
Cyber-Physical Inconsistency Vulnerability Identification
for Safety Checks in Robotic Vehicles

Hongjun Choi

Purdue Univesity

choi293@purdue.edu

Sayali Kate

Purdue Univesity

skate@purdue.edu

Yousra Aafer

University of Waterloo

yaafer@uwaterloo.ca

Xiangyu Zhang

Purdue Univesity

xyzhang@cs.purdue.edu

Dongyan Xu

Purdue Univesity

dxu@cs.purdue.edu

ABSTRACT
We propose a new type of vulnerability for Robotic Vehicles (RVs),

called Cyber-Physical Inconsistency. These vulnerabilities target

safety checks in RVs (e.g., crash detection). They can be exploited

by setting up malicious environment conditions such as placing

an obstacle with a certain weight and a certain angle in the RV’s

trajectory. Once exploited, the safety checks may fail to report real

physical accidents or report false alarms (while the RV is still op-

erating normally). Both situations could lead to life-threatening

consequences. The root cause of such vulnerabilities is that existing

safety checks are mostly using simple range checks implemented

in general-purpose programming languages, which are incapable

of describing the complex and delicate physical world. We develop

a novel technique that requires the interplay of program analysis,

vehicle modeling, and search-based testing to identify such vulner-

abilities. Our experiment on 4 real-world control software and 8

vehicles including quadrotors, rover, and fixed-wing airplane has

discovered 10 real vulnerabilities. Our technique does not have false

positives as it only reports when an exploit can be generated.

CCS CONCEPTS
• Security and privacy → Software security engineering; •
Computer systems organization→ Robotic control; Embed-
ded and cyber-physical systems.

KEYWORDS
CPS Security; Robotic Vehicle; Cyber-Physical Inconsistency

ACM Reference Format:
Hongjun Choi, Sayali Kate, Yousra Aafer, Xiangyu Zhang, and Dongyan

Xu. 2020. Cyber-Physical Inconsistency Vulnerability Identification for

Safety Checks in Robotic Vehicles. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’20), Novem-
ber 9–13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3372297.3417249

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00

https://doi.org/10.1145/3372297.3417249

1 INTRODUCTION
Robotic Vehicles (RVs), such as self-driving cars and planes [9, 17,

19, 49, 80], operate autonomously with the harmonious coupling

of cyber and physical components. The physical components, e.g.,

sensing and actuation devices, interact with the physical world,

whereas the cyber components, e.g., control software, process sen-

sor signals, make autonomous decisions, and operate the actuation

devices. RVs are safety-critical. Misbehavior may likely cause phys-

ical damages, some being life-threatening. In order to mitigate the

consequences, today’s RV control software equips with various

safety checks to detect any abnormal situation and perform pre-

designed counter-measures. These checks utilize various sensor

and state information to assess the physical condition of the vehicle

and the environment, and detect emergent situations. When safety

violations are detected, counter-measures will be taken right away

to mitigate damages. For examples, modern ground vehicles are

often equipped with an airbag system, which is designed to inflate

air bags instantly to protect passengers when a collision is detected.

Aerial vehicles are often equipped with parachute releasing and

emergence landing systems.

The correctness of safety checks are hence of critical impor-

tance. These checks are an integral part of control software usually

implemented in some general-purpose high level programming

language that was not designed to describe complex physics. They

are often implemented as a sequence of conditional statements that

validate the ranges of certain state/sensor values. However, the

simple boolean semantics of conditional statements have limited

expressiveness and hence can only approximate the boundary be-

tween safe and unsafe states. Accuracy loss in approximation may

lead to over-approximation vulnerabilities, which are essentially

false alarms (e.g., the system reports crashes but there are no real

physical crashes), and under-approximation vulnerabilities, which

are real exceptions that the system fails to detect. We refer to these

vulnerabilities as Cyber-Physical (CP)-inconsistencies. Such vulner-

abilities have catastrophic consequences, as illustrated by many

recent accidents. For example, Tesla’s autopilot caused a fatal crash

with a white trailer in 2016 [75], due to an under-approximation vul-

nerability of the safety checks; that is, the control program failed to

detect the risky situation accurately and did not trigger the counter-

measure. More recently, two Boeing-737 Max airplanes crashed in

2018 and 2019 [10, 11], respectively. It was reported that in both

accidents, the Maneuvering Characteristics Augmentation System

(MCAS) (i.e., anti-stall system), a safety-check component, was im-

properly activated in the presence of erroneous sensor readings,

Session 1E: Cyberphysical Systems CCS '20, November 9–13, 2020, Virtual Event, USA

263

https://doi.org/10.1145/3372297.3417249
https://doi.org/10.1145/3372297.3417249

denoting an over-approximation vulnerability. These vulnerabilities

may be intentionally and systematically exploited by malice (e.g.,

through creating the failure inducing environmental conditions) to

launch attacks that can lead to similar critical physical damage.

Figure 1 illustrates the root causes of CP-inconsistencies. In the

left sub-figure, the Physical bar denotes the state space in the real

physical world, with red representing anomaly and green safety.

Observe that since the physical world is continuous and highly

complex, the boundary between the two sub-spaces is blurry and

gradual. Ideally, the safety function shall be conservative, excluding

all possible unsafe states. In the figure, the boundary denoted by

the function shall fall into the fully green area. However, it is very

difficult for RV system developers to use a set of range checks to

describe the highly complex, non-linear, and (maybe) non-convex

safe/unsafe state space, due to the complicated correlation among

state/sensor variables. As such, the boundary implemented by safety

checks in the cyber-space (illustrated in the Cyber bar on the left)

admits unsafe physical states, leading to under-approximation. The

two bars on the right similarly demonstrate over-approximation.

As we will illustrate in the motivation section, developers tend to

use configuration parameters that are derived from their domain

knowledge or even just conjecture in safety checks. For example,

they consider an angle deviation larger than 30 degree must indicate

a crash. However, there is no rational for this magic number of 30,

which may or may not correspond to a real crash, depending on

many other environmental factors.

Cyber
Anomaly

Cyber
Normal

Physical
Anomaly

Physical
Normal

Abnorm
alityMissing

Exceptions

PhysicalCyber

(a) Under-approximation

Cyber
Anomaly

Cyber
Normal

Physical
Anomaly

Physical
Normal

Abnorm
alityFalse

Alarms

PhysicalCyber

(b) Over-approximation
Figure 1: CP-inconsistencies

Three parties are involved in CP-inconsistencies: control soft-
ware, the vehicle, and the environment. As such, CP-inconsistency
detection techniques ought to be able to model and reason about

these three aspects. The large body of existing software vulnerabil-

ity detection techniques are mostly based on program analysis or

program testing [16, 18, 21, 23, 54, 66, 69, 73, 82], and hence miss

the other two aspects. As such, they may report exploits that are

infeasible in the physical world. Recent works on using control

invariants to detect attacks on RV systems [15] model the program

and vehicle aspects as they leverage vehicle dynamics and program

instrumentation to detect deviations. However, they do not system-

atically consider the environment variable. Note that an exploit to a

CP-inconsistency vulnerability is essentially a set of realistic envi-

ronmental conditions under which the RV misbehaves, just like in

the Boeing-737 MAX cases. In practice, RVs need to go through sub-

stantial physical field tests and crash tests [3, 8, 12, 22] before they

are released. For example, Telsa tests self-driving cars on Califor-

nia roads and has to regularly report operation statistics to a state

agency. However, such physical tests can hardly stress the software

aspect. They are also extremely expensive and unlikely thorough,

while CP-inconsistencies are often boundary/corner cases.

This paper proposes a novel testing based CP-inconsistency de-
tection technique. In order to cohesively reason about the three

aforementioned aspects, it requires the inter-play of program anal-

ysis, RV system modeling, and high fidelity environment-aware

simulation, orchestrated by a multiple-objective search based test

driver. Specifically, program analysis is developed to extract the

safety checks, which are a set of predicates over state/sensor vari-

ables guarding some kind of safety violation. Both the subject RV

dynamics and its control logics are modeled to a list of equations

through System Identification (SI) [58]. These equations describe

how the vehicle behaves given the control objectives (e.g., a ref-

erence position) and the current states. SI derives such equations

through regression over a set of collected traces of vehicle oper-

ation. Note that the SI model does not consider the environment.

One can consider it as a virtual RV (VRV) that operates in an ideal
world without any environmental interference. A virtual test field
(VTF) is designed to consider all the relevant environmental factors.

For example, to test drones, the important factors are wind and

obstacles with different physical properties (e.g., shape, weight,

or inertia). VTF is like a real physical test field. The difference is

that it is realized inside a simulator, allowing a massive number of

testings. In a test, both the RV and the VRV operate on the same

input, which includes a navigation plan and environment setup.

A “real” crash is detected by observing substantial state deviation

between the VRV and the RV (in simulated VTF). For example,

assume the RV hits an obstacle on the VTF and completely stops

(i.e., a crash). The VRV is still moving as planned as it is oblivious

to the VTF. An under-approximation CP-inconsistency is identified

if such a crash cannot be detected by the safety checks. The test

driver models the discrepancy between the values of crash check

expressions extracted by program analysis, which measure how

close it is to detect the crash, and the real crash to a multiple objec-

tive function (over environmental variables). A search algorithm is

then used to minimize/maximize the objectives, in order to induce

an inconsistency. For example, if the test driver senses that intro-

ducing stronger wind and/or reducing the weight of an obstacle

helps enlarge the discrepancy, it will continue to do so.

Contribution. Our contributions are summarized as follows.

• We introduce a new type of vulnerability – CP-inconsistency

– for RVs, induced by inherent inadequacy of general-purpose

high level programming languages in describing complex

physics. These vulnerabilities are safety related and can be

exploited by solely manipulating environmental conditions.

They could lead to (life-threatening) physical damages.

• We propose a novel testing based technique to detect such

vulnerabilities. The technique features innovative inter-play

among program analysis, RV system modeling, simulation,

andmulti-objective search based testing. It introduces virtual

RV and uses it to expose real crashes. This allows solving a

critical challenge - the construction of test oracle that pro-
vides the ground truth.

• We implement a prototype and apply it to 4 real-world

control programs for 8 robotic vehicles, including ground

rover and aerial quad-rotors. Our prototype finds 10 real

CP-inconsistency cases. These cases lead to disrupt normal

operations (e.g., unexpected landing) and deadly crashes.

Session 1E: Cyberphysical Systems CCS '20, November 9–13, 2020, Virtual Event, USA

264

ThreatModel. The attacker does not have access to the internals of
the RV system. He exploits an RV system with CP-inconsistency by

onlymanipulating external physical conditions. There are two kinds

of exploits. The first induces over-approximation vulnerabilities

such that the target RV stops operation (due to safety concerns)

while it is still functioning properly. The second induces under-

approximation vulnerabilities such that the RV continues to operate

while a malfunctioning has occurred. Neither requires exploiting

any cyber attack vector.

2 MOTIVATION
In this section, we use an example to motivate our technique. The

example demonstrates an under-approximation CP-inconsistency

vulnerability in ArduCopter [1], one of the most widely used drone

control programs. The vulnerability renders a quad-rotor unable to

detect physical crashes.

1 #define CRASH_CHECK_ACCEL_MAX 3.0f
2 #define CRASH_CHECK_ANGLE_DEVIATION 30.0f
3 #define CRASH_CHECK_TRIGGER_SEC 2
4

5 // conditions for crash check
6 if(!motor->armed() || land_completed) {
7 crash_counter = 0;
8 return;
9 }
10 if(mode == ACRO || mode == FLIP) {
11 crash_counter = 0;
12 return;
13 }
14 if(accel.length() >= CRASH_CHECK_ACCEL_MAX) {
15 crash_counter = 0;
16 return;
17 }
18 if (angle_err <= CRASH_CHECK_ANGLE_DEVIATION) {
19 crash_counter = 0;
20 return;
21 }
22 crash_counter++;
23

24 if (crash_counter >= CRASH_CHECK_TRIGGER_SEC) {
25 gcs().send_text("Crash: Disarming");
26 init_disarm_motors();
27 }

Figure 2: Simplified example code of the crash checker

Figure 2 shows a simplified code snippet for crash check in

ArduCopter. The code is regularly executed by the scheduler as

part of the main control loop with a 400Hz frequency. It determines

whether the vehicle encounters a crash. In the code, five conditional

statements are used to perform the check. If any of these conditions

is satisfied, crash_counter is reset to zero, indicating no crash.

The first check (line 6) means that in a crash, the vehicle must have

the motor armed and it is not landed. The second check (line 10)

means that in a crash, the drone must not be in the ACRO or FLIP

flight modes, which allow turnover. In the third check (line 14), the

acceleration must be smaller than CRASH_CHECK_ACCEL_MAX
(a pre-defined constant value), indicating the drone is not under

control. The fourth (line 18) means that the angle error (between

target and current) is larger than CRASH_CHECK_ANGLE_DEVI-
ATION for a crash. If all the above conditions are not satisfied in

each control loop iteration, crash_counter is incremented by

one (line 22). Finally, the fifth check (line 24) determines that a crash

has occurred when crash_counter is greater than or equal to

CRASH_CEHCK_TRIGGER_SEC (e.g., 2 seconds) and accordingly

takes the counter-measure (line 26). Note that by analyzing the

program alone, without considering the physical vehicle or the

environment, one cannot determine if the system is vulnerable.

(a) Head-on crash and crash detected (disarming)

(b) Side crash and detection failed (subsequent crashes)

Figure 3: Different crash situations and reactions: (a) crash deter-
mined, (b) no crash determined. The simulation demos are available
at [30, 38])

To understand how the above crash checks lead to a wrong

decision during an actual crash, we compare two different crash

situations and show how the checks are executed correspondingly.

Figure 3 shows the two different crash conditions while the quadro-

tor performs a mission in the urban area. Figure 3a shows a head-on

collision where the quadrotor hits a heavy object with its front. This

causes the quadrotor to be stationary after the crash. In contrast, the

crash in Figure 3b illustrates a side collision where the quadrotor

hits a light object with some angle, and the impact is less than the

head-on collision. After the crash, the heading direction is changed

by the force caused by the collision and the quadrotor loses control

and bounces away in a random direction. Note that both cases have

critical impact on the safety of the vehicle and its surroundings (e.g.,

causing potential physical damages). For instance, the side collision

could cause the quadrotor to smash to the ground or into people.

Hence, counter-measures – e.g., disarming motors and releasing a

parachute – should be taken to prevent subsequent damage.

Back to the code, the checks successfully detect the first situa-

tion (i.e., the head-on collision), but miss the second (i.e., the side

collision). Specifically, in the second case, the third check takes

the true branch (and hence not a crash) because the acceleration

is larger than CRASH_CHECK_ACCEL_MAX after the crash as the

vehicle deflected but did not stop, and even if it had momentar-

ily stopped, the fifth check would take the false branch because

crash_counter did not exceed CRASH_CHECK_TRIGGER_-
SEC. Observe that the root cause is that the set of pre-defined

parameters and the simple range checks of the RV’s states are too

coarse to describe the delicate and varying physical crash situations.

We highly doubt that tuning the parameters would lead to sound

and practical solutions due to the highly complex inter-connections

among these state/sensor values and between these values and the

environment. One could set CRASH_CHECK_TRIGGER_SEC to a

large value such as 20 seconds, which may never create false alarms.

However, it is practically meaningless as with such a long reaction

delay, damage has already been incurred. While these problems

can be substantially mitigated on traditional manned vehicles by

human drivers, they pose prominent challenges for RVs.

Existing RV Testing. RV (physical) destructive test [3, 53] is per-

formed to ensure that safety design meets requirements. For exam-

ple, RV collision test intentionally crashes the vehicle to analyze its

Session 1E: Cyberphysical Systems CCS '20, November 9–13, 2020, Virtual Event, USA

265

impact [22, 50]. These tests are usually very expensive and hard to

conduct under various situations. Because of the cost of real tests,

simulated tests are also performed (e.g., LS-DYNA [59]) to study

RV’s behaviors in a collision. However, these tests are mostly focus-

ing on the physical aspects. They do not inspect the software and

are not able to use program information to improve testing. It is dif-

ficult for them to expose corner cases in which CP-inconsistencies

mostly reside.

Traditional software testing technique such as fault injection [47]

can be conducted for RV control programs. For example, software

fault localization (SFL) for control software [46] has been proposed

to inject specific types of program bugs (e.g., erroneous arithmetic

operations) and then try to locate them through testing. While the

technique can be used to determine if the injected bugs actually

cause physical misbehaviors, they cannot detect CP-inconsistencies

that are caused by latent bugs in control software and require consid-

ering the environment. RVFuzzer [55] performs fuzzing to identify

program parameters that fall in the specified legal ranges but cause

RV mis-behaviors. It monotonically increases/decreases parameter

values from the original/default ones until the resulted vehicle op-

eration trace significantly deviates from the trace of the original

parameters. In order to exploit the problems reported by RVFuzzer,

the attacker needs to be able to replace the default parameters with

the problematic ones (e.g., through some social engineering). In

contrast, the attack vector of CP-inconsistencies is just environ-

mental conditions. There is no need to access the RV or replace

parameters. In our motivating example, the vulnerability can be

exploited by setting the weight and the angle of the obstacle.

Environmental Effects
(wind, temperature, pressure, etc.)

RV

VRV

Figure 4: Virtual Test Field

Our approach. To systematically identify CP-inconsistencies, our

technique provides a virtual test field (VTF), which can be config-

ured to have various objects and environmental conditions. Figure 4

shows an example VTF. Observe that there are various object mod-

els, including wall, pole, box, etc. Their physical properties such

as position, rotation, shape, size and inertia are configurable and

continuously mutated during testing in order to expose vulnera-

bilities in the subject RV. The environmental effects include wind,

atmosphere (temperature, air pressure), magnetic fields, etc., which

are directly related to the specific sensor measurements of the sub-

ject RV. In a test, the RV is given a trajectory that traverses the

objects on the field (just like in a real physical field test). The test

execution is through the Gazebo simulator [62], which is equipped

with dynamics engines (e.g., Open Dynamics Engine [61]) to simu-

late various kinds of RVs and physical objects. We further develop

our own plugins to support customized and realistic environmen-

tal effects, including dynamic wind direction, duration, and speed.

Through system identification (SI), we construct a model for the

RV system to describe both the vehicle dynamics and control al-

gorithms. The model can be considered as a virtual RV (VRV) that

takes the control reference points (e.g., position and velocity tar-

gets) and the current vehicle states, and then produces the next

states. During testing, the navigation trajectory is interpreted to a

sequence of low level control reference points that are sent to both

the RV and the VRV. The RV operates on the VTF, considering the

interference from the external physical objects and environmental

conditions, whereas the VRV operates in an ideal world, without

any external inference (e.g., no wind or obstacles). A crash occurs

when substantial state differences are observed between the RV

and the VRV. This is key to our technique because otherwise, we will
have to use a set of range checks on sensor/state values of the RV
alone to determine if a crash happens, which suffers from the same
problems as those existing safety checks. For instance, in Figure 4,

the quadrotor hits a wall and deflects while the virtual quadrotor

flies through as it is not interfered by any external factors.

Sound safety checks are supposed to detect the crash when it

occurs. To expose a CP-inconsistency vulnerability, our test tech-

nique aims to mutate the VTF settings such that a crash can be

induced but cannot be detected (i.e., under-approximation). In or-

der to achieve our goal, we define objective functions that con-

sider two kinds of cost, namely cyber cost and physical cost. The
former measures how close the safety checks are to detect the

crash and the latter measures the state differences between the

RV and the VRV. The cyber cost is constructed by analyzing the

control program and collecting the conditions in the predicates

that are associated with safety-checking. In our example (Figure 2),

the cyber cost includes expression (CRASH_CHECK_ACCEL_MAX −

accel.length()) derived from the third check at line 14, and

(angle_err − CRASH_CHECK_ANGLE_DEVIATION) derived from

the fourth check at line 18. Observe that reducing these expressions

pushes the predicates from a false value (i.e., crash) towards a true

value (i.e., no crash). As will be explained later in Section 4.2, the

cyber cost function also models the constraints in other checks.

Details are elided at this point. On the other hand, the physical

cost is computed as the state differences of the subject RV and

the VRV, such as position and velocity differences. As such, expos-

ing under-approximation type of CP-inconsistencies is achieved

by using an optimization procedure to mutate the VTF config-

uration to minimize the cyber cost and maximize the physical

cost; conversely over-approximations are exposed by maximizing

the cyber cost and minimizing the physical cost. For the example,

our technique determines that when the wall with 24kg and in-

ertia (Ixx , Iyy, Izz) = (12.3, 15.4, 3.0) is in the way of the vehicle

with a collision angle of 28.6 degrees, the aforementioned under-

approximation case can be triggered.

3 OVERVIEW
Figure 5 presents an overview of our system, which consists of two

main components: cost function generation and search-based/evolutionary

testing. In the upper-left corner, static program analysis is used to

identify the predicates guarding the execution of counter-measure

Session 1E: Cyberphysical Systems CCS '20, November 9–13, 2020, Virtual Event, USA

266

Inputs

Evolutionary
Testing Loop

Traces

Specification Program Mode
Transition

System ID

Hybrid
Model

Testcase Generation
(Evolution)

Program Analysis

Simulation Decision CP-inconsistencies

Runtime
Information

Cyber Cost
Functions

Physical Cost
Functions

Figure 5: Overview of our test framework

functions such as a parachute releasing function. Currently, such

functions are manually provided by the user. They are usually in

a small number. The extracted predicates are used to derive the

cyber cost functions and a set of constraints (e.g., the quadrotor

must not be in a landed mode). In the lower-left corner, system

identification (SI) [60] makes use of operation traces (e.g., stage

logs) and a model template to derive a state-space model for the

subject RV. The model describes both the vehicle dynamics and

the control algorithm and predicts the next state from the control

references and the current state. The template determines the com-

plexity of the generated model (e.g., linear versus non-linear). SI is

essentially a procedure to derive the coefficients for the template

through regression. A realistic RV system often has various op-

eration modes (e.g., take-off, loiter, and landing). Different modes

likely have different models. Hence, our system takes the mode

transition specification and represents it as a finite-state machine.

The system model is the finite-state machine together with a set of

state-space models, one for each operation mode. We also call the

system model the hybrid model, which is essentially the VRV.

The loop in the middle denotes the search-based/evolutionary

testing procedure. For each test case, the RV system is executed in

the simulator while the VRV is executed in parallel without exter-

nal interference. The runtime information of the two executions

is collected and compared to see if any CP-inconsistency happens.

Specifically, it monitors whether the safety checks fail to report

exceptions while physical anomalies actually occur, or vice versa.

The evolutionary testing technique generates inputs based on a

genetic algorithm for multi-objective optimization. Genetic oper-

ations (crossover and mutation) are leveraged to derive new test

cases from existing ones, with the guidance of the cost functions.

4 DESIGN
4.1 Simulation Environment
Our technique leverages high-fidelity simulation to reduce the ex-

pensive physical testing. Once the simulation based testing discloses

CP-inconsistencies, we further reproduce them in the real-world for

those that we have the corresponding physical vehicles. Specifically,

we use Gazebo [62] for realistic 3D simulation. Gazebo is a popular

open-source robotics simulator. It supports various dynamics en-

gines and complex, realistic physical environments (e.g., through

the Open Dynamic Engine [70]). It can simulate the dynamics inter-

actions among objects, and between objects and the environment.

The simulation has two main configurable components described

by the Simulation Description Format (SDF) [63].

(a) Weighted Wall (b) Cylinder Post (c) Rollable Ball (d) Tunnel

Figure 6: Various (different physical properties) example obstacles

SDF is a standard XML format that describes (static and dynamic)

objects and the environment for complex simulation, visualization,

and control. It mainly consists of two components: world andmodel.
A world consists of objects and a set of environmental parameters

(e.g., wind, atmosphere, magnetic field, and light). An object is an

instance of some model that ranges from simple shapes to complex

3D robots that have different physical properties. In our prototype,

we use simple shapes to simulate various kinds of physical obstacles

as shown in Figure 6. Note that the different objects have different

physical properties (e.g., shape, friction, and elasticity).

In addition to the default environmental effects, we have also im-

plemented additional customized effects as Gazebo plugins, which
are C++ functions directly accessing Gazebo primitives to provide

more physical effects (e.g., wind gust).

4.2 Cost Function Generation
In this section, we present how our technique defines the cost

functions systematically. They are used as the guidance for the evo-

lutionary testing. The cost functions consist of cyber and physical

objectives, and the testing loop tries to maximize one and minimize

the other to identify CP-inconsistencies.

4.2.1 Cyber Cost. The cyber cost function is constructed from the

control program through static program analysis. To begin, the

user provides a list of counter-measure functions/statements such

as the parachute releasing function. The predicates that guard the

execution of the counter-measures are extracted and then trans-

formed to a cyber cost function. Specifically, a whole-program

control flow graph (CFG) is constructed. Nodes in the graph are

statements and edges denote control flow. Call relations between

functions are represented by edges between a function invocation

statement in the caller function and the entrance statement of the

callee function. Control dependence can be computed from the

whole-program CFG. A statement is control dependent on a par-

ticular branch of a predicate if and only if its execution is directly

determined by the predicate taking the particular branch. Starting

from a counter-measure function-invocation/statement, we acquire

the control dependence transitive-closure till the control loop is

reached. In other words, all the predicates (and the corresponding

branches) guarding the counter-measure and inside the control

loop are extracted.

Figure 7 illustrates our analysis using an example. It first con-

structs a control flow graph (CFG) in (b). Then, it computes post-

dominator relations [4] in the CFG and constructs a control depen-

dence graph (CDG) in (c) that captures the control dependences

Session 1E: Cyberphysical Systems CCS '20, November 9–13, 2020, Virtual Event, USA

267

C h e c k () {
1 : i f (C 1 : a > b) {
2 : S 1
3 : r e t u r n

}
4 : i f (C 2 : c = = d) {
5 : S 2
6 : r e t u r n

}
7 : S 3
8 : i f (C 3 : e > f) {
9 : S 4

}

(a) Code

P1 := !C1

:= (a <= b)

P2 := !C2

:= (c != d)

P3 := C3

:= (e > f)

(d) Predicates

Objectives:

d1 := -(a-b)

d2 := e-f

Constraints:

g1 := c!=d

(e) costs

C1

S3

S4

C2

S2

C3

(b) CFG

Start

S1

End

1

4

8

7

9

C1

S3

S4

C2

S2

C3

(c) CDG

S1

Backward
Traversal

F

F

T

Figure 7: Program analysis and cyber cost function generation

between statements. From the annotated "counter-measure" state-

ment S4 (in red), it traverses the CDG backward until it reaches

the control loop and collects the predicates along the way. In the

figure, S4 is control dependent on C3T, meaning C3 taking the true

branch. C3 is in turn control dependent on C2F as the execution
of C3 is directly determined by C2 taking the false branch. Finally,

predicates and branches C1F, C2F, and C3T are extracted.
Our analysis is inter-procedural because safety checks may cross

multiple functions. It leverages the default points-to analysis in the

compiler [72] to handle function pointers. Although irregular con-

trol flow such as recursion posts challenges for control dependence

computation, we have not encountered such cases in our subject

systems. This is reasonable because control loop is time sensitive

such that developers avoid putting heavy loops or recursions in it.

Each extracted predicate is then normalized to yielding a true

value. That is, a predicate with the false branch is normalized to

its negation. It is to simplify the later analysis/transformation. In

our example (as shown in Figure 7(d)), C1F is normalized to a<=b,
C2F is normalized to c!=d, and C3T is normalized to its original

form. The normalized predicates are classified into two kinds. The

first includes all the comparative predicates, called the objectives.
The second includes all the equality or inequality checks, called

the constraints. In Figure 7(d), P1 and P3 are objectives and P2 is a

constraint.

An objective LHS ◦RHS with ◦ being any comparison operation

(e.g., ≤, ≥, >,or <) is transformed to expressions +/−(LHS − RHS)
with the sign + or − depending on the comparison direction (i.e, +

for ≥, >, - for ≤, <). We use symbols d1, d2, etc., to denote these

expressions. In our example, the first normalized predicate a<=b
is transformed to “d1: - (a-b)” as shown in Figure 7(e). To identify

under-approximation type of vulnerability, test mutation aims to

reduce the values of objective expressions d1, d2, and so on, while
making sure the constraints are satisfied. Intuitively, assume the

RV is in an unsafe state and the safety-check function detects it. As

such, the extracted predicates and their corresponding branches

must satisfy (e.g., C1F). The corresponding objective expression

(e.g., d1: -(a-b)) must be greater than 0. Reducing the value of

the objective expression helps pushing the safety-check function to

negate its decision so that the crash is missed. False positives can

be similarly derived.

Formally, the cyber cost is defined as follows.

Fγ = {d1, d2, . . . , dm }

subject to : G = {д1, д2, . . . , дn }
(1)

AUTO

RTL

LAND

VRVAUTO:
𝒙′ =𝑨𝑨𝒙 𝒕 +𝑩𝑨𝒖 𝒕
𝐲 𝒕 =𝑪𝑨𝒙 𝒕 +𝑫𝑨𝒖 𝒕

VRVLAND:
𝒙′=𝑨𝑳𝒙 𝒕 +𝑩𝑳𝒖 𝒕
𝐲 𝒕 =𝑪𝑳𝒙 𝒕 +𝑫𝑳𝒖 𝒕

VRVRTL:
𝒙′ =𝑨𝑹𝒙 𝒕 +𝑩𝑹𝒖 𝒕
𝐲 𝒕 =𝑪𝑹𝒙 𝒕 +𝑫𝑹𝒖 𝒕

re
m

ain
_b

at
t <

 20
%

se
t_

m
od

(R
TL

)

mission_completed == true

dist_
fro

m_home < 0.3m

GUIDED

VRVGUIDD:
𝒙′=𝑨𝑮𝒙 𝒕 +𝑩𝑮𝒖 𝒕
𝐲 𝒕 =𝑪𝑮𝒙 𝒕 +𝑫𝑮𝒖 𝒕

home_arrived &&
set_mod(guided)

Se
t_

m
od

(la
nd

)

Figure 8: An example of hybrid model: discrete operation mode
switch (finite state machine) and continuous state-space models for
each operation mode

where Fγ is the multiple objectives and G is the constraints.

The cost function for our example is the following form

Fγ = {d1 : −(a − b), d2 : e − f }

subject to : G = {д1 : c , d }
(2)

.

The cyber cost for the quadrotor safety checks in Figure 2 is as

follows.

Fγ = {d1 : −(accel_length − 3.0), d2 : angle_err − 30,

d3 : crash_counter − 2}

subject to : G = {д1 : armed(), д2 : !land_completed,

д3 : mode , ACRO, д4 : mode , FLIP}

(3)

4.2.2 Physical Cost. The physical cost function describes how

much the current system physical states deviate from the expected

states denoted by the virtual RV (VRV). As such, the challenge

lies in building the hybrid model (in Figure 8) or the VRV. The

hybrid model consists of a finite state machine (FSM) that describes

the operation mode (e.g, AUTO and RTL) switches and a list of

state-space models, one for each operation mode. The discrete FSM

takes the operation mode status as input and performs the corre-

sponding state (operation mode) transition. For instance, the FSM

in Figure 8 shows that the mode transition from AUTO to Retrun-
To-Home(RTL) when the remaining battery is less than 20% and

the mode variable is set to RTL mode.

The FSM is derived from the RV’s operation specification. Most

RVs have a small number of operation modes and mode transitions.

With our domain knowledge, extracting the needed information

Session 1E: Cyberphysical Systems CCS '20, November 9–13, 2020, Virtual Event, USA

268

from our subject systems took a few human-hours. As such, the

manual efforts of constructing the FSM is reasonable. For each

operation mode, system identification (SI) [60] is used to derive a

state-space model which describes the continuous physical behav-

iors. The state-space model can be considered as a set of equations

that compute the next state values (e.g., position, velocity, angel ve-

locity, and acceleration), denoted as x ′ inside the individual modes

in Figure 8, from the current states x(t) and a set of reference values
u(t), e.g., target positions and velocities. Variable t denotes time.

These reference values are generated by the navigation logic of

the RV system at a frequency of 400Hz. That is, new targets are

provided every 2.5 miliseconds. Note that these reference values are

not way-points in the navigation plan which are too coarse-grained.

Intuitively, one can consider that the navigation logic continuously

interprets the navigation plan based on the current trajectory (or

the current deviation from the plan) to a set of smaller goals de-

noted by reference values, and passes them to the low level control

algorithm (e.g., a PID controller), which further interprets them to

actuation signals. The state-space model describes the low level

control algorithm and the vehicle dynamics. The derivation of state-

space model is similar to that in [15, 45, 46, 65] and hence not our

contribution. Intuitively, it is done by performing regression on a

set of RV operation traces to derive coefficients in a provided model

template (e.g., matrices A, B, C and D inside the nodes in Figure 8).

Interested readers please refer to [15, 45, 46, 58, 65].

During testing, both the RV and the VRV (i.e., the hybrid model)

share the same operation mode inputs and the reference inputs

(generated by the navigation logic). The RV will operate on the

VTF inside the simulator whereas the VRV simply produces its next

states based on the hybrid model. The error between the RV states

and the corresponding VRV states constitutes the physical cost.

The formal definition is as follows.

Fρ = {p1, p2, ..., pm }, with

pi = |RVi − VRVi |
(4)

Here, RVi and VRVi denote the ith state of the RV and the VRV,

respectively. During testing, Fρ is maximized (through input mu-

tation) in order to expose the under-approximation type of vul-

nerabilities. A weighted sum of pi is compared to a threshold θ to

determine if a real crash happens. If it does and the safety checks

cannot detect it, an under-approximation vulnerability is found.

We will show in Section 5.2 that our results are not sensitive to θ .

4.3 Multi-objective Evolutionary Testing
Our testing technique continuously alters the test inputs (i.e., VTF

configuration) in order to expose CP-inconsistencies. The evolution-

ary testing guides the input mutation using the cyber and physical

costs defined in the previous section. Such guidance is critical given

the enormous search space.

4.3.1 Input Selection. The virtual test field (VTF) can be configured
in many different ways. Table 1 lists a subset of the variables that

can be mutated. As mentioned in Section 4.1, they fall into two

kinds, world variables that describe the environmental conditions

and model variables that describe the characteristics of individual
objects on the VTF. Depending on the number of objects, the num-

ber of variables that can be mutated may be very large. For the

motivation example in Section 2, there are 2 types (rotation and

Table 1: Input Variables to Mutate

Domain Input Type Parameters Default

World

Wind Direction [x y z] 0 0 0

Wind Duration [Start, End] (s) 0 0

Wind Strength N 0

Gravity [x y z] (m/s2) 0 0 -9.8

Magnetic Field [x y z] (T) 6e-6 2e-5 -4e-5

Temperature T (K) 288.15

Air Pressure P (pa) 101325

Ambient Light [x y z] 0 0 -1

Time of Day [0..24] 10

Clouds Speed C (m/s) 0.6

Fog Density D 1

Model

Position [x y z] 0 0 0

Rotation [roll pitch yaw] 0 0 0

Inertia [ixx iyy izz] 1 1 1

Mass m (Kg) 1

Geometry Scale 1 1 1

Bounce Restitution Coefficient e 0

Friction Friction Coefficient µ 1

Elasticity Poissons Ratio 0.3

inertia) of variables to be mutated for each object. Depending on the

subject RV and the kind of safety checks, only a subset of variables

have non-trivial influence on system behaviors (and hence on the

cost functions). To reduce the search space, we develop an input

selection procedure that filters out the insignificant variables for

the given cost functions.

Given a navigation plan and the generated cost functions, we

sample each input variable type within the valid range uniformly.

For each sample, we execute the test in the simulator and observe

the cost function differences across samples. The variables whose

different samples lead to negligible cost function value differences

are pruned out. For example, changing ambient light is less effective

when the test is not related to the vision sensor. In contrast, the

magnetic field values have substantial impact in the magnetometer-

related tests.

Optimal Points
(Pareto Front)

CP-inconsistencies

Figure 9: Objective space and optimal set

4.3.2 Evolutionary Testing. The goal of testing is to find maxi-

mum/minimum point of the cost functions. However, due to the

complexity of physical world and the subject system, the multiple

cost functions are unlikely smooth, that is, they are often hilly or

even discontinuous. They are typically non-linear and non-convex.

Gradient-based optimization techniques [14, 40] are suitable for

continuous and convex functions for single objective optimization

and hence do not perform well in our case. They often get stuck in

local optimals and have difficulties finding the global ones. Also,

they do not handle the multiple conflicting objectives well. In Fig-

ure 9, we use a very large number of samples 40,000 to approximate

Session 1E: Cyberphysical Systems CCS '20, November 9–13, 2020, Virtual Event, USA

269

the search space for an IRIS+ RV with the ArduCopter controller.

For the purpose of visualization, we use PCA [81] to reduce the

high dimensional input space to two dimensions and have the z di-
mension denote a weighted sum of the costs. Observe that there are

lots of ridges and (possible) discontinuities. The red points denote

the optimal set (i.e., Pareto optimal [78]) for the multiple objectives,

and CP-inconsistencies are located on the bottom left among the

optimal points. In our evaluation (Section 5.2), we compare different

search algorithms in exposing vulnerabilities.

Therefore, we make use of an evolutionary algorithm instead. In-

tuitively, the algorithm starts with a set of random test samples that

form the first generation. It executes these samples in the simulator

and computes the cost function values. Those samples that have

better cost function values (called healthy samples) are selected to

derive the next generation. The derivation is through two evolution

operations called cross-over and mutation, with the former mixing

parts from two parents into a child input and the latter randomly

altering values in a parent input to produce a child. The newly

derived children and the healthy parents form the next generation.

The process repeats until convergence (no better children can be

derived). According to [68], evolutionary algorithms have better

capabilities of handling noisy, discontinuous, and even discrete

functions. In the following, we explain the details of our solution.

Multi-objectiveOptimization forCP-inconsistency (MOP-CPi)
We reduce CP-inconsistency identification to a Multiple-objective

Optimization Problem (MOP) [25, 74]. In the previous section (Sec-

tion 4.2), we defined two types of cost functions (cyber and phys-

ical). Our goal is to search for the maximum difference between

the two. In normal conditions, both costs tend to have small values.

Conversely, in abnormal conditions, both have large values. Our

technique looks for the cases where the difference between the

two is maximum such that CP-inconsistency likely occurs. The

objective is formalized as follows.

minimize F =

{
Fover = {−Fγ , Fρ }, ifmode = f p
Funder = {Fγ , −Fρ }, otherwise

subject to G = {д1, д2, . . . , дn }

(5)

Fover represents the objective for identifying over-approximation

vulnerabilities (false warnings), where we want to maximize the

cyber cost (i.e., minimize the negation of the cyber cost Fγ) and
minimize the physical cost Fρ . Funder represents the objective for
under-approximation vulnerabilities (missing exceptions), where

we want to minimize the cyber cost and maximize the physical cost.

Fitness Ranking Function. Defining a ranking function to mea-

sure the level of heath of individual input samples is key to devising

an evolutionary algorithm. In our design, ranking is computed

based on the aforementioned objective function using (1) the Pareto
optimality level [25] and (2) the degree of physical anomaly.

Our objective function consists of multiple objectives (e.g., one

for each state variable or an expression derived from a safety check).

These objectives may contradict with each other, meaning that

improving one may undermine others. In our motivation example

(an under-approximation vulnerability), the cyber cost (d1, d2, d3)
for an input denoting a 0 collision angle is (1, 3, 0). It is (3, 2, 0)

when the angle is 30. Observe that the first objective d1 is better

(smaller) with a smaller angle whereas the second objective d2
is better with a larger angle. Hence, mutating the collision angle

input may have contradicting effects for different objectives. Pareto

Algorithm 1 Evolutionary Testing for CP-inconsistencies Identifi-

cation

Input: G: number of generation, K: population size

Mc , Mp : number of objectives (cyber,physical)

N : number of inputs

I L , IU : input range vector (lower,upper)

Output: CP-inconsistency cases

1: procedure CPI-Testing
2: X ← random(I L, IU) ▷ K input vectors

3: Y ← evaluation(X) ▷ K output vectors

4: P ← X , Y ▷ Initial population of size K

5: R ← f itness_rank (P) ▷ Fitness Rankings of individuals in P

6: for G iterations || CPi found do ▷ main evolution loop with K individuals

7: Pparent ← tournament_select ion(P, R, K/2) ▷ K/2 parents

8: Xchild ← дene_op(Pparent , µ, η) ▷ crossover/mutation, K children

9: Ychild , R ← evaluation(Xchild) ▷ simulation

10: Pchild ← Xchild , Ychild
11: Pcandi ← Pparent ∪ Pchild ▷ 3K/2 candidates

12: CPi ← vulnerable(Pcandi) ▷ determine CPi cases

13: if |CPi | , ∅ then
14: save(CPi)
15: end if
16: Rcandi ← f itness_rank (Pcandi)
17: P, R ← top_n_select ion(Pcandi , R, K) ▷ best K individuals

18: end for
19: end procedure

dominance [78] was introduced to mitigate such problems. It is

widely used in optimization problems in economics, engineering

and so on. Intuitively, Pareto dominance states that an input x1
dominates (≺) x2 if x1 is not worse than x2 in all objectives and x1
is strictly better than x2 in at least one objective, which is defined

as follows:

fi (x1) ≤ fi (x2), ∀i = 1, 2, ..., M

fi (x1) < fi (x2), ∃i = 1, 2, ..., M
(6)

The Pareto optimal set (or Pareto front) contains all the elements

that are not dominated by others. It is defined as follows.

Front (X) = {x1 ∈ X | ∄x2 ∈ X s .t . x2 ≺ x1 ∧ x1 , x2 } (7)

Based on Pareto dominance, we can determine the optimality level

F (x) for each element x . Intuitively, the Pareto set of all elements

are at level one. After removing the level one elements, the Pareto

set of the remaining elements are at level two, and so on [28].

In addition to the Pareto optimality level, we also consider the

physical anomaly level Ω(x), which is the expected value of nor-

malized physical anomalies. It is defined as follows.

ω(x) =
1

Mp

Mp∑
i=1

pi − Lpi
Upi − Lpi

Ω(x) =

{
ω(x), ifmode = f p
−ω(x), otherwise

(8)

where Mp denotes the number of physical objectives, Upi , Lpi
upper/lower bounds of objective pi . Depending on the search mode

f p, which is either over-approximation or under-approximation,

Ω(x) is ω(x) or its negation. Intuitively, we want higher physical
anomaly level for under-approximation and lower level for over-

approximation.Ω(x) ∈ (0, 1) enables selecting the better individuals
among those that have the same Pareto optimality level. In other

words, the fitness ranking function is the following.

R(x) = F (x) + Ω(x) (9)

The individuals with a smallR value rank higher and are considered

healthier.

Session 1E: Cyberphysical Systems CCS '20, November 9–13, 2020, Virtual Event, USA

270

Algorithm 1 presents the details. Each individual is represented

as an input vector of size N , with each dimension an input vari-

able. Evaluating an individual produces an output vector of size

M , each dimension denoting a cyber/physical objective. The input

vector is in the range (IL , IU). After each generation, a population

includes the bestK individuals. In lines 2-3, the algorithm generates

random inputs and evaluates them to produce the corresponding

outputs. The inputs and outputs together make the initial popu-

lation P (line 4). Based on the outputs (cyber and physical cost),

the fitness ranks are computed at line 5. It then performs evolution

over G generations (lines 6-18), or terminates when it converges.

The evolution procedure works as follows. First, it performs binary
tournament selection, which selects half of the population as par-

ents (line 7). Specifically, it picks two individuals randomly and

compares their ranks to select the better one. With the K/2 parents,
genetic operations are used to produce K children (line 8). We use

simulated binary crossover (SBX) [26] that creates an offspring by

combining parts of a pair of parents based on a parameterized prob-

ability function which simulates the natural crossover in biology,

and polynomial mutation [27, 29] that adds a small variation to a

parent which simulates biological mutation. The generic operations

take the parameters µ and η, which determine how well spread

the children will be from their parent in crossover and mutation,

respectively. We use a popular setting [28] µ = 20% and η = 20. The

children population is obtained with the inputs from the genetic op-

erations and the outputs fromevaluation() (lines 9-10).Within

the current generation, including both the selected parents and the

generated children, the vulnerable() function determines if

the individuals denote CP-inconsistencies. After combining the

parents and the children, fitness_rank() further computes

the rank again and top_n_selection() selects the best K in-

dividuals for the next generation. Through evolution, the algorithm

learns to find the best individuals guided by the cost functions.

5 EVALUATION
We evaluate our technique with four popular RV control programs

running on 2 real vehicles and 6 simulated vehicles, including quad-

rotors, ground rover and fixed-wing airplane.

5.1 Evaluation Setup
5.1.1 Implementation. We have developed a prototype that in-

cludes: (1) SDF definitions to describe external environments (world.

sdf) and objects (model.sdf) with the SDF versions 1.5 and 1.6 ; (2)

Gazebo (version 8.6) plug-ins to generate customized environmen-

tal effects based on Gazebo APIs; (3) mission generator in python

for System Identification; (4) hybrid model generator implemented

on MATLAB; (5) static analysis for cyber-cost function generator;

(6) evolutionary test driver that includes a fitness ranking function

and genetic mutation operations unique to our technique.

5.1.2 Subject Systems. We evaluate our technique for 7 different

types of counter-measure functions. Table 2 shows the control pro-

grams and the vehicles. The 6th column (# Modes) represents the

number of operation modes such as loiter, auto, rtl, etc. The last

column shows the number of safety violations under test. Table 3

shows the types of safety violations that are being checked against

Table 2: Subject Programs

Software Version SLOC Type Vehicle # Modes

Safety

violations

ArduCopter

3.7 212,470 Quadrotor IRIS+ 22 4

3.2 119,326 Quadrotor Erle-Copter 15 3

1.5.3 212,601 Quadrotor Solo 17 4

APMrover2 3.5 203,266 Rover

Husky 12 1

Erle-Rover 12 1

PX4 1.8.2 346,561 Quadrotor

IRIS+ 15 3

Solo 15 3

ArduPlane 3.10 208,828 Airplane Zephyr 15 2

Table 3: Subject Safety-check Types

Safety-check Type ArduCopter APMrover2 PX4 ArduPlane

Crash ✓ ✓ ✗ ✓

Thrust Loss ✓ ✗ ✗ ✗

Ground Contact ✗ ✗ ✓ ✗

Landing ✓ ✗ ✓ ✗

Freefall ✗ ✗ ✓ ✗

Control Loss (Parachute) ✓ ✗ ✗ ✗

Flying (Landed) ✗ ✗ ✗ ✓

✓: Supported, ✗: Not supported

in each control program. Note that the implementation and predi-

cates for the same type of violation are quite different across control

software. For example, in order to check a crash, ArduCopter re-

quires checking the motor status, flight mode, acceleration, angle

deviation, etc., while APMrover2 checks the current velocity, motor

speed, angular velocity, and so on. Specifically, Crash denotes a

kind of violation in which the vehicle collides with some object.

Thrust loss denotes the situation where the thrust of motors is lost,

which could lead to severe consequences such as crash. Landing
denotes the situation where the vehicle is in the process of landing.

It is safety related because the navigation logics refer to the status

for stable flights. Freefall means that the vehicle in free fall. Control
Loss checks if a vehicle has lost control. For example, in ArduCopter,

the vehicle is considered having lost control if it is more than 30 de-

grees off from the target roll and pitch continuously for at least one

second. This leads to disarming motors and releasing a parachute.

Flying checks if a vehicle is currently flying (or landed). It is safety

related because it affects the states of a few critical components

(e.g, throttle control).

(a) Real Vehicles (b) Simulated Vehicles

Figure 10: Subject Vehicles: (a) Erle-rover, 3DR Solo (b) IRIS+, Erle-
Copter, 3DR Solo (upper), Husky Rover, Erle-rover, Zephyr (lower)

Session 1E: Cyberphysical Systems CCS '20, November 9–13, 2020, Virtual Event, USA

271

We used 6 simulated vehicles and 2 real vehicles (3DR Solo

and Erle-rover). Gazebo (version 8.6) has high-fidelity phsyics en-

gines and runs virtual vehicles with different environmental con-

ditions. The vehicles are shown in Figure 10. After we identify

CP-inconsistency cases, we validate the ones where we have the

physical vehicles in the real-world, following the (environmental)

exploit inputs generated by our technique.

5.2 Results
We first report the CP-inconsistency cases found by our technique.

Then we compare our technique with gradient descent and random

search to demonstrate the effectiveness of our technique. Lastly,

we show that the identification of these cases is not sensitive to

the threshold used in comparing RV and VRV states to detect real

accidents (Section 4.2.2).

CP-inconsistencies. Table 4 shows details of the CP-inconsistency
cases found by our technique. The information of each case is

presented in an upper row and an lower row. The second col-

umn and the third column (upper) indicate the controller software

and the safety-check type that exhibit the CP-inconsistency. The

fourth column (upper) shows the vulnerability type (under- or

over-approximation), and the last column (lower) shows the con-

sequences when the vulnerability is exploited. Additionally, VTF

configuration, main input type, and input condition columns in the

table describe the environmental conditions that trigger the vul-

nerability. And, #cyber objectives, #constraints and #model states

columns provide the number of elements in the cost functions used

in the testing that found the vulnerability. The check result column

shows the result of the checks (true and false) with the reaction

functions after the detection. In ArduCopter, V1 and V2 are the

under-approximation (UA) vulnerabilities, as the crash check fails

to detect real crashes under the given conditions (check result =

false), whereas V3, V4, and V5 are the over-approximation (OA)

vulnerabilities, because the checks erroneously detect normal oper-

ations as safety-critical situations (check result = true). In PX4, V6

(OA) triggers a false alarm of the freefall check under wind gust,

and the landing check of V8 (OA) falsely determines the landing

status while the vehicle is hovering under rising wind, whereas V7

(UA) fails to detect actual ground contact. In APMrover2, V9 and

V10 (UA) miss the detection of actual crashes. Observe that each

case leads to critical and unrecoverable consequences such as crash,

drift away, and position lock. We present the actual attacks on real

and simulated vehicles as case studies in Section 5.3.

Effectiveness of Search-based Testing.We compare our evolu-

tionary search with gradient descent and random search. In the

gradient descent, we approximate the gradients by the variations of

inputs over the variation of the weighted sum of multiple objectives.

Note that gradients cannot be directly computed using the chain

rules [7] as an RV system is not a closed loop. As gradient descent

tends to get stuck in local optimals, we run it multiple times and

report the best result. We also run a random search, which per-

forms uniform sampling in the same input ranges as those in the

evolutionary search. We run it for a number of times that equal to

the total number of individuals in the evolutionary search. Table 5

(in Appendix) shows the cost value changes and the testing time

with different techniques for all the reported cases. Note that the

CP-inconsistency level (IL) indicates the difference between the

cyber and physical costs, thus the larger the better for our purpose.

Observe that while the evolutionary technique successfully finds

the vulnerabilities, the others mostly fail. Specifically, in the evo-

lutionary search, the optimization directions (↓ or ↑) for each cost

function (Cn and P) are consistent with the search goals, while the

others are not, meaning that other approaches cannot deal with

contradictory objectives.

Non-crash
Crash (UA)

Figure 11: Physical costs and threshold

Physical Accident Detection and Threshold. Recall that our
technique uses the physical cost (Fρ), i.e., the differences between

the RV and VRV states, and a threshold to determine a real accident.

The detection ought to be precise as it provides the ground truth for

the evolutionary search. Figure 11 shows clear distinction between

the real crashes confirmed in simulation (red and black circles) and

normal executions, which are the blue circles close to the x axis .

Each circle denotes the normalized maximum physical cost of a test.

Observe that the (pink) area for crashes and the (green) area for

none crashes have a big gap. It means that any threshold falling into

the gap allows precise detection of real crashes. Moreover, observe

that the under-approximation cases (red circles) clearly belong to

the pink area, meaning that our method can precisely report real

crashes while the safety checks fail.

5.3 Case Studies
In this section, we provide case studies for CP-inconsistency found

by our technique. We also discuss how attackers exploit these vul-

nerabilities to disrupt operations without leaving footprints.

5.3.1 ArduCopter. ArduCopter is equipped with several safety

checks. We present a representative over-approximation case in

the thrust loss check.

1 #define TLC_ANGLE_DEVIATION_CD 1500
2 #define TLC_MIN_THROTTLE 0.9f
3 #define CRASH_CHECK_ANGLE_DEVIATION 30.0f
4 #define TLC_TRIGGER_SEC 1
5

6 if(motors->is_thrust_boost) {
7 return;
8 }
9 if((!motors->armed() || land_completed) ||
10 (angle_target > TLC_ANGLE_DEVIATION_CD) ||
11 (throttle < TLC_MIN_THROTTLE && !motor->limited) ||
12 (throttle < 0.25) || (velocity_z >= 0) ||
13 (angle_error >= CRASH_CHECK_ANGLE_DEVIATION) {
14 thrust_loss_counter = 0;
15 return;
16 }
17 thrust_loss_counter++;
18 if(thrust_loss_counter >= TLC_TRIGGER_SEC) { //1(s)
19 gcs().send_text("Potential Thrust Loss");
20 motors->set_thrust_boost(ture);
21 }

Figure 12: thrust loss check in ArduCopter

Session 1E: Cyberphysical Systems CCS '20, November 9–13, 2020, Virtual Event, USA

272

Table 4: CP-inconsistencies discovered

Controller Safety-check Type Vulnerability Type Mission # Cyber Objectives # Constraints #Model States

VTF Configuration Main Input Type Input Condition Check Result (Reaction) Attack Consequence

V1 ArduCopter

crash check under-approximation straight line 3 5 6

crash with a wall object rotation [0 0 -28.6] false multiple impact crash

V2 ArduCopter

crash check under-approximation straight line 3 5 6

crash with an object weight / inertia 24 [12.3 15.4 3.0] false multiple impact crash

V3 ArduCopter

crash check over-approximation waypoints (S->N) 3 5 6

wind gust wind strength / direction 16 [-1 0 0] true (disarm) sudden drop

V4 ArduCopter

thrust loss check over-approximation fly up (takeoff) 5 4 6

wind gust wind strength / direction / durration 32 [0 0 -89.9] 1 true (thrust boost) sudden acceleration and drift away

V5 ArduCopter

parachute check over-approximation waypoints (W->E) 4 7 6

wind gust wind strength / direction 15->20 [0 1 0] true (parachute) parachute released in normal operation

V6 PX4

freefall check over-approximation hovering 3 1 6

wind gust wind strength / duration 35 / 0.4 true (alert) emergency alert in normal operation

V7 PX4

ground contact under-approximation waypoints 3 4 6

wind gust wind strength / direction / duration 31 [0.5 0.3 -0.8] 1.4 false bounce and fly away (trajectory deviation)

V8 PX4

landing check over-approximation hovering 4 2 6

Rising wind wind strength / duration 28 / 0.6 true (zero thrust) unexpected landing

V9 APMrover2

crash check under-approximation drive forward 5 2 4

object crash object position [5 -0.3 0] false run-off-road multiple crashes

V10 APMrover2

crash check under-approximation drive forward 5 2 4

non-fixed object crash weight 2.3 false crashes with a non-fixed object (no response)

Thrust Loss. ArduCopter triggers a boost of thrust when it detects

thrust loss. Figure 12 shows the simplified code for the thrust loss

checks in ArduCopter. In order to identify thrust loss, it has a

set of if-conditions (highlighted) on system states. When all these

conditions are satisfied to reach the statements at lines 20-21 (i.e.,

thrust loss is detected for at least TLC_TRIGGER_SEC=1 second),
the thrust boost function is triggered, which scales the motor thrust

by a ratio, to compensate for the detected loss.

To test the thrust loss safety checks, our VTF configuration uses

wind gust on the quadrotor flying in the loiter mode, in which the

vehicle tries to maintain the target pose - position and attitude. The

wind gust causes thrust loss on the vehicle. In this situation, the

expected behavior of the checks is to activate the thrust boost so

that the vehicle continues to fly against the wind forces.

Our technique was able to find an input condition that causes

erroneous detection of thrust loss and the undesired activation

of thrust boost (i.e., over-approximation CP-inconsistency). The

sudden boost (or acceleration), when there is no real thrust loss,

makes the vehicle fly away from the target position. Specifically, the

input condition includes the wind gust of speed 32mph in the exact

opposite direction of the motor thrust (< x ,y, z >=< 0, 0,−90 >)

for 1 second. Note that under such a short duration of wind forces,

the controller can bring the vehicle back to its target pose. However,

due to this particular wind gust, all the thrust loss check conditions

are satisfied and the motor thrust boost is activated. As the wind

gust disappears after 1 second, the motor thrust boost is actually

activated under no wind forces. The boost makes all the motors

to reach their maximum speed. In practice, the attitude angle (roll

and pitch) of the quadrotor during hovering is not perfectly zero all

the time. With this small tilt, the maximum motor speed leads the

vehicle to move suddenly in an unexpected direction (depending

on the attitude angle) leading to a crash or another faulty failure

detection (e.g., GPS glitch due to unexpected sudden displacement,

even when the GPS sensor is normal).

We tested the case in the real world to confirm that the erroneous

behavior actually happens under the reported conditions (wind

(a) Fly with wind gust (b) Blower and anemometer

Figure 13: Subject quadrotor and wind gust generator

speed 32mph, direction < 0, 0,−90 >, and duration 1 sec). We can

inject various wind forces with a 56V leaf blower (with a maximum

speed of 125 mph and air volume of 465 cfm), as shown in Figure 13.

In this case, the wind gust is turned off after 1 sec, and the thrust

boost is not supposed to be triggered. However, it is triggered

after the wind gust is off. For the safety issue, we inserted code to

change the mode to Land immediately after triggering thrust boost

function to avoid an accident (i.e., landing instead of full throttle).

The video for the erroneous thrust loss check is available at [39].

5.3.2 APMrover2. We present two under-approximation cases for

APMrover2. Figure 14 shows the simplified code snippet from the

crash checker in APMrover2. It decides whether a crash happens

with multiple if-statements (highlighted in the code). If all the

conditions hold for more than 2 seconds (defined by CRASH_-
CHECK_TRIGGER_SEC), it determines that the current vehicle is

in a crashed state, and the controller initiates motor disarming to

avoid additional damages. The video at [35] shows a normal crash

and detection.

SideCrash intoWalls.Our technique reported an under-approximation

vulnerability in which the RVmisses the actual crash. The rover per-

forms a “line follow” mission in which it drives forward in a straight

Session 1E: Cyberphysical Systems CCS '20, November 9–13, 2020, Virtual Event, USA

273

1 #define CRASH_CHECK_VEL_MIN 0.3 //(m/s)
2 #define CRASH_CHECK_THROTTLE_MIN 5.0 //(%)
3 #define CRASH_CHECK_TRIGGER_SEC 2 //(s)
4

5 if(!is_armed() || !is_autopilot_mode()) {
6 crash_counter = 0;
7 return;
8 }
9 if({abs(pitch) > crash_angle || //param:45(default)
10 abs(roll) > crash_angle) {
11 crashed = true;
12 }
13 if(groundspeed() >= CRASH_CHECK_VEL_MIN ||
14 ahrs.get_gyro().z >= CRASH_CHECK_VEL_MIN ||
15 get_throttle() < CRASH_CHECK_THROTTLE_MIN) {
16 crash_counter = 0;
17 return;
18 }
19 crash_counter++;
20 if(crash_counter >= CRASH_CHECK_TRIGGER_SEC) {
21 crashed = true;
22 gcs().send_text("Crash: Going to HOLD");
23 disarm_motor();
24 }

Figure 14: Crash check in APMrover2

line and collides with a heavy object (e.g., wall) at location [5, -0.3,

0] with a certain velocity (3m/s) and angle (=23). At the point of the

crash, some of the conditions are not satisfied, Specifically, when the

pitch and roll angle is smaller than the crash_angle threshold,

and the groundspeed is larger than CRASH_CHECK_VEL_MIN,
the crash_counter is reset, making the crash checker miss the

collision, which may deflect the rover and make it out of control.

(a) Erle-rover in a mission (b) Objects with different weights

Figure 15: Crash Check with Erle-rover

To validate the vulnerability in the real world, we use hard-board

boxes with weight plates inside to realize the reported obstacles (in

the simulation). Figure 15 shows the physical test with the weighted

obstacles. The vehicle performs “line follows” and hits the “wall”

with a 30 degree angle. After the collision, the controller misses the

crash. While it is supposed to disarm the motors after the crash,

the vehicle continues to drive in a different direction. This causes

complete deviation from the expected line (and may cause other

damages). The experiment video is available at [36].

Crash into Light Objects. The second under-approximation case

may lead to more catastrophic consequences. Specifically, the rover

performs the same “line follow” mission and hits a light object

(e.g., a kid) head-on this time. After the collision, it continues to

move forward since the object’s weight is not enough to completely

stop the vehicle. In the real experiment, we realize the reported

conditions using weighted plates. The object’s weight is (=5lbs) ,

and the rover’s velocity is around 3m/s. The object is placed on

the expected line. After the crash, it continues to drive forward

because the vehicle continues to push the objects slightly, while it

is supposed to detect the crash and disarm the motors. Specifically,

this situation satisfied the condition at line 13 (i.e., speed > 0.3m/s

after crash) and resets the crash_counter to zero (i.e., no crash).

The video is available at [37].

We have discussion and videos for an over-approximation and

an under-approximation for PX4. Due to the space limitations, they

are placed in the Appendix.

6 RELATEDWORK
Many approaches have been proposed for RV testing in different

perspectives [5, 6, 22, 41, 52, 59, 67]. A typical testing approach

is live destructive testing with real vehicles under pre-designed

scenarios (e.g., crash) and requirements. A crash test is one of the

destructive testings. In 2012, Boeing 727 [22] is deliberately crashed

for experiments. Many automotive companies perform different

types of crash tests (e.g., frontal, side, and rollover) with dummies

under government car safety programs (e.g., NCAP [3]). These

real vehicle tests can collect the most accurate data from the real

crashes, but it is not economical and only performed for certain

scenarios. To reduce the cost, virtual tests with simulation, such as

LS-DYNA [6, 59, 67], have been utilized. However, the simulation

is designed to replace the real vehicles, and certain scenarios (e.g.,

crash) need to be designed by the engineer. Also, it mostly focuses

on the physical impact, and is not control program-oriented.

On the other side, many techniques [20, 42–44, 46, 55, 76] have

been proposed to test control programs in RVs. Traditional soft-

ware testing techniques [2, 21, 57, 64, 82, 83] could find conventional

types of bugs or vulnerabilities (e.g., buffer overflow). But our tech-

nique handles new types of problems, that is, CP-inconsistency,

which is not detected by the traditional approaches. Formal meth-

ods [42–44, 76] are effective in exposing various problems in RV

software, but have difficulty scaling to whole-system RV verifica-

tion. A destructive test [46, 55] leverages control semantics in RVs

have been recently proposed. [46] uses an SI-derived model for soft-

ware fault localization (SFL). It intentionally injects program bugs

(e.g., wrong arithmetic operations) and then tries to locate these

bugs with various testing techniques. [55] intentionally changes

parameters in a control program to determine valid ranges. It mono-

tonically increases/decreases parameter values until the vehicle is

more deviated than fixed thresholds from the target states. Essen-

tially, these approaches intentionally inject faults into the control

program whereas our technique looks for latent problems.

7 CONCLUSION
We present a new type of Cyber-Physical (CP)-inconsistency vulner-

abilities for RVs. These vulnerabilities can be exploited by merely

manipulating the environmental conditions. We propose a novel

technique to detect these vulnerabilities. The technique features a

novel inter-play of program analysis, RV modeling, and evolution-

ary search based testing. Our technique detects 10 real vulnerabili-

ties in 4 real-world control software with 8 vehicles.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their constructive com-

ments. This research was supported, in part by NSF 1901242 and

1910300, ONR N000141712045, N000141410468 and N000141712947,

IARPATrojAIW911NF-19-S-0012, Sandia National Lab under award

1701331. Any opinions, findings, and conclusions in this paper are

those of the authors only and do not necessarily reflect the views

of our sponsors.

Session 1E: Cyberphysical Systems CCS '20, November 9–13, 2020, Virtual Event, USA

274

REFERENCES
[1] 2017. Arduino based Arducopter UAV, the open source multi-rotor - Arducopter,

the open source UAV multicopter. http://www.arducopter.co.uk/.

[2] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009. Control-flow

integrity principles, implementations, and applications. ACM Transactions on
Information and System Security (TISSEC) 13, 1 (2009), 1–40.

[3] National Highway Traffic Safety Administration et al. 2007. The new car assess-

ment program suggested approaches for future program enhancements. DOT HS
810 (2007), 698.

[4] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 1986. Compilers, principles,

techniques. Addison wesley 7, 8 (1986), 9.

[5] Tejasagar Ambati, KVNS Srikanth, and P Veeraraju. 2012. Simulation of vehic-

ular frontal crash-test. International Journal of Applied Research in Mechanical
Engineering (IJARME) ISSN (2012), 2231–5950.

[6] Ali O Atahan. 2009. Vehicle crash test simulation of roadside hardware using

LS-DYNA: a literature review. International Journal of Heavy Vehicle Systems 17,
1 (2009), 52–75.

[7] Robert Gardner Bartle et al. 1976. The elements of real analysis. Wiley.

[8] Bloomberg 2017. Tesla Is Testing Self-Driving Cars on California

Roads. https://www.bloomberg.com/news/articles/2017-02-01/tesla-is-testing-

self-driving-cars-on-california-roads.

[9] Boeing Air Taxi 2019. BoeingâĂŹs Autonomous Taxi Takes Flight. https:

//www.wsj.com/articles/boeings-autonomous-taxi-takes-flight-11548249580.

[10] Boeing737-Ethiopian 2016. Ethiopian Airlines: ’No survivors’ on crashed Boeing

737. https://www.bbc.com/news/world-africa-47513508.

[11] Boeing737-Lion 2016. Lion Air: How could a brand new plane crash? https:

//www.bbc.com/news/world-asia-46014260.

[12] California DMV 2019. Testing of Autonomous Vehicles with a Driver. https:

//www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/testing.

[13] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav

Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, Ta-

dayoshi Kohno, et al. 2011. Comprehensive Experimental Analyses of Automotive

Attack Surfaces.. In USENIX Security Symposium. San Francisco.

[14] Peng Chen and Hao Chen. 2018. Angora: Efficient fuzzing by principled search.

In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 711–725.
[15] Hongjun Choi, Wen-Chuan Lee, Yousra Aafer, Fan Fei, Zhan Tu, Xiangyu Zhang,

Dongyan Xu, and Xinyan Xinyan. 2018. Detecting Attacks Against Robotic

Vehicles: A Control Invariant Approach. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 801–816.

[16] Abraham A Clements, Naif Saleh Almakhdhub, Khaled S Saab, Prashast Srivas-

tava, Jinkyu Koo, Saurabh Bagchi, andMathias Payer. 2017. Protecting Bare-metal

Embedded Systems With Privilege Overlays. In Security and Privacy (SP), 2017
IEEE Symposium on. IEEE, 289–303.

[17] CNN 2012. Self-driving cars now legal in California. http://www.cnn.com/2012/

09/25/tech/innovation/self-driving-car-california/index.html.

[18] Frederick B Cohen. 1993. Operating system protection through program evolu-

tion. Computers & Security 12, 6 (1993), 565–584.

[19] comma.ai 2018. commaai/openpilot: open source driving agent. https://github.

com/commaai/openpilot.

[20] Mirko Conrad. 2004. A systematic approach to testing automotive control software.
Technical Report. SAE Technical Paper.

[21] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve

Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. 1998. Stack-

guard: Automatic adaptive detection and prevention of buffer-overflow attacks..

In USENIX security symposium, Vol. 98. San Antonio, TX, 63–78.

[22] Crash Test 2012. See What Happens When A Boeing 727 Is Crashed Into

The Desert On Purpose. https://www.flightglobal.com/video-boeing-727-

deliberately-crashed-in-desert-for-tv/105069.article.

[23] Ang Cui and Salvatore J Stolfo. 2011. Defending embedded systems with software

symbiotes. In International Workshop on Recent Advances in Intrusion Detection.
Springer, 358–377.

[24] Drew Davidson, Hao Wu, Robert Jellinek, Vikas Singh, and Thomas Ristenpart.

2016. Controlling UAVs with Sensor Input Spoofing Attacks.. InWOOT.
[25] Kalyanmoy Deb. 2001. Multi-objective optimization using evolutionary algorithms.

Vol. 16. John Wiley & Sons.

[26] Kalyanmoy Deb and Ram Bhushan Agrawal. 1995. Simulated binary crossover

for continuous search space. Complex systems 9, 2 (1995), 115–148.
[27] Kalyanmoy Deb and Mayank Goyal. 1996. A combined genetic adaptive search

(GeneAS) for engineering design. Computer Science and informatics 26 (1996),
30–45.

[28] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A

fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on
evolutionary computation 6, 2 (2002), 182–197.

[29] Kalyanmoy Deb and Santosh Tiwari. 2008. Omni-optimizer: A generic evolution-

ary algorithm for single and multi-objective optimization. European Journal of
Operational Research 185, 3 (2008), 1062–1087.

[30] Demo Video 2019. Head-on crash. https://drive.google.com/open?id=1_

yHV5eGf13bKISqshB3ieqR62dDYLYgs.

[31] Demo Video 2019. PX4 free fall check. https://drive.google.com/open?id=

1pGLktjVZPvGXhugJq02GYxAn67XL7BTY.

[32] Demo Video 2019. PX4 free fall check fail. https://drive.google.com/open?id=

19WUb3f_KlUL_Nc8zmwlfKyQysM9KPalG.

[33] Demo Video 2019. PX4 ground contact. https://drive.google.com/open?id=1_

T8Lk3FX-ujSxh8nBINRAZUfUoI9sI4g.

[34] Demo Video 2019. PX4 ground contact fail. https://drive.google.com/open?id=14-

lausvtfEjFfGJJtKFdEcLG5k2-XDpf.

[35] Demo Video 2019. Rover crash check. https://drive.google.com/open?id=

1Wiyz0s8fLZlziB9MFBfriVNBZY8RLyPD.

[36] Demo Video 2019. Rover crash check fail. https://drive.google.com/open?id=

1aB2LMoFySZKr0pq_CWOII53qO5URlWXQ.

[37] Demo Video 2019. Rover crash check fail2. https://drive.google.com/open?id=

1OnSgODRY2hUwh-9GrCCgKaqk3nzx3Jgn.

[38] Demo Video 2019. Side crash. https://drive.google.com/open?id=1mC-

qbZdeWK6ZnHA8RCK-JiTbCnG4jtN8.

[39] Demo Video 2019. Thrust loss check fail. https://drive.google.com/open?id=

1odEt6ZMw9nlH7Q7ufXbhD-wHoFzytlbS.

[40] P Dimitri et al. 1999. Nonlinear programming. Athena Scientific.
[41] Azim Eskandarian, Dhafer Marzougui, and Nabih E Bedewi. 1997. Finite element

model and validation of a surrogate crash test vehicle for impacts with roadside

objects. International Journal of Crashworthiness 2, 3 (1997), 239–258.
[42] Chuchu Fan, Bolun Qi, Sayan Mitra, and Mahesh Viswanathan. 2017. DryVR:

Data-Driven Verification and Compositional Reasoning for Automotive Sys-

tems. In Computer Aided Verification, Rupak Majumdar and Viktor Kunčak (Eds.).

Springer International Publishing, Cham, 441–461.

[43] Chuchu Fan, Bolun Qi, Sayan Mitra, Mahesh Viswanathan, and Parasara Sridhar

Duggirala. 2016. Automatic reachability analysis for nonlinear hybrid models

with C2E2. In International Conference on Computer Aided Verification. Springer,
531–538.

[44] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray,

Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler.

2011. SpaceEx: Scalable verification of hybrid systems. In International Conference
on Computer Aided Verification. Springer, 379–395.

[45] Jairo Giraldo, David Urbina, Alvaro Cardenas, Junia Valente, Mustafa Faisal,

Justin Ruths, Nils Ole Tippenhauer, Henrik Sandberg, and Richard Candell. 2018.

A survey of physics-based attack detection in cyber-physical systems. ACM
Computing Surveys (CSUR) 51, 4 (2018), 76.

[46] Zhijian He, Yao Chen, Enyan Huang, QixinWang, Yu Pei, and Haidong Yuan. 2019.

A system identification based Oracle for control-CPS software fault localization.

In Proceedings of the 41st International Conference on Software Engineering. IEEE
Press, 116–127.

[47] Mei-Chen Hsueh, Timothy K Tsai, and Ravishankar K Iyer. 1997. Fault injection

techniques and tools. Computer 30, 4 (1997), 75–82.
[48] Todd E Humphreys, Brent M Ledvina, Mark L Psiaki, Brady W O’Hanlon, and

Paul M Kintner Jr. 2008. Assessing the spoofing threat: Development of a portable

GPS civilian spoofer. In Proceedings of the ION GNSS international technical
meeting of the satellite division, Vol. 55. 56.

[49] Hyundai S-A1 flying taxi 2019. Hyundai S-A1 flying taxis could take flight by

2023 for Uber elevate. https://www.digitaltrends.com/cars/hyundai-sa1-flying-

taxi-ces-2020/.

[50] IIHS 2020. Insurance Institute for Highway Safety (IIHS). https://www.iihs.org.

[51] Rob Millerb Ishtiaq Roufa, Hossen Mustafaa, Sangho Ohb Travis Taylora,

Wenyuan Xua, Marco Gruteserb, Wade Trappeb, and Ivan Seskarb. 2010. Security

and privacy vulnerabilities of in-car wireless networks: A tire pressure moni-

toring system case study. In 19th USENIX Security Symposium, Washington DC.
11–13.

[52] Karen E Jackson, Richard L Boitnott, Edwin L Fasanella, Lisa E Jones, and Karen H

Lyle. 2004. A history of full-scale aircraft and rotorcraft crash testing and simu-

lation at NASA Langley Research Center. (2004).

[53] Karim Nice 2001. How Crash Testing Works. https://auto.howstuffworks.com/

car-driving-safety/accidents-hazardous-conditions/crash-test1.htm.

[54] Chung Hwan Kim, Taegyu Kim, Hongjun Choi, Zhongshu Gu, Byoungyoung

Lee, Xiangyu Zhang, and Dongyan Xu. 2018. Securing Real-Time Microcontroller

Systems through Customized Memory View Switching. In Proceedings of the
25th Annual Network and Distributed System Security Symposium (San Diego,

California) (NDSS ’18). The Internet Society.
[55] Taegyu Kim, Chung Hwan Kim, Junghwan Rhee, Fan Fei, Zhan Tu, Gregory

Walkup, Xiangyu Zhang, XinyanDeng, andDongyanXu. 2019. RVFuzzer: Finding

Input Validation Bugs in Robotic Vehicles through Control-Guided Testing. In

28th USENIX Security Symposium (USENIX Security 19). USENIX Association,

Santa Clara, CA, 425–442. https://www.usenix.org/conference/usenixsecurity19/

presentation/kim

[56] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno,

Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav

Shacham, et al. 2010. Experimental security analysis of a modern automobile. In

Session 1E: Cyberphysical Systems CCS '20, November 9–13, 2020, Virtual Event, USA

275

http://www.arducopter.co.uk/
https://www.bloomberg.com/news/articles/2017-02-01/tesla-is-testing-self-driving-cars-on-california-roads
https://www.bloomberg.com/news/articles/2017-02-01/tesla-is-testing-self-driving-cars-on-california-roads
https://www.wsj.com/articles/boeings-autonomous-taxi-takes-flight-11548249580
https://www.wsj.com/articles/boeings-autonomous-taxi-takes-flight-11548249580
https://www.bbc.com/news/world-africa-47513508
https://www.bbc.com/news/world-asia-46014260
https://www.bbc.com/news/world-asia-46014260
https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/testing
https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/testing
http://www.cnn.com/2012/09/25/tech/innovation/self-driving-car-california/index.html
http://www.cnn.com/2012/09/25/tech/innovation/self-driving-car-california/index.html
https://github.com/commaai/openpilot
https://github.com/commaai/openpilot
https://www.flightglobal.com/video-boeing-727-deliberately-crashed-in-desert-for-tv/105069.article
https://www.flightglobal.com/video-boeing-727-deliberately-crashed-in-desert-for-tv/105069.article
https://drive.google.com/open?id=1_yHV5eGf13bKISqshB3ieqR62dDYLYgs
https://drive.google.com/open?id=1_yHV5eGf13bKISqshB3ieqR62dDYLYgs
https://drive.google.com/open?id=1pGLktjVZPvGXhugJq02GYxAn67XL7BTY
https://drive.google.com/open?id=1pGLktjVZPvGXhugJq02GYxAn67XL7BTY
https://drive.google.com/open?id=19WUb3f_KlUL_Nc8zmwlfKyQysM9KPalG
https://drive.google.com/open?id=19WUb3f_KlUL_Nc8zmwlfKyQysM9KPalG
https://drive.google.com/open?id=1_T8Lk3FX-ujSxh8nBINRAZUfUoI9sI4g
https://drive.google.com/open?id=1_T8Lk3FX-ujSxh8nBINRAZUfUoI9sI4g
https://drive.google.com/open?id=14-lausvtfEjFfGJJtKFdEcLG5k2-XDpf
https://drive.google.com/open?id=14-lausvtfEjFfGJJtKFdEcLG5k2-XDpf
https://drive.google.com/open?id=1Wiyz0s8fLZlziB9MFBfriVNBZY8RLyPD
https://drive.google.com/open?id=1Wiyz0s8fLZlziB9MFBfriVNBZY8RLyPD
https://drive.google.com/open?id=1aB2LMoFySZKr0pq_CWOII53qO5URlWXQ
https://drive.google.com/open?id=1aB2LMoFySZKr0pq_CWOII53qO5URlWXQ
https://drive.google.com/open?id=1OnSgODRY2hUwh-9GrCCgKaqk3nzx3Jgn
https://drive.google.com/open?id=1OnSgODRY2hUwh-9GrCCgKaqk3nzx3Jgn
https://drive.google.com/open?id=1mC-qbZdeWK6ZnHA8RCK-JiTbCnG4jtN8
https://drive.google.com/open?id=1mC-qbZdeWK6ZnHA8RCK-JiTbCnG4jtN8
https://drive.google.com/open?id=1odEt6ZMw9nlH7Q7ufXbhD-wHoFzytlbS
https://drive.google.com/open?id=1odEt6ZMw9nlH7Q7ufXbhD-wHoFzytlbS
https://www.digitaltrends.com/cars/hyundai-sa1-flying-taxi-ces-2020/
https://www.digitaltrends.com/cars/hyundai-sa1-flying-taxi-ces-2020/
https://www.iihs.org
https://auto.howstuffworks.com/car-driving-safety/accidents-hazardous-conditions/crash-test1.htm
https://auto.howstuffworks.com/car-driving-safety/accidents-hazardous-conditions/crash-test1.htm
https://www.usenix.org/conference/usenixsecurity19/presentation/kim
https://www.usenix.org/conference/usenixsecurity19/presentation/kim

Security and Privacy (SP), 2010 IEEE Symposium on. IEEE, 447–462.
[57] Ivan Victor Krsul. 1998. Software vulnerability analysis. Purdue University West

Lafayette, IN.

[58] L Ljung. 1999. System Identification-Theory for the User, Prentice Hall, Upper

Saddle River N. System identification: Theory for the user. 2nd ed. Prentice Hall,
Upper Saddle River, NJ. (1999).

[59] LS-DYNA 2019. Home | Livermore Software Technology Corp. https://www.lstc.

com/.

[60] MATLAB 2017. System Identification Toolbox - MATLAB. https://www.

mathworks.com/products/sysid.html.

[61] Open Dynamics Engine 2014. Open Dynamics Engine. https://www.ode.org.

[62] Open Source Robotics Foundation 2014. Gazebo. http://gazebosim.org/.

[63] Open Source Robotics Foundation 2019. SDF Home. http://sdformat.org.

[64] Carlos Pacheco, Shuvendu K Lahiri, Michael D Ernst, and Thomas Ball. 2007.

Feedback-directed random test generation. In 29th International Conference on
Software Engineering (ICSE’07). IEEE, 75–84.

[65] Fabio Pasqualetti, Florian Dörfler, and Francesco Bullo. 2013. Attack detection

and identification in cyber-physical systems. IEEE Trans. Automat. Control 58, 11
(2013), 2715–2729.

[66] Lee Pike, Pat Hickey, Trevor Elliott, Eric Mertens, and Aaron Tomb. 2016. Trackos:

A security-aware real-time operating system. In International Conference on
Runtime Verification. Springer, 302–317.

[67] Md Atiqur Rahman and D Praveen Babu. [n.d.]. Simulation of Car Frontal Fascia

During Crash using LS-DYNA. ([n. d.]).

[68] Ralf Salomon. 1998. Evolutionary algorithms and gradient search: similarities and

differences. IEEE Transactions on Evolutionary Computation 2, 2 (1998), 45–55.

[69] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,

and Dan Boneh. 2004. On the effectiveness of address-space randomization. In

Proceedings of the 11th ACM conference on Computer and communications security.
ACM, 298–307.

[70] Russell Smith et al. 2005. Open dynamics engine. (2005).

[71] Yunmok Son, Hocheol Shin, Dongkwan Kim, Young-Seok Park, Juhwan Noh,

Kibum Choi, Jungwoo Choi, Yongdae Kim, et al. 2015. Rocking Drones with

Intentional Sound Noise on Gyroscopic Sensors.. In USENIX Security Symposium.

881–896.

[72] Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-flow analysis in

LLVM. In Proceedings of the 25th international conference on compiler construction.
ACM, 265–266.

[73] Chang-ai Sun, Jingting Jia, Huai Liu, and Xiangyu Zhang. 2018. A Lightweight

Program Dependence Based Approach to Concurrent Mutation Analysis. In 2018
IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC),
Vol. 1. IEEE, 116–125.

[74] Hisashi Tamaki, Hajime Kita, and Shigenobu Kobayashi. 1996. Multi-objective

optimization by genetic algorithms: A review. In Proceedings of IEEE international
conference on evolutionary computation. IEEE, 517–522.

[75] Tesla Accident 2016. The technology behind the Tesla crash, explained. https:

//www.washingtonpost.com/news/the-switch/wp/2016/07/01/the-technology-

behind-the-tesla-crash-explained/?noredirect=on&utm_term=.23e1b51bc9e4.

[76] Romain Testylier and Thao Dang. 2013. Nltoolbox: A library for reachability

computation of nonlinear dynamical systems. In Automated Technology for
Verification and Analysis. Springer, 469–473.

[77] Nils Ole Tippenhauer, Christina Pöpper, Kasper Bonne Rasmussen, and Srdjan

Capkun. 2011. On the requirements for successful GPS spoofing attacks. In

Proceedings of the 18th ACM conference on Computer and communications security.
ACM, 75–86.

[78] David AVan Veldhuizen and Gary B Lamont. 1998. Evolutionary computation and

convergence to a pareto front. In Late breaking papers at the genetic programming
1998 conference. 221–228.

[79] Jon S Warner and Roger G Johnston. 2002. A simple demonstration that the

global positioning system (GPS) is vulnerable to spoofing. Journal of Security
Administration 25, 2 (2002), 19–27.

[80] Waymo 2017. Waymo (formerly the Google self-driving car project). https:

//waymo.com.

[81] Svante Wold, Kim Esbensen, and Paul Geladi. 1987. Principal component analysis.

Chemometrics and intelligent laboratory systems 2, 1-3 (1987), 37–52.
[82] Zhaogui Xu, Shiqing Ma, Xiangyu Zhang, Shuofei Zhu, and Baowen Xu. 2018.

Debugging with intelligence via probabilistic inference. In Proceedings of the 40th
International Conference on Software Engineering. ACM, 1171–1181.

[83] Sai Zhang, David Saff, Yingyi Bu, and Michael D Ernst. 2011. Combined static

and dynamic automated test generation. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis. 353–363.

8 APPENDIX
A Additional Case Studies
PX4 is another popular control software for quadrotor. It has a

number of safety checks such as freefall detection, ground contact

detection and landing detection. We present an over-approximation

case of freefall detection and an under-approximation in ground

contact detection.

1 #define LNDMC_FFALL_THR 5.0 //(m/s^2)
2 #define LNDMC_FFALL_TTRI 0.3 //(s)
3

4 freefall_acc_threshold = LNDMC_FFALL_THR;
5 if (freefall_acc_threshold < 0.1f || //parameter check
6 freefall_acc_threshold > 10.0f) {
7 freefallDetected = false;
8 }
9 if (_sensors.timestamp == 0) { // sensor check
10 freefallDetected = false;
11 }
12 ...
13 if (acc_norm < freefall_acc_threshold) {
14 freefallDetected = true;
15 }
16 if (hysteresis(freefallDetected, LNDMC_FFALL_TTRI))
17 mavlink_and_console_log_info("Freefall detected");
18 ...
19 }

Figure 16: Freefall detection in PX4

Wind
Force
(40N)

Free fall

Hovering
at 5m

Detected

(a) True positive case (strong wind and free fall/crash)

Wind
Force
(35N)
for 0.4s

No
Wind HoveringHovering

at 5m

Detected

(b) False positive case (instant wind and continue hovering)

Figure 17: Freefall detection cases (simulation snapshot): PX4 de-
tects both cases as free fall

Free Fall. When PX4 detects free-fall, it emits an emergency mes-

sage and takes an optional counter-measure such as parachute

releasing. Figure 16 shows the simplified code of the freefall checks.

To determine the free-fall status, it has several if-conditions (high-

lighted), including a check against the freefall_acc_thresh-
old (=5.0) at line 13. If the freefallDetected is true for more

than LNDMC_FFALL_TTRI seconds (=0.3), the RV decides that the

free-fall status is true. Note that the parameter values of LNDMC_-
FFALL_THR and LNDMC_FFALL_TTRI are valid within the sug-

gested range.

Figure 17a shows that the free fall check correctly detects the

case. Specifically, the vehicle hovers at an altitude of 5 meters (the

left), and we generate strong wind forces (=40N) for a few seconds

Session 1E: Cyberphysical Systems CCS '20, November 9–13, 2020, Virtual Event, USA

276

https://www.lstc.com/
https://www.lstc.com/
https://www.mathworks.com/products/sysid.html
https://www.mathworks.com/products/sysid.html
https://www.ode.org
http://gazebosim.org/
http://sdformat.org
https://www.washingtonpost.com/news/the-switch/wp/2016/07/01/the-technology-behind-the-tesla-crash-explained/?noredirect=on&utm_term=.23e1b51bc9e4
https://www.washingtonpost.com/news/the-switch/wp/2016/07/01/the-technology-behind-the-tesla-crash-explained/?noredirect=on&utm_term=.23e1b51bc9e4
https://www.washingtonpost.com/news/the-switch/wp/2016/07/01/the-technology-behind-the-tesla-crash-explained/?noredirect=on&utm_term=.23e1b51bc9e4
https://waymo.com
https://waymo.com

to simulate the free fall (the middle). The vehicle accelerates toward

the ground (the right). During the free fall, the check detects it and

reports an emergency message. The video is available at [31].

Figure 17b shows the CP-inconsistency case that our technique

found. The check results in an over-approximation (false alarm)

under specific environmental conditions. In the same hovering

mission (the left), a particular strength of wind force (=35N) directed

downward for 0.4 seconds instantly pushes the vehicle and lowers

its altitude by around 2 meters (i.e, an instant bounce) (the middle).

After the wind is off, the vehicle recovers to the target altitude

(=5m) gradually (the right). However, the check detects this case as

free fall and triggers an erroneous reaction (e.g., alert and release

parachute). Note that this false alarm reaction can interfere with

the normal operation. The video for the case is available at [32].

1 #define MPC_LAND_SPEED 0.7 //(m/s)
2 #define LNDMC_Z_VEL_MAX 0.5 //(m/s)
3 #define LNDMC_XY_VEL_MAX 1.5 // m/s)
4 #define GROUND_CONTACT_TRIGGER_TIME 0.35 //(s)
5

6 float landSpd = MPC_LAND_SPEED;
7 float maxClimbRate = LNDMC_Z_VEL_MAX;
8 float maxVel = LNDMC_XY_VEL_MAX;
9 float land_spd_thresh = 0.9f * max(landSpd,0.1f);
10 ...
11 if (!_arming.armed)
12 return true;
13 // not in descend and vertical movement
14 if(!_has_low_thrust()
15 && (!_is_climb_rate_enabled()
16 || !(setpoint.vz >= land_spd_thresh))
17 && (abs(_localPos.z_deriv) > maxClimbRate))
18 return false;
19 // horizontal movement
20 if((sqrtf(sq(vx)+sq(vy)) > MaxVel)
21 && _has_position_lock())
22 return false;
23 // vertical movement
24 if(abs(_localPos.z_deriv) > maxClimbRate
25 && _has_altitude_lock())
26 return false;
27

28 return true;

Figure 18: Ground contact detection in PX4

Ground Contact. PX4 checks whether the vehicle hits ground.

Specifically, it checks the low thrust or z velocity setpoint (lines 14-

17) and no vertical/horizontal movement (lines 20-25). If all the con-

ditions (highlighted in Figure 18) are false for more than GROUND_-
CONTACT_TRIGGER_TIME (=0.35 seconds), ground contact is de-

cided. If it is detected, the position controller turns off the thrust

setpoint in body x and y (preventing movement that is not vertical)

Figure 19a shows that the check correctly detects the case. Specif-

ically, the vehicle performs a planned (triangular trajectory) mission

and contacts the ground during the flight (the left). The check de-

tects it and lets the controller stop moving along x and y directions

to avoid additional physical damage (the middle). In the trajectory

view (the right), the vehicle stops on the trajectory safely. The

complete simulation video is available at [33].

Figure 19b shows the CP-inconsistency case, where the vehicle

hits the ground, but the check fails to detect it. The vehicle performs

the same waypoint mission. This is exploited by a wind gust with

direction < 0.5, 0.3,−0.8 > for 1.4 seconds and force 31N. The

vehicle hits the ground and then completely deviates from the

planed trajectory, while it is supposed to detect the ground contact

event and the position controller holds its horizontal position. The

instant impact of the hit causes a vertical bounce of the vehicle,

which causes the z velocity to exceed a threshold and hence fails

the detection. The video is available at [34].

On trajectory

Uneven ground

Ground contact
detected Position Hold

(a) True positive case (ground contact and safe holding)

Ground contact
but no detection

Bounce and
Fly away

Deviation

(b) False negative case (ground contact and fly away)

Figure 19: Ground contact detection cases (simulation snapshot)

B Discussion
Countermeasures. The root cause of Cyber-Physical inconsisten-
cies is the incapability of range checks implemented in general-

purpose programming languages in describing the physical world,

which is continuous and complex. We foresee that a continuous

model of the RV expected behavior, like our VRV, shall be a first-

order object in the RV runtime that can be queried and compared

during safety checks. As such, the runtime system with the pro-

posed solution replaces the incomplete range checks to improve

the robustness of future RV systems. This requires enhancing the

programming support and the runtime support of RV control soft-

ware.

External Attacks. The attacker exploits CP-inconsistency vulner-

abilities by only manipulating external physical conditions. Our

attack vector is realistic and aligned with recently reported CPS

attacks on various sensors such as gyroscope, accelerometer, op-

tical flow, wheel speed sensor [13, 24, 48, 51, 56, 71, 77, 79]. These

can create adversarial conditions artificially through special de-

vices and setup. In this paper, we demonstrate the feasibility of

leveraging small-scale devices (such as wind blowers and weighted

boxes) to realistically exploit the reported cp-inconsistencies. Note

that more sophisticated devices (e.g., large-scale gust generator and

long-range sonic weapons) can be leveraged to generate realistic

adversarial conditions. For the cases where we used obstacles, the

scenarios are more reasonable if the vehicles are running in an

urban area. An attacker can carefully place physical obstacles (e.g.,

cars) in an RV’s trajectory to trigger potential vulnerabilities.

False Negative/Positives. The search space is enormous due to

the inter-play of various conditions. Since exploring the search

space requires simulation, much more expensive than running a

program (like in fuzzing), it is very difficult to establish the ground-

truth (and measure FNs). Besides, due to the nature of the genetic

algorithm, it is hard to guarantee that we can find all the potentially

existing vulnerable cases (i.e., no false negative). Regarding false-

positives, our technique is based on high-fidelity simulation. A

vulnerability is only reported after it is confirmed. Hence, we don’t

have false-positives.

Session 1E: Cyberphysical Systems CCS '20, November 9–13, 2020, Virtual Event, USA

277

Table 5: Comparing search techniques

(Goal)

Cost

Functions

Evolutionary Gradient Descent Random Search

Cost Change
Time

(hr)

S/F

Cost Change
Time

(hr)

S/F

Cost Change
Time

(hr)

S/F

B A D B A D B A D

V1 (C↓ P↑)

C1 0.27 0.07 -0.2 (↓)

2.3 S

0.27 0.34 0.07 (↑)

1.9 F

0.27 0.09 -0.18 (↓)

2.3 F

C2 23.04 17.46 -5.58 (↓) 23.03 37.9 14.87 (↑) 23.04 22.9 -0.14 (↓)

C3 0 -708 -708 (↓) 0 -800 -800 (↓) 0 -130 -130 (↓)

P 0.98 1.53 0.55 (↑) 0.97 1.23 0.26 (↑) 0.98 1.02 0.04 (↑)

IL 0.69 1.62 0.93 0.68 1.10 0.42 0.69 0.80 0.11

V2 (C↓ P↑)

C1 0.23 0.16 -0.07 (↓)

1.8 S

0.24 0.33 0.09 (↑)

1.6 F

0.23 0.12 -0.11 (↓)

1.8 F

C2 30.3 27.3 -3 (↓) 30.3 32.8 2.5 (↑) 30.3 23.9 -6.4 (↓)

C3 0 -687 -687 (↓) 0 -800 -800 (↓) 0 -85 -85 (↓)

P 0.87 1.04 0.17 (↑) 0.87 0.95 0.08 (↑) 0.87 0.9 0.03 (↑)

IL 0.5 1.0 0.49 0.5 0.88 0.37 0.05 0.65 0.15

V3 (C↑ P↓)

C1 -0.2 0.23 0.43 (↑)

3.3 S

-0.2 -3.1 -2.9 (↓)

1.7 F

-0.2 0.41 0.61 (↑)

3.3 F

C2 -5.5 0.2 5.7 (↑) -5.4 -6.3 -0.9 (↓) -5.5 -6.2 -0.7 (↓)

C3 -499 0 499 (↑) -499 0 499 (↑) -499 0 499 (↑)

P 0.08 0.06 -0.02 (↓) 0.07 0.03 -0.04 (↓) 0.08 0.06 -0.02 (↓)

IL -0.08 0.16 0.25 -0.06 -0.09 -0.03 -0.08 0.1 0.18

V4 (C↑ P↓)

C1 202.63 213.6 10.97 (↑)

2.7 S

202.6 201.6 -1.0 (↓)

2.3 F

202.63 192.2 -10.43 (↓)

2.7 F

C2 0.02 0.03 0.01 (↑) 0.02 0.09 0.07 (↑) 0.02 0.03 0.01 (↑)

C3 0.67 0.68 0.01 (↑) 0.67 0.68 0.01 (↑) 0.67 0.66 -0.01 (↓)

C4 28.3 29.1 0.8 (↑) 28.3 28.5 0.2 (↑) 28.3 28.8 0.5 (↑)

C5 -400 0 400 (↑) -400 0 400 (↑) -400 -400 0 (-)

P 0.1 0.08 -0.02 (↓) 0.1 0.09 -0.01 (↓) 0.1 0.06 -0.04 (↓)

IL 0.6 0.85 0.25 0.6 0.84 0.24 0.6 0.62 0.02

V5 (C↑ P↓)

C1 5.2 5.3 0.1 (↑)

3.1 S

5.2 5.5 0.3 (↑)

2.8 F

5.2 5.3 0.1 (↑)

3.1 F

C2 -8.3 1.5 9.8 (↑) -8.3 -13.2 -4.9 (↓) -8.3 -5.2 3.1 (↑)

C3 0 -2.3 -2.3 (↓) 0 0.8 0.8 (↑) 0 -0.1 -0.1 (↓)

C4 -400 0 400 (↑) -400 0 400 (↑) -400 -400 0 (-)

P 0.25 0.23 -0.02 (↓) 0.25 0.23 -0.02 (↓) 0.25 0.21 -0.04 (↓)

IL -0.44 -0.14 0.29 -0.44 -0.18 0.25 -0.43 -0.37 0.06

V6 (C↑ P↓)

C1 -2.0 -2.0 0 (-)

2.9 S

-2 -2 0 (-)

1.3 S

-2.0 -2.0 0 (-)

2.9 S

C2 7.0 7.0 0 (-) 7.0 7.0 0 (-) 7.0 7.0 (-)

C3 -4.8 4.9 9.7 (↑) -4.8 4.91 9.71 (↑) -4.8 3.7 8.5 (↑)

P 0.07 0.08 0.01 (↑) 0.07 0.08 0.01 (↑) 0.07 0.08 0.01 (↑)

IL -0.82 -0.19 0.63 -0.82 -0.18 0.64 -0.82 -0.26 0.56

V7 (C↓ P↑)

C1 12.5 8.3 -4.2 (↓)

4.6 S

12.5 13.1 0.6 (↑)

2.1 F

12.5 10.1 -2.4 (↓)

4.6 F

C2 4.8 0.1 -4.7 (↓) 4.8 0.01 -4.79 (↓) 4.8 0.4 -4.4 (↓)

C3 -0.28 0.02 0.3 (↑) -0.28 0.31 0.59 (↑) -0.28 0.02 0.3 (↑)

P 0.92 0.93 0.01 (↑) 0.92 0.94 0.02 (↑) 0.92 0.94 0.02 (↑)

IL 0.41 0.69 0.27 0.41 0.42 0.01 0.41 0.63 0.21

V8 (C↑ P↓)

C1 0.349 0.348 -0.001 (↓)

2.7 S

0.349 0.348 -0.001 (↓)

1.5 S

0.349 0.348 -0.001 (↓)

2.7 F

C2 0.349 0.351 0.002 (↑) 0.349 0.348 -0.001 (↓) 0.349 0.348 -0.002 (↓)

C3 0.349 0.349 0 (-) 0.349 0.348 -0.001 (↓) 0.349 0.347 -0.001 (↓)

C4 -49.2 0.01 49.21 (↑) -49.2 -72.9 122.1 (↑) -49.2 24.3 73.5 (↑)

C5 -8 0 8 (↑) -8 -8 0 (-) -8 -8 0 (-)

P 0.08 0.13 0.05 (↑) 0.08 0.09 0.01 (↑) 0.08 0.90 0.01 (↑)

IL 0.22 0.47 0.25 0.22 0.45 0.23 0.22 0.35 0.13

V9 (C↓ P↑)

C1 -38 -39.9 -1.9 (↓)

1.6 S

-38 -39.2 -1.2 (↓)

1.3 F

-38 -37.3 0.7 (↑)

1.6 F

C2 0.04 -2.14 -2.18 (↓) 0.04 -1.7 -1.74 (↓) 0.04 0.02 -0.02 (↓)

C3 0.06 -1.58 -1.64 (↓) 0.06 0.09 0.03 (↑) 0.06 0.16 0.1 (↑)

C4 45.0 45.0 0 (-) 45 45 0 (↑) 45 45 0 (-)

C5 0 -8 -8 (↓) 0 -8 -8 (↓) 0 -20 -20 (↓)

P 0.81 0.79 -0.02 (↓) 0.81 0.88 0.07 (↑) 0.81 0.79 -0.02 (↓)

IL -0.82 -0.5 0.32 -0.82 -0.55 0.26 -0.82 -0.65 0.17

V10 (C↓ P↑)

C1 -42 -42 0 (-)

2.5 S

-42 -42 0 (-)

1.5 F

-42 -41.7 0.3 (↑)

2.5 S

C2 0.05 0.02 -0.03 (↓) 0.05 0.07 0.02 (↑) 0.05 0.04 -0.01 (↓)

C3 0.08 0.07 -0.01 (↓) 0.08 0.03 -0.05 (↓) 0.08 0.04 -0.04 (↓)

C4 45.0 45.0 0 (-) 45 45 0 (-) 45 45 0 (-)

C5 0 -20 -20 (↓) 0 -20 -20 (↓) 0 -20 -20 (↓)

P 0.8 0.76 -0.04 (↓) 0.8 0.78 -0.02 (↓) 0.8 0.76 -0.04 (↓)

IL -1.13 -0.87 0.26 -1.13 -0.88 0.25 -1.13 -0.85 0.28

Cn : cyber costs, P: physical cost, B: cost before searching, A: cost after searching,
D: difference (direction), IL: CP-inconsistency level, (C − P) if OA; (P −C) if UA,C is the normalized average ofCn)
S/F: success / fail to find the vulnerability

Session 1E: Cyberphysical Systems CCS '20, November 9–13, 2020, Virtual Event, USA

278

	Abstract
	1 Introduction
	2 Motivation
	3 Overview
	4 Design
	4.1 Simulation Environment
	4.2 Cost Function Generation
	4.3 Multi-objective Evolutionary Testing

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Results
	5.3 Case Studies

	6 Related Work
	7 Conclusion
	References
	8 Appendix
	A Additional Case Studies
	B Discussion

