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Abstract—Live virtual machine (VM) migration enables
seamless movement of an online server from one location
to another to achieve failure recovery, load balancing, and
system maintenance. Beyond single VM migration, a multi-tier
application involves a group of correlated VMs and its live mi-
gration will require careful scheduling of the migrations of the
member VMs. Our observations from extensive experiments
using a variety of multi-tier applications suggest that, in a
dedicated data center with dedicated migration links, different
migration strategies result in distinct performance impacts on
a multi-tier application. The root cause of the problem is the
inter-dependence between functional components of a multi-
tier application.

We leverage these observations in vHaul, a system that
coordinates multi-VM migration to approximate the optimal
scheduling. Our evaluation of a vHaul prototype on Xen
suggests that vHaul yields the optimal multi-VM live migra-
tion schedules. Further, our application-level evaluation using
Apache Olio, a web 2.0 cloud application, shows that the
optimal migration schedule produced by vHaul outperforms
the worst-case schedule by 43% in application throughput.
Moreover, the optimal schedule significantly reduces service
latency during migration by up to 70%.
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I. I NTRODUCTION

Live VM migration techniques (e.g., XenMotion [1] and
vMotion [2]) have been increasingly adopted in the cloud to
achieve seamless movement of online services – executed
by VMs – from one physical host to another by transferring
active memory, CPU and storage states. However, resource
contention during migration could result in significant per-
formance degradation to a VM’s workload [3, 4, 5]. While
most state-of-the-art live VM migration techniques [6, 7, 8]
mainly focus on minimizing the performance impact on
single VM migration, less effort is made in understanding
multi-VM migration.

In a virtualized cloud infrastructure, multi-tier applica-
tions consisting of multiple functional components are usu-
ally deployed inmultiple inter-dependent VMs[9]. Such
inter-dependent VMs are subject to migration as a group
within a data center or across various data centers [10].
Recently, COMMA [11] sheds some light on live migration
of multi-tier applications, which discovered that the per-
formance of a multi-tier application can severely degrade,
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if the dependent components become split across a high-
latency network path. To mitigate such impact, COMMA
proposes to migrate a group of related VMs simultaneously
– by starting and finishing the migration of related VMs at
the same time, hence minimizing the VMs’ communication
via the high latency network path.

With the intention of minimizing the performance impact
revealed by COMMA, we conducted live multi-VM migra-
tion within a dedicated data center environment, which offers
low network latency between any two physical machines
(e.g., less than 1 ms). Further, we designated a dedicated
network link for VM migration to avoid the interference
between application traffic and VM migration traffic. Sur-
prisingly, the performance degradation of a multi-tier ap-
plication still exists and sometimes becomes significant. In
addition, migrating groups of related VMs simultaneously,
as suggested by COMMA, does not seem to be the optimal
option under our environment.

In the hope of finding other major factors impacting the
performance of live multi-VM migration for a multi-tier
application, we then conducted an extensive measurement
study using a variety of multi-tier applications. Our results
suggest that, in a dedicated data center with dedicated mi-
gration links, different migration strategies (e.g.,sequential
migration and parallel migration) could likewise result in
distinct performance impacts on a multi-tier application.
Further, the performance gap between different migration
strategies becomes increasingly large as the application
workload increases.

Furthermore, using measurement results, controlled ex-
periments, and queueing theory, we identify the root cause
of the problem as the inter-dependence between functional
components of a multi-tier application. More specifically,in
the sequential migration case (i.e., VMs migrating one after
another), the pending requests backlogged from the VM that
has just migrated will propagate to the following migration
phase, negatively impacting the performance of the next VM
to be migrated. Owing to various characteristics of each tier
– loads of varying magnitude and duration of VM migra-
tion – different sequential migration orders may result in
drastically different application-level performance impacts.
While in the parallel migration case (i.e., VMs migrating
simultaneously), the application performance tends to be
more affected than in the sequential case, as the performance
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Figure 1. Strategies to migrate a multi-tier application.

degradation during parallel migration is caused by all VMs
instead of one (in the sequential case).

With this observation, we propose a simple yet effective
solution, called vHaul, that coordinates multi-VM migration
to approximate the optimal scheduling. vHaul covers two
typical migration scenarios. (1) Without a constraint on end-
to-end migration time, the least performance impact can
be achieved by migrating VMs one by one,separated by
a no-migration intervalbetween two VM migrations. This
way the pending requests will be processed during the no-
migration interval. (2) To complete the end-to-end migra-
tion without any delay, vHaul determines an optimal VM
migration order according to the VMs’ resource utilization
and estimated migration time, with the goal of reducing the
impact of pending requests. Our evaluation results validate
the effectiveness of vHaul. Our results with application-level
benchmarks (Olio) show that the application throughput un-
der the migration schedule computed by vHaul outperforms
the worst-case migration schedule by 43%. Moreover, vHaul
significantly reduces application request processing latency
during the migration by up to 70%.

The main contributions of this paper are summarized as
follows: (1) We observe and demonstrate that the func-
tional inter-dependence between participating VMs leads to
varying degree of performance degradation for a multi-tier
application, under different migration strategies (Section II
and III). (2) We propose vHaul as a simple approach to
mitigating such impact that can be deployed for a range
of cloud application scenarios (Section IV). (3) We have
implemented a prototype of vHaul based on Xen [12] to
coordinate multi-VM migration and demonstrated improve-
ment in application-level performance (Section V).

II. I NVESTIGATION AND OBSERVATIONS

A. Multi-VM Live Migration Background

In real world, most applications deployed in the cloud
are multi-tier, consisting of several interactive VMs each
running logically separated but inter-dependent workload
(e.g., web servers, application servers and database servers).
All (or part) of these VMs may need to be migrated as a
group during cloud runtime. Existing solutions[13, 14, 6, 15]
work well for migrating an individual VM. Yet, few of them
can be applied to migrate a group of inter-dependent VMs.

In general, there are two strategies for multi-VM live
migration as shown in Figure 1. (1)Sequential migration,

0%

20%

40%

60%

80%

100%

1 21 41 61 81 101 121 141 161 181

C
D

F
 o

f 
La

te
n

cy
 

Latency (ms)

db-web

web-db

simultaneity

30 clients 60 clients 120 clients

migra!ng 

web first

migra!ng 

db first

Performance 

gap

Figure 2. CDF of latency for various loads (30 clients, 60 clients and 120
clients) in RUBiS.

VMs are migrated one by one. In the two-VM case shown
in Figure 1, there are two optional sequential schemes
with reverse orders – VM1 first or VM2 first. (2)Parallel
migration, VMs are migrated simultaneously. One scheme
is to start the migration of all VMs at the same time but
may stop at different times; another scheme is to start and
stop the migration of all VMs at the same time [11].

Live migration in the single VM case does negatively
impact on the performance of the VM [16]. Intuitively, the
two significant performance influential factors – migration
link bandwidth and page dirty rate – are also critical in the
multi-VM scenario. In addition, COMMA [11] claimed that
the performance of a multi-tier application may suffer from
severe degradation if its dependent components become split
across ahigh latencynetwork path.

Nonetheless, in today’s data centers the migration link is
usually separated from the production network link to avoid
performance interference. That is, we can have a high-speed
network dedicated for VM migration traffic only (i.e. vMo-
tion [2]). Considering the latency of modern network fabrics
is typically sub-millisecond, the communication problem
mentioned above should not be significant, if the multi-VM
migration happens within the same data center. We will show
this in our measurement study using a dedicated data center
environment with designated migration links.

B. Measurement Methodology

We adopt a 2-tier web system consisting of a web server
running in VM1 and a database server running in VM2. We
study the application-level performance impact imposed by
three multi-VM migration schemes. They are (1) migrating
VM1 first and then VM2, (2) migrating VM2 first and
then VM1, and (3) migrating both VMs simultaneously. As
the 2-tier model is common in request-response multi-tier
applications and usually serves as the basic unit in more
complex multi-tier applications, we believe the observations
based on this 2-tier model are helpful and generalizable for
studying more complex models.

We measure the performance of the web service by
computing the average response time of each request from
the client side. Since a web request is typically composed of
various sub-types (e.g., “preview”, “purchase”, etc.), weem-



ploy the geometric mean to represent the mean response time
of all sub-types. The overall application-level performance
during migration is gauged by averaging all response times
in the entire migration duration, called the average latency.
For each migration scheme, we run the experiments 30 times
and plot the CDFs of the average latency. Note that higher
average latency means worse application performance.

To avoid the communication impact mentioned in
COMMA, we set up a dedicated network link (i.e., 1 Gb)
for migration traffic. The network round-trip-times (RTTs)
between source machines and destination machines are
within 1 millisecond. With this setup, the overhead for VMs
communicating across the working network is negligible.
Besides, we adoptpre-copyVM migration technique and
only migrate the memory and CPU states by adopting shared
storages between source and destination machines.

C. Multi-VM Migration Characterization

We first choose RUBiS, a well-known benchmark for
evaluating web system which simulates an online bookstore.
We adopt PHP version RUBiS consisting of a web server
and a database server. Correspondingly, the three basic
migration strategies are: (1) migrating the web server first;
(2) migrating the database server first; (3) migrating them
simultaneously. We initiate three different loads: 30 clients,
60 clients and 120 clients to represent light, medium and
high loads of the web server. Sufficient resources (e.g., CPU,
memory and disk) are assigned to both VMs to ensure that
neither of these VMs is overloaded by the clients.

Figure 2 shows the CDFs of the average latency of three
loads during migration separately. We observe very consis-
tent results from these three migration strategies:migrating
the web server firstalways brings the best performance
(the lowest latency) during migration. While the strategy
migrating both VMs simultaneouslyalways leads to the
worst performance (the highest latency). More specifically,
in Figure 2, with the light loads (30 clients) both sequential
strategies, either migrating web or database first, show the
same result; with the medium loads (60 clients) migrating
web server first outperforms the other sequential scheme
with lower latency. Notably, the performance gap between
two sequential schemes widens as the workload goes up.

Further, we characterize the behaviors of RUBiS. The
main findings are: (1) the web server is low-stressed con-
suming relatively less resource –10∼30% CPU utilization
and a small memory footprint; while (2) the database server
is relatively highly-loaded – 30∼ 80% CPU utilization and
a relatively large memory footprint; (3) thus, the database
server suffers from 1.7 times of migration duration as the
web server in both sequential cases (two VMs with both 2
GB memory).

Curious about whether such outcome commonly exists,
we developed a 2-tier application that simulates an event
calendar (by adapting Olio code [17]) to repeat the same
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Figure 3. Latency breakdowns of three migration strategies.
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Figure 4. Performance breakdowns of three migration strategies.

migration experiment. Different from RUBiS, the web server
of this calendar-based application is relatively highly-loaded
due to many dynamic contents while the database server has
a smaller amount of load. We still observe the consistent
trends for three migration schemes. Similarly, migrating
VMs simultaneously still leads to the worst performance.
Differently, migrating the database server first appears to
be the best scheme. The performance gap between two
sequential strategies also increases as the load goes up
(detailed data is presented in [18]).

III. ROOT CAUSE ANALYSIS

As observed in Section II, different migration strategies
impact the performance of multi-tier applications and the
performance gap increases as application workload goes up.
Then, what is the root cause? COMMA suggested that high
latency network path between different data centers could be
the culprit. However, in our local data center environment,
by separating application and migration traffic, the appli-
cation network is never congested (within 1 millisecond),
suggesting that network latency is not a main factor. We will
show empirically in this section that the inter-dependence
between different components in a multi-tier application
causes this problem. We further analytically prove it in [18].

To explore the root cause of the performance gap observed
above, Figure 4 illustrates the application-level throughput
in terms of operations per second over the migration time
(sampled from the “event calendar” web application in
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Figure 5. (A) Migrate web alone; (B) Migrate db alone vs. migrate db
after web.

Section II). Further, in Figure 3, we break down the cor-
responding average latency. As illustrated in Figure 4, there
are 4 phases during each migration case:phase 1 is the
migration duration of the database server;phase 2 is the
migration duration of the web server1; while phase 0and
phase 3are phases before and after the migration. For the
parallel migration, phase 1 and phase 2 fully overlap.

A. Sequential migration

Let us first compare two sequential migration schemes,
– Scheme web-db (migrating the web server first) and
Scheme db-web (migrating the database server first). In
Figure 3, during phase 1, Scheme web-db shows 16 times
the latency of Scheme db-web. During phase 2, Scheme
web-db suffers almost the same latency as Scheme db-web.
While during phase 3, Scheme web-db shows 1.58 times
the latency of Scheme db-web.2 Notably there is a big
throughput fluctuation in phase 1 of Scheme web-db in
Figure 4 illustrating unstable working status of web services.

The decomposed results indicate that the main perfor-
mance difference between two sequential migration schemes
lies in phase 1 – the migration phase of the database
server. Notice that in Figure 3, there is little performance
degradation or latency explosion during phase 1 of Scheme
db-web. On the contrary, latency explosion happens during
phase 1 of Scheme web-db. Then, why does Scheme web-db
lead to higher latency during phase 1?

To answer this question, we conduct another experiment
by migrating the web server alone and examine the work-
load’s dynamics. Figure 5(a) shows the throughput before,
during and after migration of the web server. Surprisingly,
when the migration of web server completes, there is aspike
in throughput lasting for 10 seconds. After this spike, the
throughput gets back to normal (i.e., before the migration).
The results first assert that network latency is not sufficient
to cause the performance degradation issue described in
COMMA, as there is neither throughput drop nor latency
increase, even when the web server and the database server

1Please note that the phase numbers do not necessarily reflectthe
temporal ordering of the phases. In particular, for the web-db scheme, the
temporal ordering of phases is 0, 2, 1, 3.

2For phase 3, we only measure a short period (e.g., 10 seconds), as the
average latency quickly bounces back to the normal level as phase 0.

communicate across the network path. Note that after mi-
gration, the web server resides on the destination host while
the database server still on the source host.

On the other hand, much of the blame of latency explosion
during phase 1 of Scheme web-db should rest upon the
spike. The spike is twice as the normal throughput, definitely
putting more stresses on the web server. This spike also
introduces more loads for other component(s), such as the
database server, because of interactions between application
tiers. We can imagine if the database server migrates right
after web server, its performance would be impaired due to
the spike. So, it’s imperative to know what causes the spike.

Through reviewing the main steps of the pre-copy migra-
tion technique3, we could infer such a spike in throughput
stems from two sources. First, during the iterative pre-copy
period, an increasing number of requests are pending4 at
the web server side, as the request processing rate decreases
while the request arrival rate keeps fixed. Second, during the
stop-and-copy period, the incoming requests continuously
become pending, as services are interrupted. Note that,
thousands of requests could be pending and waiting to be
processed during the 4∼5 second downtime. Hence, these
two sources of pending requests result in the spike in
throughput when the web server resumes after migration.

After inferring the causes of the spike in throughput, we
depict the latency comparisons in Figure 5(b) to verify that
the spike does impact the average latency during migration
using two scenarios: (1) migrating the database server alone
and (2) migrating the database server right after the web
server, which is Scheme web-db. When the database server
is migrated alone, little latency explosion occurs, with only
a small latency increase at the end of the migration because
of stop-and-copy. It implies that only a very small amount
of pending requests exist after migration of the database
server. It also exmplains why we do not observe higher
throughput degradation during the migration of the database
server (phase 1) in Scheme db-web than that in Scheme web-
db in Figure 4. However, in the scenario that the database
server is migrated right after the web server, the application-
level latency remains high. Such latency tends to decrease
as pending requests becomes fewer, supporting the fact that
the high latency is caused by the pending requests.

So far we have figured out the root cause of the per-
formance gap between the two sequential schemes:it is
because of the pending requests from the preceding
VM that has just been migrated, negatively impacting
the application-level performance of the next VM to be
migrated.

3Four phases of pre-copy migration are initialization, iterative pre-copy,
stop-and-copy and activation [19].

4An application server typically maintains multiple request queues at the
front end. Requests wouldwait(or be pending) for a while before being
processed, when the application server is busy.



B. Parallel migration

Due to space constraint, we briefly investigate the parallel
scheme. Why is the performance of this parallel scheme
always the worst in our measurements?

Note that during parallel migration, the overall perfor-
mance degradation is decided by both VMs, since both
migrating VMs suffer the performance degradation simul-
taneously. Figure 3 proves this – the parallel scheme suffers
high latency during the whole migration - phase 1 and
phase 2. In contrast, the sequential schemes only suffer high
latency during the migration of the web server – phase 2.

Moreover, in our experimental settings, two VMs are
placed on the same source machine and migrate to the same
destination machine. The migration processes are observed
to be CPU-intensive and usually consume more than 1 vCPU
for each VM’s migration. Therefore, physical resources
become more competitive under the parallel scheme, hence
causing more application performance degradation. We can
imagine that the resource competition would become more
severe as the number of parallel migrated VMs increases in
the same physical host.

As a result of these two influential factors above, the
parallel scheme potentially results in higher performance
degradation than the sequential schemes. We further prove
this analytically using queuing theory in [18]. Note that
our conclusion is based on the assumption that total migra-
tion bandwidth isdedicated-but-fixed, following real-world
VM migration setup (e.g., vMotion [2]). The unlimited-
migration-bandwidth scenario is left to future work.

IV. OPTIMAL MULTI -VM M IGRATION SCHEDULING

Based on the root cause analysis, we have the observa-
tions for two-tier application migration: (1) if there is no
performance impact from pending requests, two sequential
strategies should be equivalent and result in the same per-
formance degradation, while the parallel migration strategy
results in worse performance; (2) if there is performance
impact from pending requests, by calculating the impact
of pending requests (analytically defined in [18]), we can
compute the optimal migration strategy. However, such
decision-making is impractical to implement, as it requires
accurate measurement of VM migration time and workloads.

A. vHaul Design and Implementation

Instead, we propose vHaul, a multi-VM migration coor-
dination system, to approximate the optimal solution. vHaul
takes an application semantics-agnostic approach to avoid
per-application instrumentation, which is often infeasible in
public application-hosting clouds.

Specifically, vHaul covers two typical migration scenarios
considering different migration requirements. (i) If we wish
to achieve the minimum performance impact on applications
while performing migrationwithout any constraint on end-
to-end migration time, VMs can be migrated one by one,

separated by a long non-migration interval between two
consecutive VM migrations. The underlying rationale is to
mitigate the performance impact by pending requests, as
pending requests are supposed to be processed during the
non-migration interval. This simple method benefits directly
from observation (1) above. (ii) If we need to complete the
end-to-end migration without any delay, the migration strat-
egy requires shortest migration time while maintaining an
acceptable service downtime for the least performance loss.
To this end, vHaul devises a heuristic multi-VM migration
scheduling algorithm in Algorithm 1 (for simplicity, we only
show the pseudo code). vHaul assumes there is a dedicated
migration link shared by all VMs for traffic non-interference
and security [20].

In Algorithm 1, given a set of VMs to be migrated, vHaul
first categorizes them according to their logical relationship
– VMs belonging to the same application are grouped to-
gether. According to Section III-B, it’s practically impossible
that the parallel strategy could outperform the sequential
strategies in terms of performance with the dedicated-but-
fixed migration bandwidth. In addition, considering the high
resource contention caused by parallel migration processes,
vHaul prefers to migrate VMs in a specific sequence.

Next, in order to determine the sequential migration order,
vHaul sorts VMs in the same group by the product of
resource utilization (U curr

vm
) and migration timet, U curr

vm
· t.

vHaul adoptsU curr

vm
· t to approximate the impact of both

pending requests and migration time. LargeU
curr

vm
·t means a

VM potentially impacts more on the next migrated VM, and
vice versa. The product above is a heuristic metric reflecting
pending requests’ impact, with both factors equally impor-
tant. We will show in Section V, any single factor cannot
decide the migration order; whereas the product selects the
optimal order. vHaul prefers to migrate VMs with smaller
U

curr

vm
· t ahead of VMs with largerU curr

vm
· t for the purpose

of reducing the impact by pending requests.
In this paper, we mainly study the performance impact

on one multi-tier application using vHaul. Hence we only
focus on the migration order of VMs belonging to the same
application.

B. Parameterization

To realize Algorithm 1, vHaul needs to group related
VMs, defineU curr

vm
and estimate migration timet.

First, we developed a traffic monitor inside Xen’s driver
domain to construct the traffic matrix between VMs, because
all VMs’ IO traffic have to go through the driver domain
[21]. Using this traffic matrix, vHaul is able to group VMs
accordingly – VMs with communication traffic are treated
within a multi-tier group.

Next, in order to represent the resource utilization of
a VM, vHaul chooses the following performance metrics:
CPU, memory and IO resource. CPU, memory, IO utilization
calculation follows existing methodology/tools. For CPU,



vHaul uses Xentop’s command version [22] to collect av-
erage vCPU utilization for each VM (normalized between
0%-100%). For memory, vHaul injects a script into each
domU, then collects and calculates memory utilization (0%-
100%) through Xenstore [23]. For IO, vHaul uses IOSTAT
tool. Overall resource utilization is a weighted sum of the
three. Weights are determined by their impacts on VM
migration: CPU and memory activities incur higher impacts
than IO. Hence vHaul assigns lower weight to IO and higher
weights to CPU and memory utilizations. The weights are
empirically set to 4(CPU):4(memory):2(diskIO). We use the
same ratio for all applications in Section V for evaluation.

Finally, to determine the migration time for each VM, we
employed the ”AVG Simulation Model” in [16]. The dirty
page rates are measured and reported from the hypervisor,
while the migration network bandwidth is known in advance.

Algorithm 1 A heuristic multi-tier migration algorithm.
Require:

VMs with communication traffic belong to a multi-tier applica-
tion;
Assign unique ID for each multi-tier application;

Ensure:
Given set of VMsCvm to be migrated;
/* Find out VMs for each multi-tier application*/
for eachvm in Cvm do

id = get application id(vm);
G[id].append(vm);

end for
/* Calculate vm migration order within a multi-tier application*/
for eachg in G do

for eachvm in g do
vm.migration order =
(vm.U curr · vm.migration time)

end for
sort vm by migration order(g);

end for
ReturnG;

V. EVALUATION

In this section, we first evaluate the effectiveness of vHaul
by choosing simple client-server architecture applications
running within two VMs. Next, to evaluate more complex
multi-tier application migration scenarios, we use Apache
Olio, a web 2.0 benchmark [17], with four VMs.
Experimental setup Our testbed consists of servers with
quad-core 3.2GHz Intel Xeon CPUs and 16GB RAM. They
are connected via two separate Gigabit Ethernets. One
network is for application production traffic while the other
is for VM migration traffic. All VMs share the same 1 Gbps
migration bandwidth. By doing so, we purely focus on the
multi-tier dependency issue. These physical servers run Xen
4.1.2 as hypervisor and Linux 3.2 in both domain0 and
VMs. For each VM, we assign reasonable configurations
with enough vCPU number, memory size and disk capacity
to ensure there is no performance bottlenecks when no VM
is being migrated.
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Figure 6. Performance evaluation in highly-loaded web case.

A. vHaul 2-tier Evaluation

First, we evaluate vHaul using a similar setup as the
“event calendar” web application in Section II, but with
different configurations: (1) the web server gets relatively
highly-loaded and (2) the database server gets relatively
highly-loaded. For both scenarios, we equally assign 2.5 GB
memory to the web server and 1 GB memory to the database
server.
Highly-loaded web server In most two-tier web applica-
tions, the web server usually exercises the business logic,
hence can easily get highly-loaded. We simulates this sce-
nario by running 600 concurrent users, each sending requests
at a speed of one request per five seconds. Once the
benchmark starts running, the overall resource utiliazaiton
of the web server becomes higher than that of the database
server. Hence, through counting the resource utilization and
estimating the migration time, vHaul computes that migrat-
ing the database server first leads to theoptimal scheme in
this scenario.

Figure 6(a) shows the average throughput during 5 min-
utes (including all migration phases). The results indicate
the optimal scheme, Scheme db-web, leads to the best
throughput (with the highest number) among three schemes.
Further, Figure 6(b) depicts Scheme db-web also results in
the lowest average latency in all phases, whereas Parallel
scheme results in the highest latency in most phases.5

In addition, Scheme web-db results in longer total migra-
tion time (not shown in the Figure) for the database server
than Scheme db-web. It is because, for Scheme web-db,
during migration of the database server, pending requests
from the web server make the database server busier. As a
result of the corresponding higher dirty page rate, Scheme
web-db incurs longer time to migrate the database server
than Scheme db-web. On the other hand, Parallel scheme
leads to the longest total migration time for both VMs.
Highly-loaded database serverTo model more complex
two-tier applications, we deploy an OLTP workload [24]
in the database server VM to simulate the typical online
transaction processing scenario, widely used in the SQL
Server database [25]. We run two workloads – one is the

5We display the latency in the post migration phase just for 10seconds,
as the average latency quickly bounces back to the normal level.
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Figure 7. Performance evaluation in highly-loaded db case.

web service workload and the other is the OLTP workload
– within the same two-tier virtual platform. For the OLTP
workload, 400 requests per second are sent from the clients
to the database server. For the web service workload, 500
concurrent users are simulated to visit the web server. Due
to the high OLTP workload, the database becomes heavily
loaded in this scenario.

In Figure 7(a), the average throughput during 5 min-
utes indicates that theoptimal scheme – Scheme web-
db, calculated by vHaul– achieves the best performance
among the three. Specifically, Scheme web-db leads to the
lowest request processing latency in Figure 7(b) as well as
shortest migration time. Notably, in Figure 7(b) during the
web server migration phase, the latency of the sub-optimal
scheme, Scheme db-web, is much longer than other schemes.

It is worth mentioning that, we observe the web server
takes longer time to migrate than the database server, mainly
because of the larger memory assigned (i.e., 2.5 GB for the
web server and 1 GB for the database server). However,
both CPU and memory utilizations of the database server
are much higher than the web server. Thus, the product
of resource utilization and migration time of the database
server is higher than that of the web server. It indicates that
the product of resource utilization is a suitable metric to
approximate the impact of pending requests.

In sequence In sequence In parallel
(db-file-cache-web)* (web-db-cache-file)

HomePage 1.42 3.78 5.63
Login 0.48 2.20 3.32
TagSearch 4.21 6.33 9.36
EventDetail 1.30 1.91 3.34
PersonDetail 8.21 10.11 13.30
AddPerson 2.90 3.34 6.67
AddEvent 17.71 26.02 32.04
Geomean 2.86 5.09 7.74
Latency
Ratio - 1.78x 2.70x

Table I
LATENCY BREAKDOWN FOR EACH REQUEST OPERATION FROMOLIO

EXPERIMENTS.

B. vHaul Multi-tier Evaluation

Next, we use Apache Olio, a web 2.0 benchmark, to
evaluate vHaul. The Apache Olio benchmark consists of
four components: (1) a web server to process user requests,

(2) a MySQL database server to store user profiles and
event information, (3) an NFS server to store images and
documents and (4) a memory cache server to cache recent
accessed contents for better performance. The PHP version
of this benchmark is adopted.

We run 650 concurrent users, each sending requests at
a speed of one request per every five seconds. We al-
locate enough resources for each VM to ensure there is
no performance bottleneck during the non-migration time.
Particularly, we assign 2.5 GB memory to the web server, 1
GB memory to the database server and 0.5 GB memory to
the file server and cache server respectively. The peak CPU
utilization of the web server is about 70% [26], which is
very close to the CPU load in cloud environments. The rest
of the VMs have much lower CPU and memory utilization
(10% - 40%). For each request, the web server first needs
to check whether a response can be retrieved directly from
the cache server. If the content is not cached, the web server
requires contacting the database server and the NFS server
to compose the complete content and reply to the client. All
VMs migrate through the dedicated 1 Gbps migration link.

Initially, all VMs are running on the same source physical
node. After certain time, a migration command is issued
to vHaul to conduct the group migration. Then, vHaul
computes theoptimalmigration scheme based on Algorithm
1 and coordinates the multi-VM migration. Theoptimal
migration order calculated by our framework is marked with
an asterisk in Figure 8 and Figure 9:db-file-cache-web.We
also pick up the worst sequential migration case and the
parallel case for comparison.

Theoptimalscheme provided by vHaul outperforms both
the worst sequential scheme and the parallel scheme by 37%
and 43% respectively as shown in Figure 8. Looking into
the detailed performance data, we find that for the worst
scheme, the performance is negatively impacted not only by
the highly-loaded web server but also by the file server. The
reason is that during migration, the file server could become
highly-loaded as a consequence of the pending requests
mentioned above. Sometimes, the file server becomes even
over-loadedand just hangs without any responses for several
seconds. On the other hand, the performance of the parallel
scheme is mainly negatively impacted by the highly-loaded
web server as well as high resource contention. For space
constraint, we only present the “worst” and “optimal” (by
Algorithm 1) migration orders. The results from all other
orders are between those of “worst” and “optimal”.

Table I shows the latency breakdown for each Olio opera-
tion. The geometric mean is applied to calculate the average
latency of seven Olio operations. Theoptimal scheme sug-
gested by vHaul results in the lowest latency. Specifically,
the worst sequential scheme shows 1.78× the latency; and
the parallel scheme shows 2.7× the latency – of theoptimal
scheme. In addition, theoptimal scheme also leads to a
shorter migration time (in Figure 9) than other schemes.
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VI. RELATED WORK

Ye et al. [27] evaluated live migration strategy of multiple
VMs from experimental perspective. Deshpande et al. [28]
and Al-Kiswany et al. [29] optimized concurrent live migra-
tion of multi-VM using de-duplication approach. LIME [19]
leveraged Software Define Networking advances to bring up
a transparent solution to migrate VMs of a tenant. However,
none of existing work focused on the inter-dependence
relationship between multi-tier VMs and consequential per-
formance impact. COMMA [11] and Clique [30] tackled the
multi-VM migration problem in geographically distributed
clouds. COMMA identified that the performance of a multi-
tier application can severely degrade if its dependent com-
ponents become split across a high latency network path.
Clique further optimized the group migration method by
partitioning a large group of VMs into subgroups based on
the traffic affinities among VMs. In contrast, vHaul studies
multi-VM migration problem within a different environment
– namely within a local data center with dedicated migration
link of low latency.

VII. C ONCLUSION

In this paper, we demonstrate that different migration
strategies result in distinct performance impacts on a
multi-tier application in dedicated data centers. Using con-
trolled experiments and queuing theory, we show the inter-
dependence between different tiers of a multi-tier application
causes this problem. Then we present a system, vHaul,
which computes the optimal multi-VM migration scheme
and improves the performance of multi-tier application dur-
ing migration.
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