reclaimed, and subsequently restarted. Techniques such
as check-pointing, VM migration, or complementary ad-
vanced scheduling algorithms designed for dynamic sys-
tems, can reduce or eliminate this problem.

In Figure 6, two traces with corresponding spikes in de-
mand were created by extracting sections of the OSC cluster
trace. From the figure we see that if one of the virtual do-
mains has a spike at the same time the other does not, the
spike is largely mitigated through machine borrowing. On
the other hand, if both virtual domains experience a spike
at the same time, very little improvement is seen, however,
neither cluster experiences a reduction in performance.

Figure 7, created from sections of the CTC trace, shows
the opposite situation. Here neither cluster experiences
a large spike in demand, and as a result neither benefits
greatly from sharing. However, again, neither show a per-
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Figure 6. Average time from job submission
to job completion of high demand workloads.

formance decrease.
From theses results we can conclude that by sharing

computational resources through VioCluster great gains in
the user’s perceived performance are possible. As expected,
clusters that are experiencing extreme spikes in workload
benefit most from sharing. Unexpectedly, their gains do
not penalize the donating clusters. In addition, these gains
are the product of a relatively simple trading policy which
demonstrates the the effectiveness of the system and the po-
tential of more advanced policies.

5 Related Works

Currently, the most common resource sharing meth-
ods are seen in the creation of large, shared Beowulf [3]
style cluster computers that multiplex resources through a
batch scheduler such as PBS [11]. A common example
of such systems would be large general use clusters ad-
ministered by a campus-wide authority and used by mem-
bers of many departments. More recent examples of re-
source sharing include cycle stealing applications such as
Seti@Home [15], as well as meta-scheduling dedicated
Grid infrastructures like Globus [6, 5], Condor [17], In-
VIGO [1] and PUNCH [8], among others. All of these solu-
tions provide access to seemingly endless amounts of com-
putational power without incurring the full cost of owner-
ship. However, common to all of these systems is the prob-
lem that jobs are run on nodes over which the job owner has
no control.

The system most similar to our own is Cluster-On-
Demand (COD) [4]. Like VioCluster, COD allows dynamic
sharing of resources between multiple clusters. In a simi-
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Figure 7. Average time from job submission
to job completion of low demand workloads.

lar fashion to Oceano [22] and Emulab [20], COD reallo-
cates resources by using remote-boot technologies to clear
a physical machine and reinstall preconfigured disk images
from the network. The disk image that is installed deter-
mines which cluster the nodes will belong to upon boot-
ing. In this way COD can redistribute the resources of
a cluster among several logical clusters sharing those re-
sources. When we compare VioCluster with COD we see
two projects that have very similar goals; however, COD
works by reinstalling the base Operating System of the re-
sources. VioCluster creates VMs running on top of the
existing host OS. COD is more suited for homogeneous
pools of machines supporting logical clusters administered
by trusted local administrators. The authors of COD are
also studying market-based algorithms for negotiating con-
trol over resources in a shared cluster environment [13]. We
have similar goals with our machine broker policies, how-
ever we do not focus on market-based strategies.

Virtual networking is a fundamental part of our work.
Available machine virtualization techniques do not sup-
ply advanced virtual networking facilities. UML [18],
VMware [19] and Xen [2] all provide networking services
by giving the VMs a real IP address from the host network.
PlanetLab [12] uses a technique to share a single IP address
among all VMs on a host by controlling access to the ports.
These techniques allow VMs to connect to a network but
do not create a virtual network. Among the network vir-
tualization techniques are VIOLIN [7] and VNET [16, 10]
which create virtual network overlays of VMs residing on
distributed hosts. VNET provide a virtual a layer-2 Eth-
ernet that connects remote VMs to a local physical LAN.
VIOLIN creates completely isolated virtual environments



including virtual switches, routers, and VMs.
Another interesting use of VMs is In-VIGO [1]. In-

VIGO is a distributed Grid environment supporting multi-
ple applications which share resource pools. The In-VIGO
resources are VMs. When a job is submitted, a virtual
workspace is created for the job by assigning existing VMs
to process it. During the execution of the job the VMs are
owned by the user and the user has access to his or her
unique workspace image through the NFS-based distributed
virtual file system [23]. Provided with In-VIGO is an auto-
matic VM creation project called VMPlants [9]. VMPlants
is used to automatically create custom root file systems to be
used in In-VIGO workspaces. The VioCluster authors are
currently participating in an In-VIGO deployment at Purdue
as part of the NCN’s nanoHub.

6 Conclusion

We have presented the design and implementation of
VioCluster, a virtualization based computational resource
sharing platform. Using VioCluster, independently admin-
istered computation domains can lend and borrow nodes,
increasing utilization and reducing idle node time. We have
implemented a prototype VioCluster system and have cre-
ated a large scale simulation based on real prototype pa-
rameters. The results of the simulation, using real work-
load traces, show that VioCluster using relatively simple
machine trading policies leads to potentially large increases
in the perceived computational power of administratively
autonomous clusters. At the time of this writing, we have
completed an implementation of VIOLIN for Xen virtual
machines. Our initial experiences with VIOLIN and Xen
indicate improved performance over UML and show great
promise for the future of VIOLIN and VioCluster.
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