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Abstract—Live virtual machine (VM) migration enables
seamless movement of an online server from one location
to another to achieve failure recovery, load balancing, and
system maintenance. Beyond single VM migration, a multi-gr
application involves a group of correlated VMs and its live ni-
gration will require careful scheduling of the migrations of the
member VMs. Our observations from extensive experiments
using a variety of multi-tier applications suggest that, in a
dedicated data center with dedicated migration links, diferent
migration strategies result in distinct performance impads on
a multi-tier application. The root cause of the problem is the
inter-dependence between functional components of a multi
tier application.

We leverage these observations in vHaul, a system that
coordinates multi-VM migration to approximate the optimal
scheduling. Our evaluation of a vHaul prototype on Xen
suggests that vHaul yields the optimal multi-VM live migra-
tion schedules. Further, our application-level evaluatio using
Apache Olio, a web 2.0 cloud application, shows that the
optimal migration schedule produced by vHaul outperforms
the worst-case schedule by 43% in application throughput.
Moreover, the optimal schedule significantly reduces serge
latency during migration by up to 70%.
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I. INTRODUCTION

Live VM migration techniques (e.g., XenMotion [1] and

if the dependent components become split across a high-
latency network path. To mitigate such impact, COMMA
proposes to migrate a group of related VMs simultaneously
— by starting and finishing the migration of related VMs at
the same time, hence minimizing the VMs’ communication
via the high latency network path.

With the intention of minimizing the performance impact
revealed by COMMA, we conducted live multi-VM migra-
tion within a dedicated data center environment, whichrsffe
low network latency between any two physical machines
(e.g., less than 1 ms). Further, we designated a dedicated
network link for VM migration to avoid the interference
between application traffic and VM migration traffic. Sur-
prisingly, the performance degradation of a multi-tier ap-
plication still exists and sometimes becomes significamt. |
addition, migrating groups of related VMs simultaneously,
as suggested by COMMA, does not seem to be the optimal
option under our environment.

In the hope of finding other major factors impacting the
performance of live multi-VM migration for a multi-tier
application, we then conducted an extensive measurement
study using a variety of multi-tier applications. Our resul
suggest that, in a dedicated data center with dedicated mi-
gration links, different migration strategies (e.gequential

vMotion [2]) have been increasingly adopted in the cloud tomigration and parallel migration) could likewise result in

achieve seamless movement of online services — executetistinct performance impacts on a multi-tier application.
by VMs — from one physical host to another by transferringFurther, the performance gap between different migration
active memory, CPU and storage states. However, resourstrategies becomes increasingly large as the application
contention during migration could result in significant per workload increases.
formance degradation to a VM’s workload [3, 4, 5]. While  Furthermore, using measurement results, controlled ex-
most state-of-the-art live VM migration techniques [6, ¥, 8 periments, and queueing theory, we identify the root cause
mainly focus on minimizing the performance impact on of the problem as the inter-dependence between functional
single VM migration, less effort is made in understandingcomponents of a multi-tier application. More specificaiity,
multi-VM migration. the sequential migration case (i.e., VMs migrating onerafte
In a virtualized cloud infrastructure, multi-tier applica another), the pending requests backlogged from the VM that
tions consisting of multiple functional components are-usu has just migrated will propagate to the following migration
ally deployed inmultiple inter-dependent VME]. Such  phase, negatively impacting the performance of the next VM
inter-dependent VMs are subject to migration as a grouo be migrated. Owing to various characteristics of eaah tie
within a data center or across various data centers [10}- loads of varying magnitude and duration of VM migra-
Recently, COMMA [11] sheds some light on live migration tion — different sequential migration orders may result in
of multi-tier applications, which discovered that the per-drastically different application-level performance iacgs.
formance of a multi-tier application can severely degradeWhile in the parallel migration case (i.e., VMs migrating
simultaneously), the application performance tends to be

" Contributed to this work while at Purdue University. more affected than in the sequential case, as the perfoemanc
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degradation during parallel migration is caused by all VMs Latency (ms) , _
instead of in th tial Figure 2. CDF of latency for various loads (30 clients, 6@mtis and 120
instead of one (in the sequential case). clients) in RUBIS.

With this observation, we propose a simple yet effective
solution, called vHaul, that coordinates multi-VM migati  VMs are migrated one by one. In the two-VM case shown
to approximate the optimal scheduling. vHaul covers twoin Figure 1, there are two optional sequential schemes
typical migration scenarios. (1) Without a constraint od-en with reverse orders — VM1 first or VM2 first. (Farallel
to-end migration time, the least performance impact carmigration VMs are migrated simultaneously. One scheme
be achieved by migrating VMs one by onggparated by is to start the migration of all VMs at the same time but
a no-migration intervalbetween two VM migrations. This may stop at different times; another scheme is to start and
way the pending requests will be processed during the nostop the migration of all VMs at the same time [11].
migration interval. (2) To complete the end-to-end migra- Live migration in the single VM case does negatively
tion without any delay, vHaul determines an optimal VM impact on the performance of the VM [16]. Intuitively, the
migration order according to the VMs’ resource utilization two significant performance influential factors — migration
and estimated migration time, with the goal of reducing thelink bandwidth and page dirty rate — are also critical in the
impact of pending requests. Our evaluation results vadidatmulti-VM scenario. In addition, COMMA [11] claimed that
the effectiveness of vHaul. Our results with applicatiemedl  the performance of a multi-tier application may suffer from
benchmarks (Olio) show that the application throughput unsevere degradation if its dependent components beconte spli
der the migration schedule computed by vHaul outperformscross &igh latencynetwork path.
the worst-case migration schedule by 43%. Moreover, vHaul Nonetheless, in today’s data centers the migration link is
significantly reduces application request processinqitate usually separated from the production network link to avoid
during the migration by up to 70%. performance interference. That is, we can have a high-speed

The main contributions of this paper are summarized asietwork dedicated for VM migration traffic only (i.e. vMo-
follows: (1) We observe and demonstrate that the function [2]). Considering the latency of modern network fabric
tional inter-dependence between participating VMs leads tis typically sub-millisecond, the communication problem
varying degree of performance degradation for a multi-tiermentioned above should not be significant, if the multi-VM
application, under different migration strategies (Smttil migration happens within the same data center. We will show
and 1lI). (2) We propose vHaul as a simple approach tathis in our measurement study using a dedicated data center
mitigating such impact that can be deployed for a rangesnvironment with designated migration links.
of cloud application scenarios (Section 1V). (3) We have
implemented a prototype of vHaul based on Xen [12] toB. Measurement Methodology
coordinate multi-VM migration and demonstrated improve- We adopt a 2-tier web system consisting of a web server
ment in application-level performance (Section V). running in VM1 and a database server running in VM2. We
study the application-level performance impact imposed by
) _ T three multi-VM migration schemes. They are (1) migrating
A. Multi-VM Live Migration Background VM1 first and then VM2, (2) migrating VM2 first and

In real world, most applications deployed in the cloudthen VM1, and (3) migrating both VMs simultaneously. As
are multi-tier, consisting of several interactive VMs eachthe 2-tier model is common in request-response multi-tier
running logically separated but inter-dependent workloadapplications and usually serves as the basic unit in more
(e.g., web servers, application servers and databaseasgerve complex multi-tier applications, we believe the obsexvadi
All (or part) of these VMs may need to be migrated as abased on this 2-tier model are helpful and generalizable for
group during cloud runtime. Existing solutions[13, 14, 6] 1 studying more complex models.
work well for migrating an individual VM. Yet, few of them We measure the performance of the web service by
can be applied to migrate a group of inter-dependent VMscomputing the average response time of each request from

In general, there are two strategies for multi-VM live the client side. Since a web request is typically composed of
migration as shown in Figure 1. (§equential migration various sub-types (e.g., “preview”, “purchase”, etc.), ame-

Il. INVESTIGATION AND OBSERVATIONS
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ploy the geometric mean to represent the mean response time
of all sub-types. The overall application-level perforroan
during migration is gauged by averaging all response times
in the entire migration duration, called the average latenc
For each migration scheme, we run the experiments 30 times
and plot the CDFs of the average latency. Note that higher T ohase1(db) | phase2 (web) | phase 3(post
average latency means worse application performance. _ phase) _
. L . . . Figure 3. Latency breakdowns of three migration strategies
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migration strategies are: (1) migrating the web server; first Time Line [Seconds]
(2) migrating the database server first; (3) migrating them
simultaneously. We initiate three different loads: 30 mig
60 clients and 120 clients to represent light, medium and
high loads of the web server. Sufficient resources (e.g.,,CPUNigration experiment. Different from RUBIS, the web server
memory and disk) are assigned to both VMs to ensure thaaf this calendar-based application is relatively higrdgded
neither of these VMs is overloaded by the clients. due to many dynamic contents while the database server has
Figure 2 shows the CDFs of the average latency of thre@ smaller amount of load. We still observe the consistent
loads during migration separately. We observe very consigends for three migration schemes. Similarly, migrating
tent results from these three migration strategiigrating ~ VMs simultaneously still leads to the worst performance.
the web server firsalways brings the best performance Differently, migrating the database server first appears to
(the lowest latency) during migration. While the strategybe the best scheme. The performance gap between two
migrating both VMs simultaneouslgiways leads to the Sequential strategies also increases as the load goes up
worst performance (the highest latency). More specifically(detailed data is presented in [18]).
in Figure 2, with the light loads (30 clients) both sequdntia
strategies, either migrating web or database first, show the
same result; with the medium loads (60 clients) migrating As observed in Section I, different migration strategies
web server first outperforms the other sequential schemienpact the performance of multi-tier applications and the
with lower latency. Notably, the performance gap betweerperformance gap increases as application workload goes up.
two sequential schemes widens as the workload goes up. Then, what is the root cause? COMMA suggested that high
Further, we characterize the behaviors of RUBIS. Thdatency network path between different data centers coald b
main findings are: (1) the web server is low-stressed conthe culprit. However, in our local data center environment,
suming relatively less resource —2@80% CPU utilization by separating application and migration traffic, the appli-
and a small memory footprint; while (2) the database servecation network is never congested (within 1 millisecond),
is relatively highly-loaded — 36~ 80% CPU utilization and suggesting that network latency is not a main factor. We will
a relatively large memory footprint; (3) thus, the databaseshow empirically in this section that the inter-dependence
server suffers from 1.7 times of migration duration as thebetween different components in a multi-tier application
web server in both sequential cases (two VMs with both 2causes this problem. We further analytically prove it in][18
GB memory). To explore the root cause of the performance gap observed
Curious about whether such outcome commonly existsabove, Figure 4 illustrates the application-level thrqugh
we developed a 2-tier application that simulates an evernih terms of operations per second over the migration time
calendar (by adapting Olio code [17]) to repeat the samgsampled from the “event calendar” web application in

Figure 4. Performance breakdowns of three migration gfiete

IIl. RooT CAUSE ANALYSIS
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1 26 51 76 101126 151 176 TR L 4 introduces more loads for other component(s), such as the
Time Line (seconds) Time Line(seconds) H : . :
Figure 5. (A) Migrate web alone; (B) Migrate db alone vs. raigr db C.Iatabase Serv_er’ be_cau_se of interactions betwee_n amlc.at
after web. tiers. We can imagine if the database server migrates right

) o after web server, its performance would be impaired due to
Section II). Further, in Figure 3, we break down the cor-the gpike. So, it's imperative to know what causes the spike.
responding average latency. A.s illqstrated in Figure drethe Through reviewing the main steps of the pre-copy migra-
are 4 .phases ‘?‘“““9 each migration casease 1',5 the tion technique’, we could infer such a spike in throughput
m!grat!on durat_lon of the database ser\_/phase 2is the stems from two sources. First, during the iterative preycop
migration duration of the web servenwhile phas_e Oand eriod, an increasing number of requests are pentliag
phase 3ar_e phases before and after the migration. For th he web server side, as the request processing rate decrease
parallel migration, phase 1 and phase 2 fully overlap. while the request arrival rate keeps fixed. Second, duriag th
stop-and-copy period, the incoming requests continuously
become pending, as services are interrupted. Note that,

Let us first compare two sequential migration schemesthousands of requests could be pending and waiting to be
— Scheme web-db (migrating the web server first) andhrocessed during the~6 second downtime. Hence, these
Scheme db-web (migrating the database server first). Igyo sources of pending requests result in the spike in
Figure 3, during phase 1, Scheme web-db shows 16 timegroughput when the web server resumes after migration.
the latency of Scheme db-web. During phase 2, Scheme afier inferring the causes of the spike in throughput, we

web-db suffers almost the same latency as Scheme db-welgepict the latency comparisons in Figure 5(b) to verify that
While during phase 3, Scheme web-db shows 1.58 timeg,e gpike does impact the average latency during migration
the latency of Scheme db-web. Notably there is a big using two scenarios: (1) migrating the database serveealon
throughput fluctuation in phase 1 of Scheme web-db inynq (2) migrating the database server right after the web
Figure 4 illustrating unstable \{vor_kmg status of web.seemc server, which is Scheme web-db. When the database server
The decomposed results indicate that the main perfolis migrated alone, little latency explosion occurs, withyon
mance difference between two sequential migration schemeg small Jatency increase at the end of the migration because
lies in phase 1 — the migration phase of the databasgt siop-and-copy. It implies that only a very small amount
server. Notice that in Figure 3, there is little performances pending requests exist after migration of the database
degradation or latency explosion during phase 1 of SChe_m§erver. It also exmplains why we do not observe higher
db-web. On the contrary, latency explosion happens during,oyghput degradation during the migration of the databas
phase 1 of Scheme web-db. Then, why does Scheme web-d@er (phase 1) in Scheme db-web than that in Scheme web-
lead to higher latency during phase 17 ~db in Figure 4. However, in the scenario that the database
To answer this question, we conduct another experimenayer is migrated right after the web server, the appbeati
by migrating the web server alone and examine the workeye| |atency remains high. Such latency tends to decrease
load’s dynamics. Figure 5(a) shows the throughput beforezs pending requests becomes fewer, supporting the fact that

during and after migration of the web server. Surprisingly,ihe high latency is caused by the pending requests.
when the migration of web server completes, theredpike

A. Sequential migration

) . . _ So far we have figured out the root cause of the per-
in throughput lasting for 10 seconds. After this spike, theformance gap between the two sequential scheriteis
throughput gets back to normal (i.e., before the migration)because of the pending requests from the preceding
The results first assert that network latency is not sufficieny,\, 1hat has just been migrated, negatively impacting

to cause the performance degradation issue described {He application-level performance of the next VM to be
COMMA, as there is neither throughput drop nor Iatencymirqrated

increase, even when the web server and the database serve

lplease note that the phase numbers do not necessarily réfect SFour phases of pre-copy migration are initialization, dtse pre-copy,
temporal ordering of the phases. In particular, for the wbbscheme, the  stop-and-copy and activation [19].
temporal ordering of phases is 0, 2, 1, 3. 4An application server typically maintains multiple requgseues at the
2For phase 3, we only measure a short period (e.g., 10 secasif)e front end. Requests wouldait(or be pending) for a while before being
average latency quickly bounces back to the normal levelhaseO. processed, when the application server is busy.



B. Parallel migration separated by a long non-migration interval between two

Due to space constraint, we briefly investigate the parallefonsecutive VM migrations. The underlying rationale is to

scheme. Why is the performance of this parallel schemdnitigate the performance impact by pending requests, as
always the worst in our measurements? pending requests are supposed to be processed during the

Note that during parallel migration, the overall perfor- non-migration interval. This simple method benefits disect

mance degradation is decided by both VMs, since bot{fom observation (1) above. (ii) If we need to complete the
migrating VMs suffer the performance degradation simul-€nd-to-end migration without any delay, the migrationtstra

taneously. Figure 3 proves this — the parallel scheme suffefdy requires shortest migration time while maintaining an
high latency during the whole migration - phase 1 andacceptable service downtime for the least performance loss

phase 2. In contrast, the sequential schemes only suffar higl® this end, vHaul devises a heuristic multi-VM migration
latency during the migration of the web server — phase 2. scheduling algorithm in Algorithm 1 (for simplicity, we onl
Moreover, in our experimental settings, two VMs are show the pseudo code). vHaul assumes there is a dedicated

placed on the same source machine and migrate to the sarfigration link shared by all VMs for traffic non-interferesc

destination machine. The migration processes are observédd security [20]. .

to be CPU-intensive and usually consume more than 1 vCPU [ Algorithm 1, given a set of VMs to be migrated, vHaul
for each VM's migration. Therefore, physical resourcesfirst categorizes them according to t_hewl logical relatiops
become more competitive under the parallel scheme, hence VMs belonging to the same application are grouped to-
causing more application performance degradation. We cagéther. According to Section I1I-B, it's practically impmble
imagine that the resource competition would become moréhat the parallel strategy could outperform the sequential

severe as the number of parallel migrated VMs increases iftratégies in terms of performance with the dedicated-but-
the same physical host. fixed migration bandwidth. In addition, considering thethig

As a result of these two influential factors above, thefésource contention caused by parallel migration prosgsse
parallel scheme potentially results in higher performanc&/Haul prefers to migrate VMs in a specific sequence.
degradation than the sequential schemes. We further prove Next, in order to determine the sequential migration order,
this analytically using queuing theory in [18]. Note that VHaul sorts VMs in the same group by the product of
our conclusion is based on the assumption that total migral€Source utilization{(;;™") and migration time, U7 - t.
tion bandwidth isdedicated-but-fixedfollowing real-world ~ VHaul adoptsU;5™ - ¢ to approximate the impact of both
VM migration setup (e.g., vMotion [2]). The unlimited- Pending requests and migration time. Latg#," -t means a

migration-bandwidth scenario is left to future work. VM potentially impacts more on the next migrated VM, and
vice versa. The product above is a heuristic metric reflgctin
IV. OPTIMAL MULTI-VM M IGRATION SCHEDULING pending requests’ impact, with both factors equally impor-

Based on the root cause analysis, we have the observiant. We will show in Section V, any single factor cannot
tions for two-tier application migration: (1) if there is no decide the migration order; whereas the product selects the
performance impact from pending requests, two sequenti@ptimal order. vHaul prefers to migrate VMs with smaller
strategies should be equivalent and result in the same pefL;,,” -t ahead of VMs with larget/;; - ¢ for the purpose
formance degradation, while the parallel migration stpate Of reducing the impact by pending requests.
results in worse performance; (2) if there is performance In this paper, we mainly study the performance impact
impact from pending requests, by calculating the impacon one multi-tier application using vHaul. Hence we only
of pending requests (analytically defined in [18]), we canfocus on the migration order of VMs belonging to the same
compute the optimal migration strategy. However, suchapplication.
decision-making is impractical to implement, as it regsire o

B. Parameterization

accurate measurement of VM migration time and workloads.
To realize Algorithm 1, vHaul needs to group related

A. vHaul Design and Implementation VMs, defineUS%™ and estimate migration time

Instead, we propose vHaul, a multi-VM migration coor-  First, we developed a traffic monitor inside Xen'’s driver
dination system, to approximate the optimal solution. iHaudomain to construct the traffic matrix between VMs, because
takes an application semantics-agnostic approach to avoal VMs’ IO traffic have to go through the driver domain
per-application instrumentation, which is often infedsiimn ~ [21]. Using this traffic matrix, vHaul is able to group VMs

public application-hosting clouds. accordingly — VMs with communication traffic are treated
Specifically, vHaul covers two typical migration scenarioswithin a multi-tier group.
considering different migration requirements. (i) If westi Next, in order to represent the resource utilization of

to achieve the minimum performance impact on applicationa VM, vHaul chooses the following performance metrics:
while performing migratiorwithout any constraint on end- CPU, memory and 10 resource. CPU, memory, IO utilization
to-end migration time, VMs can be migrated one by onecalculation follows existing methodology/tools. For CPU,



vHaul uses Xentop’s command version [22] to collect av- 120 " B In sequence (db-web)
erage VCPU utilization for each VM (normalized between oo 2me T Bl
0%-100%). For memory, vHaul injects a script into each g o S

domU, then collects and calculates memory utilization (0%- g %f

100%) through Xenstore [23]. For 10, vHaul uses IOSTAT 2 a0 g

tool. Overall resource utilization is a weighted sum of the &= o

three. Weights are determined by their impacts on VM ot | p— 0= T —
migration: CPU and memory activities incur higher impacts Tdowet) (o) e o
than 10. Hence vHaul assigns lower weight to 10 and higher (a) Throughput (b) Latency

weights to CPU and memory utilizations. The weights are
empirically set to 4(CPU):4(memory):2(diskIO). We use the Figure 6. Performance evaluation in highly-loaded web .case
same ratio for all applications in Section V for evaluation. A \Haul 2-tier Evaluation
Finally, to determine the migration time for each VM, we i i .
employed the "AVG Simulation Model” in [16]. The dirty _ First, we evaluate vHaul using a similar setup as the

page rates are measured and reported from the hyperviso?vent calendar” web application in Section I, but with

while the migration network bandwidth is known in advance.d?1Eferent configurations: (1) the web server gets relayi\{el
highly-loaded and (2) the database server gets relatively

highly-loaded. For both scenarios, we equally assign 2.5 GB
memory to the web server and 1 GB memory to the database

Algorithm 1 A heuristic multi-tier migration algorithm.

Require: o . o _ server.
VMs with communication traffic belong to a multi-tier applic . . .
tion: Highly-loaded web serverIn most two-tier web applica-
Assign unique ID for each multi-tier application; tions, the web server usually exercises the business logic,
Ensure: hence can easily get highly-loaded. We simulates this sce-
levt?n set of VMsC, to be migrated; . nario by running 600 concurrent users, each sending resjuest
/* Find out VMs for each multi-tier application®/ at a speed of one request per five seconds. Once the
for eachvm in Cy., do bench K start - th I tiliapait
id = get_application_id(vm): enchmark starts running, the overall resource utiliapai
Glid].append(vm); of the web server becomes higher than that of the database
end for server. Hence, through counting the resource utilizatiwh a

/* Calculate vm migration order within a multi-tier applitan*/  estimating the migration time, vHaul computes that migrat-

for eachg in G do ing the database server first leads to timal scheme in
for eachvm in g do

vm.magration_order = thls_scenarlo. . .
(vm.U_curr - vm.migration_time) Figure 6(a) shows the average throughput during 5 min-

end for utes (including all migration phases). The results indicat
sort_vm_by_migration_order(g); the optimal scheme, Scheme db-web, leads to the best
gré‘tjufr?]rG_ throughput (with the highest number) among three schemes.
’ Further, Figure 6(b) depicts Scheme db-web also results in
V. EVALUATION the lowest average latency in all phases, whereas Parallel

In this section, we first evaluate the effectiveness of VHauischemded_rgsults 'E the hlgrl;esalatenlcy n lmost phef’sles._
by choosing simple client-server architecture applicatio . " addition, Scheme web-db results in longer total migra-
running within two VMs. Next, to evaluate more complex tion time (not shown in th(_e Figure) for the database server
multi-tier application migration scenarios, we use Apachethan Sch_eme_ db-web. It is because, for Sche_me web-db,
Olio, a web 2.0 benchmark [17], with four VMs. during migration of the database server, pending requests
Experimental setup Our testbed consists of servers with from the web server ma!<e th_e datab_ase server busier. As a
quad-core 3.2GHz Intel Xeon CPUs and 16GB RAM. Theyresult of.the corresponqlmg hlgh_er dirty page rate, Scheme
are connected via two separate Gigabit Ethernets. On\%eb—db incurs longer time to migrate the database server
network is for application production traffic while the othe ;[ a(r; SChim? db-web. Oln Fhe cher_ har]ld, Earr?llel scheme
is for VM migration traffic. All VMs share the same 1 Gbps ea hT t? tde dorgjgestbtota migration tlrr:je | or bot VMSI'
migration bandwidth. By doing so, we purely focus on the 19 y-loa el' gta ase sgrvTrTo model more Iflomdp ex
multi-tier dependency issue. These physical servers run Xef[\’vo'tIer applications, we dep oy an OLTP wor loa [2,4]
4.1.2 as hypervisor and Linux 3.2 in both domain0 and" the database server VM to simulate the typical online
VMs. For each VM, we assign reasonable configurationdl@nsaction processing scenario, widely used in the SQL
with enough vVCPU number, memory size and disk capacitygerver database [25]. We run two workloads — one is the
_to en_sure t_here is no performance bottlenecks when no VM SWe display the latency in the post migration phase just fosé€onds,
IS belng mlgrated. as the average latency quickly bounces back to the normell. lev
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B In sequence (db-web) (2) a MySQL database server to store user profiles and
min paralel (web-o) event information, (3) an NFS server to store images and
documents and (4) a memory cache server to cache recent

accessed contents for better performance. The PHP version

120 *optimal
scheme

sz 8
(seconds)
=

Operations per Second
Py
3

53.
w g, | of this benchmark is adopted.
0 1 We run 650 concurrent users, each sending requests at
o 0 | mm—m a speed of one request per every five seconds. We al-
In sequence In sequence In parallel Dbserver ~ Web server Post migration .
(do-web)  (web-cb) phase  phase  phase locate enough resources for each VM to ensure there is
(a) Throughput (b) Latency no performance bottleneck during the non-migration time.

Particularly, we assign 2.5 GB memory to the web server, 1
GB memory to the database server and 0.5 GB memory to

web service workload and the other is the OLTP workloadh€ file server and cache server respectively. The peak CPU
— within the same two-tier virtual platform. For the oLTP Utilization of the web server is about 70% [26], which is
workload, 400 requests per second are sent from the client€"Y close to the CPU load in cloud environments. The rest
to the database server. For the web service workload, 50pf the VMs have much lower CPU and memory UF'l'Zat'on
concurrent users are simulated to visit the web server. DuEt0% - 40%). For each request, the web server first needs

to the high OLTP workload, the database becomes heavil check whether a response can be retrieved directly from
loaded in this scenario he cache server. If the content is not cached, the web server

In Figure 7(a), the average throughput during 5 min-Tequires contacting the database server and the NFS server
utes indicates that theptimal scheme — Scheme web- to compose the complete content and reply to the client. All
db, calculated by vHaul- achieves the best performanct\-,(MS_ _migrate through the d_edicated 1 Gbps migration Ii_nk.
among the three. Specifically, Scheme web-db leads to the 'Nitially, all VMs are running on the same source physical
lowest request processing latency in Figure 7(b) as well a80de- After certain time, a migration command is issued
shortest migration time. Notably, in Figure 7(b) during the!© VHaul to conduct the group migration. Then, vHaul
web server migration phase, the latency of the sub-optimdfCMPutes theptimalmigration scheme based on Algorithm
scheme, Scheme db-web, is much longer than other schemés_.and_ coordinates the multi-VM m|grat|0n._ Theptimal i

It is worth mentioning that, we observe the web servernigration order calculated by our framework is marked with
takes longer time to migrate than the database server, ynainf" @sterisk in Figure 8 and Figure db-file-cache-wetive
because of the larger memory assigned (i.e., 2.5 GB for th8!SC Pick up the worst sequential migration case and the
web server and 1 GB for the database server). HoweveFfarallel case for comparison.
both CPU and memory utilizations of the database server Theoptimal sch_eme provided by vHaul outperforms both
are much higher than the web server. Thus, the produépe worst sequential scheme and the parallel scheme by 37%
of resource utilization and migration time of the databasé®d 43% respectively as shown in Figure 8. Looking into
server is higher than that of the web server. It indicates tha'¢ detailed performance data, we find that for the worst
the product of resource utilization is a suitable metric toSCNeéme, the performance is negatively impacted not only by

Figure 7. Performance evaluation in highly-loaded db case.

approximate the impact of pending requests. the h|ghly-loaded _web server but alsp by the file server. The
reason is that during migration, the file server could become
In sequence in sequence in paraliel highly-loaded as a consequence of the pending requests
(db-file-cache-web)*| (web-db-cache-file) mentioned above. Sometimes, the file server becomes even
HomePage 1.42 3.78 5.63 over-loadedand just hangs without any responses for several
Logn 0%8 220 332 seconds. On the other hand, the performance of the parallel
TagSearch 421 6.33 9.36 . ! 'and, the p : P
EventDetail 1.30 1.91 3.34 scheme is mainly negatively impacted by the highly-loaded
PersonDetail 8.21 10.11 13.30 web server as well as high resource contention. For space
AddPerson 2.90 3.34 6.67 . “ " « . "
AddEvent 1771 26.02 3204 constralnt, we iny _present the “worst” and “optimal” (by
Geomean 2.86 5.09 7.74 Algorithm 1) migration orders. The results from all other
;?g:cy - o orders are between those of “worst” and “optimal”.
: : Table | shows the latency breakdown for each Olio opera-
Table |

tion. The geometric mean is applied to calculate the average
LATENCY BREAKDOWN FOR EACH REQUEST OPERATION FROMDLIO . . .
EXPERIMENTS. latency of seven Olio operations. Tlgtimal scheme sug-
o ) gested by vHaul results in the lowest latency. Specifically,

B. vHaul Multi-tier Evaluation the worst sequential scheme shows Xk 7Be latency; and

Next, we use Apache Olio, a web 2.0 benchmark, tothe parallel scheme shows 2. The latency — of th@ptimal
evaluate vHaul. The Apache Olio benchmark consists ofcheme. In addition, theptimal scheme also leads to a
four components: (1) a web server to process user requesthorter migration time (in Figure 9) than other schemes.
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Figure 9. Migration time for Olio benchmark. (10]
VI. RELATED WORK [11]

Ye et al. [27] evaluated live migration strategy of multiple ]
VMs from experimental perspective. Deshpande et al. [28}
and Al-Kiswany et al. [29] optimized concurrent live migra-
tion of multi-VM using de-duplication approach. LIME [19] [13]
leveraged Software Define Networking advances to bring up
a transparent solution to migrate VMs of a tenant. However{14]
none of existing work focused on the inter-dependencé!®]
relationship between multi-tier VMs and consequential per
formance impact. COMMA [11] and Clique [30] tackled the [16]
multi-VM migration problem in geographically distributed
clouds. COMMA identified that the performance of a multi- [17]
tier application can severely degrade if its dependent compig;
ponents become split across a high latency network path.
Clique further optimized the group migration method by
partitioning a large group of VMs into subgroups based onig;
the traffic affinities among VMs. In contrast, vHaul studies
multi-VM migration problem within a different environment 2
— namely within a local data center with dedicated migration
link of low latency. [21]

VIl. CONCLUSION 22]

In this paper, we demonstrate that different migration[23]
strategies result in distinct performance impacts on d24l
multi-tier application in dedicated data centers. Using-co (23]
trolled experiments and queuing theory, we show the interfg]
dependence between different tiers of a multi-tier apfibca
causes this problem. Then we present a system, vHau{I2,7]
which computes the optimal multi-VM migration scheme
and improves the performance of multi-tier application-dur [28]
ing migration.
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