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ABSTRACT
An Android app’s graphical user interface (GUI) displays
rich semantic and contextual information about the smart-
phone’s owner and app’s execution. Such information pro-
vides vital clues to the investigation of crimes in both cyber
and physical spaces. In real-world digital forensics however,
once an electronic device becomes evidence most manual in-
teractions with it are prohibited by criminal investigation
protocols. Hence investigators must resort to “image-and-
analyze” memory forensics (instead of browsing through the
subject phone) to recover the apps’ GUIs. Unfortunately,
GUI reconstruction is still largely impossible with state-
of-the-art memory forensics techniques, which tend to fo-
cus only on individual in-memory data structures. An An-
droid GUI, however, displays diverse visual elements each
built from numerous data structure instances. Furthermore,
whenever an app is sent to the background, its GUI struc-
ture will be explicitly deallocated and disintegrated by the
Android framework. In this paper, we present GUITAR, an
app-independent technique which automatically reassembles
and redraws all apps’ GUIs from the multitude of GUI data
elements found in a smartphone’s memory image. To do so,
GUITAR involves the reconstruction of (1) GUI tree topol-
ogy, (2) drawing operation mapping, and (3) runtime envi-
ronment for redrawing. Our evaluation shows that GUITAR
is highly accurate (80-95% similar to original screenshots) at
reconstructing GUIs from memory images taken from a vari-
ety of Android apps on popular phones. Moreover, GUITAR
is robust in reconstructing meaningful GUIs even when fac-
ing GUI data loss.
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1. INTRODUCTION
The graphical user interface (GUI) of an application ren-

ders semantic information (e.g., text, images, and graph-
ics) for human users to interact with. Further, GUIs of-
ten reflect our only perception of an application’s execu-
tion state. This is even more true for the GUIs of Android
apps, which users interact with — one at a time — on the
smartphone’s screen while numerous other apps run in the
background. Moreover, smartphone apps are long-running
(compared with their desktop counterparts) as users seldom
terminate an app explicitly, and the apps keep running even
with the screen turned off or in “airplane” mode. Now imag-
ine the following digital forensics scenario: Law enforcement
agents obtain a suspect’s smartphone which they believe can
reveal vital evidence for their investigation. Ideally, investi-
gators would inspect the GUIs of the apps, specifically those
not currently on screen, for evidence to review, catalog, and
later present in court.

It turns out that this is far more difficult than it ap-
pears for both policy and technical reasons. Due to strict
legal interpretations of “digital evidence preservation” in US
court proceedings [2–10], once an electronic device becomes
a piece of raw evidence, most manual interaction with it
(e.g., browsing through a smartphone’s screen) is prohibited
by US DOJ, American Law Reports, and other’s investiga-
tion protocols [1,14,16,20,27]. Moreover, if the app requires
a password login every time it is brought to the foreground
(see the case study in Section 4.2.2), then its earlier GUI
could not be restored even if operating the phone were al-
lowed.

To overcome this, modern digital investigators now rely
on memory forensics. With a search warrant, investigators
can capture the phone’s memory image, using certified min-
imally intrusive tools [21, 44], which will be analyzed in the
forensics lab without fear of jeopardizing the investigation.
Therefore, the most desirable outcome of this analysis would
be the recovery of the GUIs that the suspect was interacting
with — revealing the evidence stored on the device.

Despite recent advances in computer memory forensics,
GUI recovery remains largely impossible. Specifically, nearly
all state-of-the-art memory forensics techniques [19, 24, 29,
30, 37, 39–41, 45] focus on the recovery of individual data
structures. Given a memory image and a data structure of
interest, existing techniques (e.g., [24, 29, 30, 37, 38, 41, 45])
rely on signature-based scanning of the memory image to
locate raw in-memory instances of that data structure. To
render a discovered data structure instance in human per-
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ceivable format, a recent solution [40] derives that struc-
ture’s rendering logic from the application it belongs to.

Unfortunately, an Android app GUI is much more com-
plex than an individual data structure — it is a virtual
“billboard”of many diverse, application-specific data objects
with geometric and semantic dependencies defined by each
individual app. As detailed in Section 2, a GUI is inter-
nally represented as a tree whose structure and nodes change
dynamically at runtime. More significantly, whenever an
app is backgrounded (i.e., replaced on the phone’s screen by
a newly in-focus app), Android will explicitly nullify many
key pointers in the tree, effectively disintegrating the GUI.
As such, existing data structure-oriented memory forensics
techniques can only identify the GUI’s “element” data struc-
tures from the memory image (i.e., “identifying the puzzle
pieces”). But they cannot reassemble the elements (hun-
dreds or even thousands of them) into the original GUI or
further visually redraw the GUI (i.e., “putting the puzzle
pieces together”).

Here the new challenge is analogous to that faced by an
archaeologist who tries to piece together an ancient fresco or
pottery (the GUI) from its unearthed fragments (data struc-
tures) [25]. To address this challenge, we present GUITAR1,
a system which automatically reconstructs app GUIs from
Android phone memory images and redraws them as they
originally appeared. Interestingly, GUITAR does not re-
quire app-specific knowledge and hence can reconstruct any
Android app’s GUI generically. Unlike existing techniques,
GUITAR presents investigators with the “same view” of the
suspect’s app(s) rather than individual data structure in-
stances. For example, for an instant messaging app, GUI-
TAR will reconstruct its GUI with contents (e.g., contacts,
messages, timestamps, etc.) all in their original layout.

GUITAR targets the low-level GUI framework defined by
the Android graphical windowing system library (analogous
to X11 commonly used with Linux), which is common to all
apps’ implementation. Given the GUI element data struc-
ture instances, GUITAR employs a depth-first topology re-
covery algorithm to reconstruct the app’s graphical layout
hierarchy. Next, graphical GUI contents are remapped to
the geometric layout using a bipartite graph weighted assign-
ment solver and corresponding drawing-content based fitness
function. Finally, GUITAR recreates the runtime environ-
ment to redraw the GUI using an unmodified Android win-
dowing system binary, and outputs the app’s redrawn GUI
as it would have appeared had it been displayed on-screen
when the memory image was taken. If present in a mem-
ory image, GUITAR can recover previous GUI constructs,
allowing investigators to see some previous GUI state of the
same app.

Our evaluation, performed with memory images taken
from a number of popular Android apps on three new An-
droid smartphones, shows that GUITAR is able to recon-
struct and redraw entire app GUIs with very high accuracy.
We use Content Based Image Recognition (CBIR) to mea-
sure the visual similarity between GUITAR-reconstructed
GUIs and screenshots taken from the original app, and GUI-
TAR scores 80-95% (high similarity) in all cases. Further,
our evaluation shows that GUITAR is adaptive and robust
for reconstructing partial, meaningful GUIs when faced with
GUI data loss over time.

1GUITAR stands for “GUI Tree ARchaeology.”

1. void onDraw(Canvas canvas) {
2.   super.onDraw(canvas);
3.   // Draw the label text
4.   canvas.drawText (mText, ...);
5.   ...
6. }
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1. status_t DisplayListRenderer::drawText(...) {
2.  ...
3.  DrawOp* op = new (alloc()) 
4.                DrawTextOp(text, ...);
5.  addDrawOp(op);
6.  ...
7.}

Figure 1: Overview of a Windowing System Library.
Each app maintains a GUI tree, with each leaf node
containing Drawing Operations. Changes to the
app’s GUI are reflected by changes to the GUI tree.

2. THE ANDROID GUI FRAMEWORK
The Android platform exhibits many features which in-

herently pose challenges to GUI reconstruction, and these
motivate many of our design decisions in Section 3. For ex-
ample, we originally considered recovering the pixel buffer
to which the Android windowing system projects the entire
GUI for on-screen display. However, this approach turned
out to be infeasible because that buffer is located in the
graphics card driver’s memory which is quickly deallocated
and reused when an app is backgrounded. Thus, recovering
this buffer yields only the currently visible app’s GUI.

Seeking an alternative solution, we instead target a much
more robust in-memory artifact of the windowing system:
the GUI hierarchy tree (“GUI tree” for short) with drawing
operations (“draw ops” for short). Figure 1 illustrates how
draw ops are organized in a GUI tree. The Android window-
ing system library included in each graphical app maintains
a GUI tree to represent the GUI’s current geometric lay-
out and graphical content. Further, despite the vast variety
of visually different apps, such a tree generically represents
each app’s visual presentation and display.

The GUI tree resides in each app’s heap. Each node in the
GUI tree (called a “TreeNode”) contains a pointer to a list of
draw ops (a “DrawOpList”) which describes a portion of the
screen space. A parent TreeNode points to a DrawOpList
which contains pointers to child TreeNodes; whereas a leaf
TreeNode points to a DrawOpList which contains actual
draw ops with graphical content.

When an app invokes the windowing system’s drawing
functions (e.g., drawText(...) shown in Figure 1), the GUI
modifications will be converted into an array of draw ops
(TranslateOp, DrawTextOp, ClipRectOp) and stored in a
leaf TreeNode. A single drawing function may create mul-
tiple draw ops and store them in one or more leaves. Thus,
whenever the app is visible, a GUI tree of parent TreeNodes
(describing relative geometric positions and screen layout
hierarchy) and leaf TreeNodes (containing actual graphical
draw ops) will be created in the process’ heap memory.

However, Android always tries to save memory, and when
an app is backgrounded its GUI tree will be deallocated and
critical pointers within it (in particular the ones from TreeN-
odes to their DrawOpLists) will be set to NULL (a good pro-
gramming practice, but bad for memory forensics). This
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Figure 2: Number of recoverable GUI data struc-
tures of backgrounded apps over 24 hours.

effectively disintegrates the tree and, by doing so, makes its
reconstruction challenging.

We profiled several Android apps’ memory use before and
after backgrounding and found that the GUI tree deallo-
cation is among the last operations an app will perform,
because background apps cannot receive user input. In fact,
many nodes of the old GUI tree remain in the app’s free heap
space until the app is returned to the foreground, when an
entirely new GUI tree will be built. Further, if the app is
not returned to the foreground for some time, we observe
that a non-trivial portion of the GUI data is still recover-
able (i.e., their heap space is not reallocated and overwrit-
ten). Figure 2 shows measurements of 4 apps’ GUI tree data
structures after those apps were left in the background for a
period of 24 hours. For this experiment, we took an initial
measurement at time t0, backgrounded the app, then took
measurements at times t0 + 1 (hour), t0 + 2, t0 + 5, t0 + 10,
and t0 + 24. The smartphone (LG G3) belongs to one of
the authors, with all other apps (except the one profiled)
heavily used during that period.

From Figure 2 we can make a few key observations: First,
although some apps have background activities (which re-
allocated the free heap space), a large amount of GUI data
is recoverable even after 24 hours. In fact our evaluation in
Section 4 shows that once an app is backgrounded 43% to
98% of its GUI data remains intact, which is sufficient to
redraw the GUI — either completely or partially. Another
key observation is that, since each node describes a small
portion of the screen, any missing nodes do not affect the
redrawing of the remaining GUI. In Section 4 we present a
number of case studies demonstrating how missing internal
nodes or leaf nodes may cause slight visual variations to re-
constructed GUIs, which still retain reasonable appearance.

2.1 Challenges and Solution Overview
Firstly, because key pointers in the GUI tree are explic-

itly nullified, the GUI’s original layout needs to be pieced
together from the many disconnected nodes. GUITAR de-
fines a depth-first topology recovery algorithm (Section 3.1)
to reconnect internal parent nodes to their DrawOpLists and
hence to their children nodes. Complicating the recovery,
GUITAR often encounters old or partially destroyed nodes
which appear to be valid children of the parent nodes, and
GUITAR must automatically identify (and later remove)
such conflicting branches in the tree.

Secondly, the GUI’s graphical contents need to be re-
stored by geometrically re-mapping the leaf TreeNodes back
to their DrawOpLists. GUITAR leverages semantic hints

in the drawable graphical content described by each Dra-
wOpList. More formally, such leaf mapping can be reduced
to a bipartite graph weighted assignment problem. GUITAR
uses the drawable GUI content to build a drawing-content-
based fitness function (Section 3.2) which computes the like-
lihood that each leaf matches to some graphical content.

Finally, several key data structures’ functional inheritance,
which is necessary for GUI redrawing, is lost in the memory
image. GUITAR employs a technique called forced poly-
morphism (Section 3.3) to patch the lost inheritance infor-
mation. Then, GUITAR recreates the GUI redrawing run-
time using an unmodified Android windowing system library
binary, which will redraw the reassembled GUI tree, as it
would have appeared in the foreground of the original phone.

3. GUITAR DESIGN
The input to the GUITAR technique is a set of data struc-

ture instances corresponding to draw ops, TreeNodes, and
graphical content elements, recovered from the subject app’s
memory image. For self-containedness, GUITAR’s imple-
mentation includes a linear brute-force memory image scan-
ner with 248 distinct signatures of data structures, defined
by Android’s windowing system and stable across all An-
droid versions we tested. This signature set can be easily
updated with any future changes to those data structures.
Alternatively, the recovery can be done using any existing
or future memory forensics techniques (e.g., those cited in
Section 1). Note also, that because many of the target data
structures have been deallocated, it is possible that some
instances are partially corrupted (overwritten). To avoid
complications from corrupted structures, GUITAR’s data
structure signature matching entails checks on every field
needed to reconstruct the GUI, and if an object is partially
broken then it will be conservatively discarded. Interested
readers are directed to Appendix A for more information
about GUITAR’s data structure signatures.

3.1 Reconstructing GUI Tree Topology
Once the GUI “elements” (data structures) are recovered,

GUITAR will reconstruct the GUI tree. This section de-
tails how GUITAR reconnects the tree’s parent TreeNodes
to their children. However, recall that key pointers are set to
NULL when the app is backgrounded, causing each TreeNode
to lose connection to its DrawOpList. As Figure 3 shows,
losing the node’s connection to its DrawOpList also breaks
any connection to its children. Further, these parent-to-child
links are the only ones that the windowing system binary
follows to redraw the GUI. Thus, GUITAR must first re-
cover the GUI tree’s parent-to-child structure from two sets
of disconnected TreeNodes and DrawOpLists (Figure 3).

The GUI’s layout semantics provide a valuable hint to-
ward solving this problem. We observe that, in addition to
the GUI tree, several Java objects encode a “reverse” GUI
layout (i.e., which layers are drawn in front of other lay-
ers). By traversing these Java objects, the parent of each
TreeNode can be reached. Unfortunately, these additional
structures are unusable during GUI redrawing (which only
uses TreeNodes and DrawOpLists), but GUITAR can lever-
age these “child to parent” paths and the “DrawOpList to
child” pointers (shown in Figure 3) to recover the “parent to
DrawOpList” pointers.

However, an issue arises during topology recovery: con-
flicting branches may be introduced to the reconstructed
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DrawOpLists. Note the conflicting branch intro-
duced by historic data structures.

GUI tree when DrawOpLists or TreeNodes from previously
drawn GUI screens remain (not overwritten) in memory af-
ter those portions of the GUI have been modified. Essen-
tially, these old structures correspond to historical portions
of the GUI which were rendered, changed, and replaced
with new DrawOpLists and TreeNodes before the app was
backgrounded. Figure 3 shows an example: a historic Dra-
wOpList is recovered and introduces a conflict into an oth-
erwise valid parent TreeNode. At this point, GUITAR can-
not distinguish between the most recent versus older TreeN-
odes and DrawOpLists, but GUITAR will mark the conflict
while mapping both DrawOpLists to the parent TreeNode in
Figure 3. Similarly, old TreeNodes can cause conflicts with
a parent TreeNode (via a historic Java object’s encoding)
which has already been updated with new children. Con-
flicting branches will be removed later by leveraging charac-
teristics of the visual GUI content (Section 3.2). Our evalu-
ation in Section 4 shows that conflicting branches occur for
only a small number of nodes. Notably, we did find one
case where a full conflicting branch (all parent and child
TreeNodes and DrawOpLists) was recovered, leading to two
drawable GUI versions: one shows the most recent view and
the other shows elements of a prior view.

GUITAR’s depth-first tree topology recovery algorithm
(Algorithm 1) uses a pre-order depth-first traversal of the
recovered TreeNodes to rebuild the GUI hierarchy. The re-
cursive algorithm starts at the tree’s root. Given a par-
ent TreeNode, GUITAR first locates all TreeNodes which
have that TreeNode as a parent. Then GUITAR searches

Algorithm 1 Depth-First Tree Topology Recovery
Input: TreeNode Set N , DrawOpList Set D
Output: GUI Tree T = (V,E)

procedure MapNode(node)
for other ∈ N do

if other ; node then . ;: child-to-parent path exists
for list ∈ D do . Find DrawOpLists pointing to other

if other ∈ list.points to then
. Map list to node

node.children← node.children ∪ other
node.opsLists← node.opsLists ∪ list
if |node.opsLists| > 1 then

node.conflict← True . Mark the conflict

for child ∈ node.children do
MapNode(child) . Continue recursion

end procedure

for node ∈ N do
if node.parent = ∅ then . Start at the root nodes

MapNode(node)
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Figure 4: Example of drawing-content based bipar-
tite graph matching.

each DrawOpList for those which point to any child of the
parent. If any are located, then these DrawOpLists must
belong to this parent, because they point to the parent’s
children. A conflicting branch is identified if this search re-
turns more than one DrawOpList. The algorithm matches
the located DrawOpLists to the parent TreeNode, and con-
tinues the recursion with only those children pointed to by
the DrawOpLists. The recursion will stop when a leaf (i.e.,
a node that is not any other node’s parent) is reached.

3.2 Remapping Drawing Operations
Having reconstructed the GUI tree’s internal structure,

GUITAR must now map the leaf TreeNodes to the remaining
DrawOpLists. Note that these DrawOpLists contain only
graphical content (such as created by drawText in Figure 1),
unlike those pointed to by non-leaf nodes. Figure 4 illus-
trates our key intuition of matching leaf TreeNodes to the
DrawOpLists’ drawable GUI content. First, GUITAR com-
putes the geometric screen area described by each leaf TreeN-
ode. Based on this, GUITAR finds a best global match
to the drawable GUI content that fits in that screen area.
Formally, we define a drawing-content-based fitness function
to compute the fit between any leaf TreeNode and Dra-
wOpList’s graphical content. We then reduce the problem
of mapping DrawOpLists to leaf TreeNodes to a weighted
assignment problem. Problems of this class can be solved
in polynomial time when modeled as a weighted bipartite
graph matching problem. Thus, GUITAR must first set up
a multi-source multi-sink bipartite graph with the graphical
DrawOpLists as a source vertex set and the leaf TreeNodes
as the sink vertex set.

Building a Weighted Bipartite Graph Algorithm 2
shows how GUITAR builds the weighted bipartite graph.
For each DrawOpList, GUITAR computes the maximum di-
mensions (opswidth, opsheight) of the graphical output pro-
duced by those draw ops (i.e., the pixels to be drawn on
screen). Next, GUITAR must compute the screen area de-
scribed by each leaf TreeNode, by subtracting the leaf’s
screen coordinates (xleaf , yleaf ) from the closest neighbor-
ing leaves’ coordinates. However, each leaf only describes its
coordinates relative to its parent TreeNode. Thus, to find
the neighboring leaves and compute each leaf’s true (full
screen) coordinates, GUITAR must look backwards through
the tree’s hierarchy. This is performed by a recursive func-
tion summarized by the getNeighbors and getFullCoord
functions in Algorithm 2. After finding the two closest neigh-
boring leaves’ coordinates (xbelow, ybelow) and (xright, yright),
the current leaf’s dimensions are computed as shown in the
second loop of Algorithm 2.
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Algorithm 2 Building Draw-Content-Weighted Bi-graph
Input: Leaf Set L, DrawOpList Set D, ScalingFactor f
Output: Graph G = (Vleaves, VopLists, E), maxWeight

Vleaves ← ∅
VopLists ← ∅
E ← ∅
maxWeight← 0
for ops ∈ D do . Compute DrawOpList dimensions

(opswidth, opsheight)← computeDrawSize(ops)
ops.width← opswidth

ops.height← opsheight

VopLists ← VopLists ∪ ops . Insert DrawOpList vertex

for leaf ∈ L do . Compute leaf dimensions
right, below ← getNeighbors(leaf)
(xright, yright)← getFullCoord(right)
(xbelow, ybelow)← getFullCoord(below)
(xleaf , yleaf )← getFullCoord(leaf)
(leafwidth, leafheight) = (xright − xleaf , ybelow − yleaf )
leaf.width← leafwidth

leaf.height← leafheight

Vleaves ← Vleaves ∪ leaf . Insert leaf vertex

for ops ∈ VopLists do
for leaf ∈ Vleaves do . Compute edge weights

dwidth ← leaf.width− ops.width
dheight ← leaf.height− ops.height
if dwidth < 0 or dheight < 0 then

scale← f . Scale factor for over-drawing
else

scale← 1.0
weight← scale ∗ (

√
(dwidth)2 + (dheight)2)

E(ops, leaf)← weight . Insert edge weight
if weight > maxWeight then

maxWeight← weight . Update max weight

Note that leaves and their DrawOpLists often do not have
the same dimensions. It is possible that a DrawOpList draws
graphics smaller or larger than its leaf’s dimensions. To ac-
count for this, the dimensions of each leaf and each Dra-
wOpList are compared using Euclidean distance. A scaling
factor is used to make the comparisons favor under-drawing
to over-drawing (i.e., it is more likely that the draw ops draw
something smaller than the leaf rather than larger). The
scaling factor is configurable (input f in Algorithm 2), and
in our evaluation a scale of 1.3 resulted in the best map-
pings. The resulting weights are assigned to the bipartite
graph edges in the final loop of Algorithm 2, and we update
a maximum weight variable to be used later.

Solving the Assignment Unfortunately, the resulting
graph is not suitable for assignment solving because GUI-
TAR will likely recover an unequal number of DrawOpLists
and leaf TreeNodes. However, weighted assignment solv-
ing algorithms require the bipartite graph to be balanced
(i.e., |source vertices| = |sink vertices| ) and complete (i.e.,
edge set = source vertices × sink vertices). Typically, this
is solved by adding fake vertices to the smaller half of the
bipartite graph, but this would allow GUI elements to go
unmatched or be matched to fake leaves. Instead, GUITAR
aims to redraw the most complete GUI possible by finding
the most valid matches.

To overcome this, we build upon two key observations:
In the case that GUITAR recovers more DrawOpLists than
leaf TreeNodes, we can be sure that at least one leaf has
a conflict (like before, a conflict is a TreeNode with two or
more DrawOpLists). In this case, we want to allow some
TreeNodes to map to multiple DrawOpLists to preserve as
much graphical data as possible.

In the case that GUITAR recovers more leaf TreeNodes
than DrawOpLists, we observe that adding fake DrawOpList
vertices will not harm the resulting GUI because they will

Algorithm 3 Correcting Bipartite Graph and Mapping

Input: Graph G = (Vleaves, VopLists, E), maxWeight
Output: Matched Graph G

while |Vleaves| < |VopLists| do
for leaf ∈ unique(Vleaves) do

. Duplicate all the unique leaf vertices
newLeaf = copy(leaf)
Vleaves ← Vleaves ∪ newLeaf
for ops ∈ VopLists do

E(ops, newLeaf)← E(ops, leaf)
. Duplicate edge weights

while not|VopLists| = |Vleaves| do
fakeOps← new FakeOpList

. Add fake DrawOpLists to balance G
VopLists ← VopLists ∪ fakeOps
for leaf ∈ Vleaves do

E(fakeOps, leaf)← maxWeight + 1

KuhnMunkresAlgo(G)

represent “empty space” where no leaf mapping could be
found. However, GUITAR must only consider mapping a
fake DrawOpList if no real DrawOpList remains mappable
(all real DrawOpLists have been assigned), simply put: try
to draw as many DrawOpLists as possible even if some are
over-drawn.

Algorithm 3 builds the balanced and complete bipartite
graph and performs the weighted assignment. In the first
loop, GUITAR checks if we have recovered fewer leaf TreeN-
odes and, if so, repeatedly duplicates the leaf vertices until
there are more leaf vertices than DrawOpList vertices. Note
that GUITAR also copies the corresponding edge weights
so that each duplicate of a TreeNode vertex has an equal
likelihood of mapping to the same DrawOpList. Next, in
the second loop, GUITAR adds fake DrawOpList vertices
until the graph is balanced. For each fake DrawOpList ver-
tex, GUITAR adds edges to every leaf vertex with weight
equal to maxWeight + 1 (calculated in Algorithm 2). Us-
ing maxWeight+ 1 edge weights ensures that the fake Dra-
wOpLists are only considered for mapping after all real Dra-
wOpLists (with lower, more favorable edge weights) have
been mapped. After this step, the bipartite graph is bal-
anced and complete — allowing any leaf TreeNode to map
to any DrawOpList per their minimal edge weights.

The weighed bipartite graph assignment solving algorithm
is represented in Algorithm 3 as the KuhnMunkresAlgo
function. The Kuhn-Munkres algorithm (also known as the
Hungarian method) solves the weighted assignment prob-
lem in polynomial time. Our implementation uses an open-
source version of the algorithm with time complexity O(n3)
[11]. The Kuhn-Munkres algorithm takes the bipartite graph
(i.e., two disjoint, balanced vertices sets and the complete
edge set) as input. Internally, the algorithm maintains an
adjacency matrix representing the weights of the complete
edge set. The matrix values are iteratively reduced by the
balanced cost (i.e., edge weight) of the minimum weight
edges. Thus, at the end of each iteration the lowest weight
edges will have cost 0. The iteration continues (balancing by
the minimum weights and reducing) until: for each source
vertex, the weight of one edge to a distinct sink vertex re-
duces to 0 (i.e., at least one 0 value in each row and column).
The algorithm outputs the edge set which matches every
source vertex to a distinct sink vertex with the minimum
possible combined edge weights. To GUITAR, this edge set
represents the global best mapping of the DrawOpLists’ vi-
sual content to the leaf TreeNodes’ geometric area on screen.
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At this point, any mappings to fake DrawOpList ver-
tices are removed and those leaf TreeNodes are marked as
empty space on the resulting GUI. Now, GUITAR can re-
move conflicting branches based on two criteria leveraging
the mapped visual GUI content: If a branch 1) has a dead
end (i.e., TreeNodes without mapped DrawOpLists) or 2)
describes a visual portion of the screen that is covered by a
more complete branch with overlapping DrawOpList map-
pings. To ensure visual GUI data is not removed, GUITAR
ensures that the DrawOpLists of leaf TreeNodes marked for
removal are mapped to a different branch of the tree (even if
that requires adding a new branch). In practice a conflicting
branch is rarely mapped to any valid (not fake) DrawOpList.

3.3 Runtime Recreation for GUI Redraw
Once the GUI tree has been reconstructed, GUITAR has

everything needed to redraw the app GUI, but a few chal-
lenges still remain. First, the majority of the GUI drawing
functionality is invoked via inherited methods in the C++
GUI objects. Since these objects are recovered from a static
memory image, the functional inheritance has been broken.
GUITAR recreates this inheritance via a technique called
forced polymorphism. Second, after recreating the polymor-
phism, the GUI tree needs to be grafted into a live“host tree”
which will be redrawn by Android’s windowing system.

Runtime Setup for Redrawing To preserve the inter-
connection between the recovered GUI data, GUITAR first
maps the recovered data structures back to their original
locations (i.e., the addresses they occupied when the mem-
ory image was taken) in the memory of the Android em-
ulator2. This ensures that Android’s windowing system —
without modification — can follow any data pointers needed
to redraw the GUI. Note that we map neither any addi-
tional data nor code segments from the memory image into
the live memory. This makes GUITAR applicable to mem-
ory images from any Android device without concern about
vendor-customizations.

Forced Polymorphism Many of the GUI data structures
are polymorphic, and when inherited methods are invoked
against these objects, dynamic function pointer tables are
consulted to determine which implementation of an inher-
ited function should be invoked. Unfortunately for recovered
objects from a memory image, these function dispatch tables
are unusable because the values in those tables are highly
sensitive to each execution of the application. This situation
is further confounded by ASLR present on modern Android
devices (i.e., functions pointed to by the dispatch tables will
be at random addresses in the memory image). Further,
recovering both the object’s code and data from the mem-
ory image would require GUITAR to handle a significant
number of inconsistencies between the old (frozen) execu-
tion environment and the new one — making GUITAR a
less portable and more heavy-weight solution.

To overcome this, we have developed a technique called
forced polymorphism to force the “recovered objects” to in-
herit from newly allocated “live objects.” GUITAR must
rebuild the recovered objects’ function dispatch tables to al-
low the windowing system to invoke any inherited drawing
functions. However, due to lack of type and symbol infor-

2This mapping is done using a newly started “stub” pro-
cess in the emulator, before any heap or data segments are
allocated, to avoid conflicts with new “live” memory usage.
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Figure 5: Illustration of forced polymorphism.

mation3 in the memory image and the multiple-inheritance
used by these objects, GUITAR must first determine the
true runtime type of each recovered object.

GUITAR leverages the GUI data structure signatures to
guide the forced polymorphism. For each recovered object,
GUITAR recalls the object-type recognition performed dur-
ing memory image scanning. During scanning, many objects
are recovered based on their common superclass. To identify
the recovered object’s true type inheritance, GUITAR com-
pares the object to signatures from every object along that
object’s inheritance tree. The deepest matching subclass is
then marked as the object’s previous runtime-type, which
GUITAR uses to reconnect the function dispatch table.

Based on the recovered object’s true inheritance, GUI-
TAR allocates a new instance of the matching type (a live
object). GUITAR then redirects the recovered object’s func-
tion dispatch table to that of the live object. Now, when the
Android windowing system attempts to invoke an inherited
function from one of the recovered objects, it will be redi-
rected to the correct function in the current address space.
This also avoids any complications from ASLR present in the
memory image, because the function’s old location is aban-
doned and corrected to the live location. Figure 5 shows
an example of a recovered DrawBitmapOp being forced to in-
herit a live DrawBitmapOp function dispatch table. Notice
that when the inherited applyDraw function is invoked, the
lookup consults the live function dispatch table but the re-
covered object’s data (e.g. GUI content) is preserved.

GUI Redraw Once the recovered structures’ functional
inheritance has been recreated, the reconstructed GUI is
ready to be redrawn. Because the recovered objects have
been mapped back to their original memory locations, the
windowing system code can interact with them seamlessly,
without any instrumentation for address translation.

GUITAR is prepackaged with unmodified Android win-
dowing system binary code and a minimal Android app
GUI, used as a “host” for grafting the recovered GUI tree.
When redrawing the GUI tree, GUITAR inserts the entire
recovered GUI tree as a subtree within the running host
app’s GUI. GUITAR then marks the tree as “dirty,” caus-
ing the windowing system to redraw the GUI content. At
this point the windowing system executes unsuspectingly,
accessing the recovered GUI data as if it had naturally been
allocated and initialized in the new process. The GUI con-
tent is displayed as it would have appeared on the original
device’s screen the last time that app was in focus. The
newly drawn GUI then replaces the host app’s GUI.

3Android devices are shipped with stripped versions of all
system binaries, including the windowing system library.
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Device App Foreground
Instances

Background
Instances % Persists

Recovered by
GUITAR

Samsung S4

Calendar 546 507 92.86 507
Chase Banking 221 168 76.01 168
Contacts 511 476 93.15 476
Facebook 655 634 96.79 634
Instagram 262 240 91.60 240
Messaging 120 102 85.00 102
WhatsApp 172 148 86.05 148

LG G3

Calendar 753 738 98.00 738
Chase Banking 220 172 78.18 172
Contacts 731 640 87.55 640
Facebook 926 884 95.46 884
Instagram 301 259 86.05 259
Messaging 101 90 89.11 90
WhatsApp 214 165 78.97 165

HTC One

Calendar 276 259 93.84 259
Chase Banking 191 170 89.01 170
Contacts 358 285 79.60 285
Facebook 608 593 97.53 593
Instagram 355 319 89.86 319
Messaging 392 371 94.64 371
WhatsApp 130 123 94.61 123

Table 1: Recovery of backgrounded GUI data structures.

4. EVALUATION
We have implemented GUITAR as a plug-in for the An-

droid emulator (∼2000 lines of C++ code). GUITAR takes
a subject Android device’s memory image as input and re-
draws the recovered app GUIs on the emulator’s screen.
GUITAR requires no modification to the Android frame-
work code but leverages the (open-source) data structure
definitions of its windowing system.

Experimental Setup We used three Android smart-
phones as “suspect devices”: an HTC One, Samsung Galaxy
S4, and LG G3. The devices are all different OEM cus-
tomized versions of Android 4.44. We first installed a variety
of apps on all 3 devices, and one of the authors interacted
with each to cause several GUIs to be displayed and changed.
Among these were 2 of the most popular social networking
apps: Facebook and Instagram, whose GUIs reveal signifi-
cant personal information about the device’s owner, friends,
and activities. We also evaluated WhatsApp, a widely used
chat and instant messaging app, to reveal a suspect’s re-
cent conversations and contact list. Also 3 vendor-specific
apps (Calendar, Contacts, and Messaging) were tested, each
of which is implemented by smartphone vendors specifically
for their devices with vastly different GUI constructs.

4.1 GUI Data Elements (Puzzle Pieces)
As stated in Section 2, most GUI data structures are freed

and key pointers nullified when an app is backgrounded. In
this section, we evaluate how many of these data structure
instances persist in the app’s free heap space after being
backgrounded. For these tests, we interacted with each app,
backgrounded it, and waited 15 minutes while interacting
with another app, before capturing memory images from
the app while it was in the background. Our results will be
leveraged in the next subsections to connect the quantity
of recovered data structures to the quality of the redrawn
GUIs.

4To handle different Android versions, GUITAR only needs
to update its data structure signatures for memory image
scanning (if those versions change any GUI object defini-
tions).

To establish ground truth, we instrumented each app to
log allocations and deallocations of the GUI data struc-
tures5. When a data structure instance was deallocated,
we also logged its contents, allowing us to verify which freed
instances had been overwritten (fully or partially). We then
analyzed the log to identify how many GUI data structures
existed before and after the app was backgrounded. Finally,
we tested GUITAR with each memory image to ensure that
all remaining valid data structures could be located. Note
that GUITAR has no knowledge of our profiling results and
relies only on signature-based scanning for data structure
recovery.

Table 1 presents the results for all 7 apps on each of the 3
devices. The devices and app names are listed in Columns
1 and 2, respectively. Column 3 shows the count of GUI
data structure instances that were in the app’s heap when
the app was in the foreground. Column 4 shows those which
remained in the app’s heap after the app was backgrounded,
and Column 5 shows this as a percentage. Lastly, Column 6
presents the number of data structure instances which GUI-
TAR recovered from the memory image.

From Table 1, we make several observations: First, GUIs
are built from a significant number of data structure in-
stances. This may seem intuitive, but it confirms our earlier
claim that focusing on individual data structures is insuf-
ficient. Many apps require more than 500 data structure
instances for their GUIs. Notably, the LG G3 Facebook app
reports the most data structures: 926. Overall, 11 of the
21 test cases have more than 300 data structure instances
each. Table 1 also shows that vendor-specific apps show very
different results on each smartphone. For example, each ven-
dor’s Calendar app has very different GUI construction and
thus contains a disparate number of data structures: 546
for Samsung, 753 for LG, and 276 for HTC. In contrast,
vendor-generic apps tend to have very similar results (e.g.,
262, 301, and 355 for Instagram).

5This was done via in-place binary instrumentation of the
windowing system library and, by design, neither interacts
with any memory management components nor changes how
the structures are used by the library.
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Device App
Ground Truth
Tree Size

Recovered
Tree Size Edit Distance % Original CBIR Similarity

Samsung S4

Calendar 62 57 22 64.51 85.05
Chase Banking 33 33 4 87.88 N/A
Contacts 50 57 11 92.00 94.64
Facebook 85 113 48 77.65 95.47
Instagram 54 57 6 94.44 89.14
Messaging 22 22 2 90.91 85.75
WhatsApp 30 30 4 86.67 82.17

LG G3

Calendar 79 76 18 77.22 94.62
Chase Banking 33 33 6 81.82 N/A
Contacts 98 101 19 83.67 80.16
Facebook 116 128 41 76.72 85.52
Instagram 58 58 9 84.48 87.75
Messaging 23 23 3 86.96 80.78
WhatsApp 37 37 8 76.30 80.85

HTC One

Calendar 38 40 8 84.21 80.33
Chase Banking 33 34 5 87.88 N/A
Contacts 73 73 12 83.56 84.16
Facebook 79 78 23 70.89 90.52
Instagram 58 58 5 91.38 93.25
Messaging 85 83 34 60.00 86.02
WhatsApp 25 25 1 96.00 92.70

Table 2: Reconstruction of GUI trees of various apps from different phones.

Table 1 shows that a large percentage of these data struc-
tures persist after the application is backgrounded. As pre-
sented in Section 2, this percentage will drop over time if the
app remains in the background — Section 4.3 expands on
this by evaluating GUITAR’s GUI recovery capability over
a period of 24 hours. For all 21 cases, an average 89.23%
of the data structures persist. We only see 4 cases where
less than 80% persist. Further, recall that GUITAR can re-
construct an app’s remaining GUI even if some of the data
structures are missing — the missing pieces might simply be
blank spaces on the screen.

Lastly, these results show that GUITAR’s memory im-
age scanner is robust enough to recover 100% of the data
structure instances in the backgrounded apps’ memory im-
ages. Although we point out that individual data structure
recovery is not GUITAR’s primary capability and may be
performed by other existing memory forensics techniques.

4.2 Reconstructed GUIs (Finished Puzzles)
Using the recovered GUI data “pieces,” we now evaluate

how accurately GUITAR reconstructs each GUI tree and the
quality of each redrawn GUI.

We first need to compare a GUITAR-reconstructed GUI
tree with a Ground Truth Tree (i.e., the app’s true GUI tree
as it was in the memory image). To obtain the Ground
Truth Tree, we instrumented each app to log the structure
and content of its GUI tree in the foreground. From that log,
we subtracted the elements of the tree that were lost when
the app was backgrounded (recall that the tree’s structure
is explicitly destroyed when the app is backgrounded). This
yielded the ideal tree which GUITAR could reconstruct with
the remaining data structures.

However, the most important (and interesting) test for
GUITAR is: How does the reconstructed GUI look? To
reliably compare each GUITAR-reconstructed GUI to the
app’s original GUI, we used Content Based Image Recogni-
tion (CBIR) to score the similarity between the GUI recon-
structed by GUITAR and a screenshot of the original app
(from Android’s screencap program). Note that CBIR is
used instead of a naive per-pixel comparison because GUI-
TAR may rearrange a few GUI elements — causing many

pixels to change though the overall image’s content remains
the same. For this, we employed the widely used LIRE open
source CBIR library [32,33] and the default CEDD indexing
feature [23]. Notice that this comparison is actually unfavor-
able to GUITAR because the screenshot is taken when the
app is in the foreground, and GUITAR has no control over
what data is overwritten when the app is backgrounded.

Table 2 presents the devices and app names in Columns
1 and 2. Columns 3 and 4 show the size (number of nodes)
of the Ground Truth Tree and GUITAR-reconstructed tree,
respectively6. Note that the number of edges is always the
number of nodes minus 1. Column 5 presents the edit dis-
tance (number of node additions and deletions) between the
Ground Truth Tree and reconstructed tree. The percentage
of the GUITAR-rebuilt tree that is strictly identical (con-
tent, structure, and position in the tree) to the Ground
Truth Tree is shown in Column 6. Lastly, Column 7 lists
the CBIR score between the GUITAR-reconstructed GUI
and a screenshot of the foreground app.

Table 2 shows that GUITAR-reconstructed GUI trees are
very similar to the apps’ original GUI trees. Column 6
shows that most of the reconstructed trees (14 out of 21)
are more than 80% strictly identical to the Ground Truth
Trees (with an average of 82.63%). Moreover, the edit dis-
tances in Column 5 show that many rebuilt trees only differ
from the (ideal) Ground Truth Trees by less than 10 modifi-
cations (node additions or deletions). Further, as described
in Section 3, often the reconstructed tree branches that are
not identical to the Ground Truth Tree are simple permu-
tations of the tree’s structure. In the following section, we
will highlight LG G3’s WhatsApp test to demonstrate how
reconstructed GUIs are often a slightly “rearranged” form of
the original GUIs.

Table 2 also shows that 7 reconstructed trees are slightly
larger than their Ground Truth Trees. A larger tree is al-
ways caused by historic GUI data. For instance, the Sam-
sung S4 Contacts GUI is reconstructed with several elements

6The number of nodes is smaller than the number of data
structure instances because each TreeNode includes the node
plus all elements in its DrawOpList and graphical contents.
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(a) Earlier Screen. (b) Latest Screen. (c) Conflict Branch.(d) Recovered GUI.

Figure 6: Samsung Contacts app with redrawn full conflict branch.

(a) App Screen. (b) Recovered GUI.

Figure 7: HTC Messaging.

(a) App Screen. (b) Recovered GUI.

Figure 8: LG WhatsApp Contacts.

(a) App Screen. (b) Recovered GUI.

Figure 9: Samsung Facebook.

(a) App Screen. (b) Recovered GUI.

Figure 10: LG Contacts app.

that were present on an even earlier screen. Figure 6 shows
the two previous GUI screens which contributed to the re-
sulting GUITAR-reconstructed GUIs: one from the most
recently viewed screen (Figure 6(b)), and a portion of the
earlier screen (a full conflicting branch, Figure 6(c)). Of the
21 test cases, only 4 have reconstructed trees smaller than
the Ground Truth Trees. Smaller trees are caused when
too few data structures with visual GUI contents are recov-
ered. As detailed in Section 3.2, GUITAR removes empty
branches of the reconstructed tree, yielding a tree smaller
than the Ground Truth Tree (which does not remove empty
branches). Empty branches result in blank areas in the re-
drawn GUI. As Figure 7 shows, the HTC One’s Messaging
app GUI loses three of the icons on the top of the screen
and one thumbnail image when the app is backgrounded.

Most importantly, the CBIR results summarize how vi-
sually similar the re-drawn GUIs are to the original app’s
screens. Column 7 of Table 2 shows that all test cases
score between 80.16% and 95.47%, with an overall average of
87.16% similarity. To illustrate this measurement Figure 9
shows the best case: Samsung S4’s Facebook, and Figure 10
shows the worst case: LG G3’s Contacts. Even in the worst
case (80.16%) the GUITAR-reconstructed GUI is quite sim-
ilar to the original GUI.

From the CBIR similarity scores, we make a few observa-
tions: First, certain apps have consistent GUI reconstruc-
tion results. For instance, Instagram has good scores for all
devices (89.14% for Samsung, 87.75% for LG, and 93.25%
for HTC). Again, the vendor-specific apps do not show any
similarity across devices. For example, Samsung’s Contacts
is among the best cases at 95.47%, but the LG G3 Contacts

GUI is 80.16%. We also find that no device outperforms the
others by a significant margin. The device-specific averages
are all very similar: 87.50% for Samsung, 84.25% for LG,
and 86.77% for HTC.

Also note that the GUI tree reconstruction metrics are
somewhat misrepresentative, which prompted us to perform
the CBIR similarity comparison. Several apps have recon-
structed trees that seem fairly different from their Ground
Truth Trees, but the displayed GUIs are very similar to the
original apps’ GUIs. One such example is the Samsung S4’s
Facebook app. In this case, the reconstructed tree is 77.65%
identical to the Ground Truth Tree with an edit distance
of 48 (i.e., it would take 48 additions or deletions to make
the trees fully identical). However, the GUITAR-redrawn
GUI scores 95.47% similarity to the app’s screenshot (as
highlighted in Figure 9). This is due to many small GUI
elements being “best fit” matches for the same GUI tree
nodes. Therefore, GUITAR reconstructed a GUI tree which
has many nodes mapped to alternate locations, but in fact
the visual elements are nearly interchangeable.

Lastly, we found that several test cases had similar data
structure destruction patterns caused by backgrounding the
app. Manual investigation revealed that textual glyphs and
UI colors are often the first data structures to be deallocated
and overwritten. This turns out to be favorable for inves-
tigators because glyphs and colors can be reconstructed by
analyzing the app’s APK from a forensic image of the smart-
phone’s SD card (acquired alongside a memory image). For
these cases, we used a python script to extract the glyph
icons and colors from the APKs and patch them into the
overwritten data structures.
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GUI Reconstruction Time We measured the GUI re-
construction time for each case in Table 2. GUITAR’s run-
ning time ranges from 5 minutes to 10 minutes, including the
scanning of the memory image for GUI element data struc-
ture recovery. If such recovery time is excluded (because it
is not the main capability of GUITAR), the GUI reconstruc-
tion time alone ranges from 3 to 5 minutes, which is very
acceptable for (off-line) digital forensics investigations.

4.2.1 Case Study: WhatsApp on LG G3
In several test cases presented in Table 2 we found that

GUITAR-reconstructed GUIs are slightly“rearranged”forms
of the original apps’ GUIs. In this case study, we examine
one such case in detail where this effect is most obvious.
When we performed the LG G3’s WhatsApp experiment,
the last GUI we viewed was the app’s Friends List window.
Thus, this is the GUI we aimed to redraw using GUITAR.

As shown in Row 14 of Table 1, 78.97% of WhatsApp’s
GUI data structures persisted in the backgrounded app’s
memory. From those recovered structures, GUITAR was
able to reconstruct the app’s GUI tree of 37 nodes. Table 2
shows that the reconstructed tree has the same size as the
Ground Truth Tree but is only 76.30% identical. Curiously,
when we looked at the GUITAR-redrawn GUI everything
appeared to be drawn correctly.

Through further investigation we found that 4 of the ma-
jor GUI elements were virtually interchangeable: each sub-
tree having the same geometric on-screen dimensions and
identical tree structure. Correlating these 4 GUI elements
to the redrawn GUI revealed that these were the 4 rows for
each friend in our Friends List. While rebuilding the GUI
tree, GUITAR could not determine the order of these sub-
trees (given their similarity) and thus broke the tie randomly
— swapping 2 of the friends in the list.

Figure 8 presents the app’s foreground screenshot and the
GUITAR-reconstructed GUI. Notice how the first and sec-
ond friend in the list have swapped positions in the rebuilt
GUI. The only other difference between the GUIs is the miss-
ing icons at the bottom of the screen which were lost when
the app was backgrounded. To correct this, GUITAR could
leverage heuristics (e.g., the structures’ offset in the heap)
to help break such “best match” ties more accurately. We
leave this as future work.

4.2.2 Bypassing the Password Check
In this section, we highlight another interesting feature

of GUITAR: It helps bypass an app’s password protection.
Many Android apps (particularly those handling highly sen-
sitive data) require users to log in when they bring the app
back to the foreground after a certain (short) period of time.
One such example is the Chase Banking app. Like many
other highly secure apps, the Chase app requires users to
log into their Chase account every time the app is brought
to the foreground. This login is cached and a timer is used
to automatically log the user out after some time of inactiv-
ity. Thus, if someone later opened the app it would again
ask for login credentials.

Importantly however, when such a secure app is being
used, the last screen the user views before backgrounding
the app is always some internal screen of the app after the
user has already logged in. Further, this most recent internal
screen will be the one present in the app’s heap even after
the app has logged the user out. For these apps, GUITAR

can recover confidential personal information frozen in the
memory image long after the app’s session has expired.

We have evaluated GUITAR with memory images from
the Chase Banking app on all three test smartphones. In
each case, we logged into our personal Chase Bank account,
checked our account balances, and backgrounded the app.
We then waited for the app’s session timer to expire (thus
requiring us to log in if we brought up the app again) and
then took the memory image of the backgrounded app.

Note that Table 2 shows “N/A” for the Chase Banking
app’s CBIR scores. This is because the Chase Banking app,
like many other secure apps, has explicitly disabled screen-
shots from being taken when the app is in the foreground.
This however cannot prevent GUITAR from reconstructing
the app’s GUI from the memory image.

Table 2 shows that GUITAR was able to rebuild the Chase
Banking app’s GUI tree with very high accuracy: 87.88%
identical to the Ground Truth Tree for the Samsung S4 and
HTC One devices and 81.82% identical for the LG G3. For
visual comparison, Figure 11 shows the reconstructed app
GUIs for all 3 devices (and one of the authors’ graduate-
student-size account balance).

We point out that a broader impact of this case study is
the user privacy concerns it raises for running highly sensi-
tive apps on smartphones. Interestingly, even apps focusing
on privacy (such as TextSecure [36]) cannot disrupt GUI-
TAR’s recovery. This is because GUITAR operates on the
lowest-level GUI objects (defined by Android, not by the
apps). Such GUI data is used directly by the system for
GUI display. Thus any app which displays a GUI will have
to use these objects, leaving behind the GUI-related data
that GUITAR will (later) use for GUI recovery. In our tar-
geted application scenario (digital investigation), we assume
that the privacy issues are addressed by legal protocols and
policies (e.g., requirement of a search warrant).

(a) LG G3 (b) Samsung S4 (c) HTC One

Figure 11: Reconstructed Chase Banking GUIs. Al-
though the user was logged out, recovered GUIs still
reveal sensitive information. Note: we manually
blocked out the account number.

4.3 GUI Reconstruction Over Time
In this section, we evaluate GUITAR’s GUI reconstruction

capability for memory images captured over a longer period
of time since the app was backgrounded. As described in
Section 2, Android rebuilds an app’s GUI from scratch (i.e.,
allocates and builds a new GUI tree) every time it is brought
to the foreground; as such, data of its previous GUI are freed
and risk being overwritten if the app performs background
processing. However, as shown in Figure 2, a non-trivial
amount of the GUI data persist in the app’s free heap space
over a period of 24 hours.
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App Fore/Backgound Backgrounded Time Instances % Persists Tree Size Edit Distance % Original

Contacts

Foreground 731 98

Background

1 hour 640 87.55 101 19 83.67
2 hours 640 87.55 101 19 83.67
5 hours 635 86.87 97 24 79.06
10 hours 364 49.79 65 43 54.23
24 hours 320 43.78 63 47 51.56

Instagram

Foreground 301 58

Background

1 hour 232 77.08 58 11 82.03
2 hours 232 77.08 58 11 82.03
5 hours 232 77.08 58 11 82.03
10 hours 232 77.08 58 11 82.03
24 hours 205 68.11 51 18 74.51

Messaging

Foreground 101 23

Background

1 hour 90 89.11 23 3 86.96
2 hours 84 83.17 21 6 82.52
5 hours 84 83.17 21 6 82.52
10 hours 56 55.45 18 11 57.01
24 hours 56 55.45 18 11 57.01

WhatsApp

Foreground 214 37

Background

1 hour 157 73.36 37 10 71.94
2 hours 116 54.21 35 13 65.02
5 hours 115 53.74 35 13 64.13
10 hours 115 53.74 35 13 64.13
24 hours 109 50.93 32 18 50.71

Table 3: Reconstruction of background apps’ GUI trees over a 24 hour period.

(a) 1 hour (b) 5 hours (c) 24 hours (d) 1 hour (e) 5 hours (f) 24 hours

Figure 12: Contacts and WhatsApp GUIs with varying degree of loss over time.

Using the memory images of 4 apps taken in Section 4.1 as
a baseline (i.e., time t0), we left the apps in the background,
untouched, and took additional memory images at times t0+
1 (hour), t0 + 2, t0 + 5, t0 + 10, and t0 + 24. During this
time period, the other apps on the smartphone were heavily
used. We employed the same ground truth collection as in
the previous sections, and then applied GUITAR on these
memory images.

Table 3 presents our results for the LG G3 phone. For
comparison, we include each app’s foreground data (with
100% of the intact GUI tree in memory). Note that each
app’s GUI reconstruction results for the memory image cap-
tured at t0 are already presented in Tables 1 and 2. Column
1 of Table 3 shows each app’s name. Column 2 shows if the
app was in the foreground or background, and Column 3
lists the time each app had been in the background when
the memory image was taken. The number of data struc-
tures in the memory images is listed in Column 4 (like before,
GUITAR located all recoverable data structures). Column
5 presents the percentage of the foreground data structures
which persist in the memory. Columns 5, 6, and 7 present
the reconstructed GUI tree’s size, edit distance, and percent-
age that is identical to the Ground Truth Tree, respectively.

Table 3 presents several interesting results: First, as ex-
pected, after 1 hour in the background the GUI recovery
results are similar to those reported in the previous sections

(i.e., 15 minutes in the background). On average, 81.78%
of the data structures are recoverable — fairly close to the
average in Section 4.1: 89.23%. Further, GUITAR recon-
structs GUI trees that are all more than 71% identical to
their Ground Truth Trees.

Notably, Table 3 shows that loss of GUI data is non-linear
over time. For example, the Instagram GUI data had no
loss until 9% of the data structures were overwritten in the
24 hour-memory image. Intuitively, this is because those
data structures remain intact, until one or more bursts of
background computation have requested enough memory to
overwrite the GUI data. Because of this, the apps tend to
exhibit “stepwise” GUI data loss. The Messaging app in
Table 3 shows this trend: 6% of the data were lost after 2
hours, and then no data were lost until 28% more data were
lost after 10 hours.

To visually compare the reconstructed GUIs, Figure 12
shows the gradual (but graceful) degradation of GUITAR-
reconstructed GUIs over the 24-hour period. Again, the
GUIs reconstructed from the 1-hour-memory images are very
similar to those reconstructed in the previous subsections.
After 24 hours, the GUIs will be missing some non-trivial
content. But GUITAR is robust enough to reconstruct the
partial GUIs showing the graphical content of the remaining
GUI data, which (as shown in Figure 12) are still of forensic
value.
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5. RELATED WORK
By and large, memory forensics tools have focused on

recovering individual data structure instances as evidence.
They can be roughly divided into two categories based on the
data structure signatures they employ. Value-invariant sig-
natures leverage known in-memory value patterns or invari-
ants to locate data structure instances via brute-force scan-
ning [17, 18, 24, 37, 41, 45]. Structural-invariant (or “points-
to”) signatures rely on the interconnection of data structure
networks [30]. To date, most forensic tools and reverse en-
gineering systems rely on traversing data structures (mak-
ing use of structural-invariant assumptions) [19, 22, 35, 48].
Many techniques, such as HOWARD [42], REWARDS [31],
and TIE [28], leveraged program analysis to automatically
infer data structure definitions for deriving their signatures.
DIMSUM [29] used hybrid-signatures along with probabilis-
tic inference to identify data structure instances without
memory mapping information (e.g., page tables). GUITAR,
however, addresses a different problem: reconstructing GUIs
by piecing together data structures already recovered. As
such, the input of GUITAR is the output of existing data
structure recovery tools.

Recently, DSCRETE [40] was proposed to automatically
render application output for recovered data structures. It
still focuses on individual structure instances and involves
an application-specific dynamic analysis step. DSCRETE
requires the data structure it renders to be “live” and in-
tact. By comparison, GUITAR is app-independent and re-
constructs entire GUIs, each containing hundreds of inter-
dependent deallocated data structures, with critical pointers
between them nullified by Android.

Forensics research has only recently started to focus on
mobile devices. DEC0DE [47] employed probabilistic finite
state machines to recover plain-text call logs and address
book entries from phone storage. Spurred by the release
of Android memory acquisition tools [13, 43], several efforts
began recovering app-specific data from memory images.
VCR [39] recovers photographic evidence from the camera
service’s memory. Thing et al. [46] aimed at recovering low-
level inter-app communications from memory images. Other
works [12, 34] have investigated Dalvik-JVM control struc-
tures and raw Java object content. Apostolopoulos et al. [15]
later found several login credentials in app memory images.
Lastly, Hilgers et al. [26] proposed using memory analysis
on cold-booted Android phones. GUITAR shares the same
analysis subjects with these efforts: Android memory im-
ages. However, GUITAR is unique in focusing on recon-
structing GUIs (instead of specific types of program data)
and redrawing the GUIs in the same, full-screen view as seen
by smartphone users.

6. CONCLUSION
To address a real-world smartphone forensics challenge,

we have presented GUITAR, a memory forensics technique
which automatically reconstructs and redraws Android app
GUIs frozen in a memory image. Instead of focusing on
recovering individual data structures (as most existing tech-
niques do), GUITAR takes recovered GUI data structures
— already deallocated by Android — as input and pieces
them back together to recreate the original GUI. Our evalu-
ation results show that GUITAR achieves high accuracy in
GUI tree reconstruction and redrawing, and tolerates loss of
GUI data elements over time by reconstructing partial yet
meaningful GUIs.
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APPENDIX
A. DATA STRUCTURE SIGNATURES

Here we present additional details on the data structure
signatures used during GUITAR’s memory image scanning.
Though not GUITAR’s main contribution, data structure
recovery is a prerequisite for GUITAR’s GUI reconstruction.

  class DrawTextOp {
[0x0 ]    void * vtable;
[0x4 ]    SkPaint* mPaint;
[0x8 ]    bool mQuickRejected;
[0xC ]    Rect mLocalBounds;
[0x1C]    const char* mText;
[0x20]    int mBytesCount;
[0x24]    int mCount;
[0x28]    float mX;
[0x2C]    float mY;
[0x30]    const float* mPositions;
[0x34]    float mTotalAdvance;
[0x38]    mat4 mPrecacheTransform;
  };

DrawTextOp(A) =
    vtable_ptr_value(A)  &&
    data_ptr_value(A + 0x4)  &&
    SkPaint(*(A + 0x4))  &&
    bool_value(A + 0x8)  &&
    Rect(&A + 0xC)  &&
    data_ptr_value(A + 0x1C)  &&
    printable_text(*(A + 0x1C))  &&
    int_value(A + 0x20)  &&
    int_value(A + 0x24)  &&
    float_value(A + 0x28)  &&
    float_value(A + 0x2C)  &&
    data_ptr_value(A + 0x30)  &&
    float_value(*(A + 0x30))  &&
    float_value(A + 0x34)  &&
    mat4(&A+ 0x38);

Figure 13: DrawTextOp class definition and result-
ing data structure signature.

GUITAR uses a combination of structural and value in-
variant signatures for each structure it recovers. Figure 13
shows a representative example: The source code definition
and signature for the DrawTextOp data structure. Note that
each field which GUITAR relies on for GUI reconstruction
is converted into boolean conditions. During memory image
scanning, the value-invariant boolean conditions identify po-
tential signature matches and the structural-invariant func-
tions validate the interconnection between different objects.
For instance, the second field of the DrawTextOp structure
is first checked with a value-invariant (data_ptr_value) and
then the interconnection is checked by validating the pointer
target (SkPaint).
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