
QoS-Aware Discovery of Wide-Area Distributed Services
�

Dongyan Xu, Klara Nahrstedt, Duangdao Wichadakul
Department of Computer Science

University of Illinois at Urbana-Champaign�
d-xu, klara, wichadak � @cs.uiuc.edu

Abstract

The global computational grids bring together dis-
tributed computation/communication resources. Beyond
this, we envision the emergence of global ‘service grids’,
which provide a ‘market’ of application-level distributed
services for clients to discover and to request. In this paper,
we study the issue of wide-area service discovery in service
grids. We start with an existing basic wide-area service
discovery framework. The framework adopts a scalable
architecture consisting of a hierarchy of Discovery Servers.
We then identify problems with the basic framework, and
propose our enhancement of query responsiveness and QoS
awareness. The key techniques we introduce include: (1)
the addition of QoS feedback capability to clients; and (2)
the caching and propagation of discovery results with QoS
feedbacks in the discovery server hierarchy. With these
techniques, the enhanced service discovery framework will
be faster in finding qualified service providers. Further-
more, it will select a ‘good’ (with respect to the QoS to be
delivered) service provider for each querying client, based
on QoS feedbacks.

1 Introduction

The emergence of global computational grids brings
changes to the traditional paradigm of distributed com-
puting. It is now possible that one computation task is
executed by autonomous, distributed, and heterogeneous
computing and communication resources, virtually brought

�
Accepted to the First IEEE/ACM International Symposium on Cluster

Computing and the Grid (CCGrid 2001), Brisbane, Australia, May 2001.
This work was supported by the National Science Foundation under con-
tract number 9870736, the Air Force Grant under contract number F30602-
97-2-0121, National Science Foundation Career Grant under contract
number NSF CCR 96-23867, NSF PACI grant under contract number NSF
PACI 1 1 13006, NSF CISE Infrastructure grant under contract number
NSF EIA 99-72884, NSF CISE Infrastructure grant under contract number
NSF CDA 96-24396, and NASA grant under contract number NASA NAG
2-1250.

together by the grids. More importantly, a computation
or communication resource can be discovered on-demand
in the grids. If multiple ‘instances’ of the resource (for
example, CPU or storage space) are found, one of them will
be selected dynamically based on the their current load and
capacity.

Taking one step further, we envision the emergence of
global service grids on top of the computational grids. The
grids will not just provide raw computation/communication
resources. They will appear as a ‘market’ of application-
level distributed services. Examples of such services in-
clude virtual scientific laboratory services, virtual commu-
nity services, E-commerce, and multimedia data distribu-
tion, processing, or storage services. These services will
be deployed in the wide-area service grids, and can be
discovered and requested by any networked clients.

One challenge in such a wide-area service grid is to
build a scalable and efficient service discovery framework.
The main requirements for such a framework include: (1)
The distribution and management of service information
should not incur excessive overhead and create performance
bottleneck, with the rapid increase of available services and
querying clients; (2) Response to a service query should
be reasonably fast. In particular, the query response time
should not always depend on how far away a service
provider is from the querying client1; and (3) The discovery
result returned to a client should be likely to bring good
service quality to the service session that follows, if there
exist multiple service providers of the same service.

In this paper, we propose our solution to the challenge
which meets the above requirements. It is based on an
existing basic wide-area service discovery framework. The
framework adopts a scalable architecture consisting of a
hierarchy of Discovery Servers. Furthermore, we identify
problems with the basic framework, and propose our en-
hancement of query responsiveness and QoS awareness to
the framework. The key techniques we introduce include:
(1) the addition of QoS feedback capability to clients; and

1Instead, in our framework, query response time will depend more on
the request frequency of a service.

(2) the caching and propagation of discovery results with
QoS feedbacks in the Discovery Server hierarchy. With
these techniques, the enhanced framework will be faster
in finding qualified service providers. Furthermore, it will
select a ‘good’ (with respect to the QoS to be delivered)
service provider for each querying client, based on QoS
feedbacks.

The rest of the paper is organized as follows: Section
2 presents a basic wide-area service discovery framework
and identifies its problems. This is the basis on which
we propose our query responsiveness and QoS awareness
enhancement. Section 3 describes the enhancement to the
basic framework in detail. Section 4 shows the performance
of the enhanced wide-area service discovery framework,
using our initial simulation results. Section 5 discusses
related work and justifies the novelty of our work. Finally,
Section 6 concludes this paper.

2 A Wide-Area Service Discovery Frame-
work

We first describe the basic wide-area service discovery
framework. Then we will identify some problems with
the basic framework, which motivate our work. The basic
framework adopts a hierarchy architecture, which has been
recognized as a scalable approach to wide-area service
directory organization and management [2, 10, 11, 7].

2.1 Basic Service Discovery Architecture

The architecture of the basic service discovery frame-
work is shown in Figure 1. The wide-area environment is
divided into domains with different ranges. More specifi-
cally, the domain partition is hierarchical, i.e. one domain
consisting of multiple domains at the next lower level. The
key entities in the architecture include the service clients,
the Service Providers (SPs), and the Discovery Servers
(DSes).

� Service clients query the service discovery framework
for the providers of their requested services. A client
only interacts with its home Discovery Server (to be
defined shortly), i.e. the Discovery Server of the lowest
level domain where the client resides.

� Service Providers (SPs) provide application-level dis-
tributed services. To advertise its service, each SP
sends service ad to the service discovery framework.
Similar to a client, an SP only interacts with its home
Discovery Server.

� Discovery Servers (DSes) are key entities in the ar-
chitecture. They act as brokers between service clients
and SPs. There is a DS in each domain. Due to the

hierarchical partition of domains, the DSes are also
organized into a hierarchy. In particular, each of the
DSes at the lowest level is called the home DS by the
hosts in that lowest level domain. To hide complexity,
an SP (a client) sends service ad (service query) only
to its home DS. However, to perform wide-area service
discovery, there will be exchange of service queries
and service ads between the DSes.

Discovery Server (DS)

Service Client

Service Provider (SP)

Level 3

Level 2

Level 1

Figure 1. Architecture of the Basic Service
Discovery Framework

2.2 Basic Service Discovery Mechanism

To describe the basic service discovery mechanism, we
use the Berkeley Service Discovery Service (SDS) [2] as a
reference. However, we omit the security feature in SDS
for simplicity. There are two key issues in the mechanism:
(1) lossy aggregation of service ads as they are propagated
up in the DS hierarchy, and (2) distributed service query
processing (routing) in the DS hierarchy.

� Lossy aggregation of service ads involves the sum-
marization of local service ads by each home DS
before sending them up to its parent DS. The parent DS
stores the summarized service ads from all its children
DSes. In turn, it further summarizes the summarized
service ads before sending them up to its parent DS...
This lossy aggregation is performed recursively in the
DS hierarchy, in order to prevent higher level DSes
from being overloaded by the otherwise full service ad
propagation traffic. In SDS, the aggregation technique
is hashing and hash summarization via Bloom filtering
[2].

� Distributed service query processing (routing) in-
volves the forwarding of a service query in the DS
hierarchy, in order to find the DSes which store the

2

full service ad of a qualified SP. Figure 2 shows an
example of service query processing. Starting from
the home DS to which a query is submitted (step 1),
if no service ad (or summarized service ad - if it is
a higher level DS) matches the query, the DS will
forward the query up to its parent DS, and so on
(steps 2, 3). If there is a match, the DS will forward
the query downward to the children DS(es) which
originally sent up this qualified summarized service ad
(steps 4, 5). From this point, the query may be coming
down along multiple ‘paths’ in the hierarchy, because
there may exist multiple qualified service ads. Each
DS on such a path verifies if the query has a real match
with the corresponding (and more detailed) service ad
maintained by the DS. If not, the forwarding stops
(step 5.b). Otherwise, the query is forwarded further
downward (step 5.a). Finally, all home DSes which
have the full and qualified service ads will return these
ads to the original DS (step 6). The DS will then return
the discovery results to the querying client (step 7).

Discovery Server (DS)

Service Client

Service Provider (SP)

1

2

3

4

4

5

5.a

5.b

6

7

6

Figure 2. Service Query Processing (Routing)
in the Basic Service Discovery Framework

2.3 Problems in the Framework

The basic service discovery framework provides a scal-
able solution to wide-area service information distribution
and management. However, there exist two problems that
still need to be solved.

� Potentially long query response time In the basic
service discovery mechanism, it is clear that the query
response time grows with the ‘distance’ between a
querying client and a qualified SP. The distance is
measured by the number of DSes the query has to go
through (both up and down) in the hierarchy. More-
over, since higher level DSes oversee wider-range

domains, they may easily be overloaded by the inter-
DS service query traffic. This in turn makes the query
response time even longer.

� QoS unawareness There is no explicit consideration
on the QoS to be delivered by a discovered SP. In par-
ticular, if a query leads to multiple discovery results,
there is little information the framework could use to
predict which one is likely to provide good QoS to the
querying client.

These problems motivate our work in bringing both
query responsiveness and QoS awareness to the basic
framework.

3 Enhancement to the Service Discovery
Framework

In this section, we present our enhancement of query
responsiveness and QoS awareness to the basic wide-area
service discovery framework. The enhancement involves
modifications to service clients and to Discovery Servers
(DSes).

3.1 Enhancement to Service Clients

The enhancement to service clients is the addition of
QoS feedback capability. During a service session, the
client-side software component will monitor the QoS during
the session, and generate a numerical average QoS level
observed by the client. The definition of QoS levels are
highly service-specific. However, in order to be understood
by the DSes which are service-independent, the QoS level
definition should conform to the following simple rule: the
higher the QoS level, the better the QoS observed. Our
experience with a Video-on-Demand service [12] and a
Distributed Visual Tracking service [5], which have very
different definitions of QoS levels, demonstrates the feasi-
bility of implementing client-side software components in
this fashion.

Each client will then send the QoS feedback to its
home DS. This forms a feedback loop between the service
discovery framework and the clients.

3.2 Enhancement to Discovery Servers

Our major contribution lies in the enhancement to the
DSes. We propose the caching and propagation of ser-
vice ads with QoS feedbacks in the DS hierarchy. More
specifically, a DS can maintain a cache of discovery results
- the service ads returned by the home DSes of their origin.
Furthermore, each cached service ad will be associated with
QoS-feedbacks from clients of this service in the domain

3

of the caching DS. The caching DS will then leverage
these feedbacks to respond to service queries from the
same domain, and to select a ‘good’ SP (Service Provider)
with respect to potential service quality for each query.
Therefore, these upcoming queries for the same service
will experience shorter query response time, and incur
less query processing overhead. More importantly, the
discovery result is more likely to achieve satisfactory QoS
in the service session to follow.

By this approach, we try to achieve three goals: (1)
to lower the average query response time; (2) to improve
the session QoS following a query; and (3) (which is less
addressed,) to make this cached service ad helpful to queries
of as many clients as possible. However, the three goals are
not orthogonal. To achieve (1) and (2), the service ad should
be cached in a low level DS (for example, a home DS) close
to a querying client, but that will limit the benefiting clients
only to those in the same small domain. On the other hand,
if the service ad is cached in a high level DS visible to a
wider range of clients, the query response time will become
longer. Moreover, the resultant session QoS may deviate
from what is predicted by the caching DS. The reason is:
the wider the range a DS oversees, the more diversifying
(and less useful for QoS prediction) QoS feedbacks it tends
to receive.

To achieve these goals and alleviate the conflicts between
them in the meantime, we introduce three strategies in the
following subsections.

3.2.1 First Strategy: Hierarchical Caching and Propa-
gation of Service Ads

The first strategy is hierarchical caching and propagation
of service ads. Hierarchical caching has been used in
cooperative web content caching [1]. Interestingly, in
service discovery, we also find it a very useful technique.
It can be performed together with the normal service query
processing (described in Section 2.2). Even better, since
service ads are of uniform and much smaller size, the
disadvantage of high latency and bandwidth consumption
in web content access becomes much less significant. The
operations of hierarchical service ad caching and propaga-
tion are as follows (Figure 3):

� Service ad caching and propagation A service query
leads to a service session. After the service session
completes, the client will generate a QoS feedback
about the completed session, and return it to the service
discovery system (step 1). The service ad with QoS
feedback will then be propagated up the DS hierarchy
(step 2): at each level starting from the client’s home
DS, the DS either caches this service ad with QoS
feedback - if it has not yet done so; or update the
associated access frequency and QoS feedback - if the

service ad is already cached. This upward propagation
will terminate at the DS which originally found this
service ad in its cache; or, if the service ad was
found in the home DS of the corresponding SP, the
propagation will terminate at the DS of the highest-
level QoS-similar domain (to be defined shortly). The
replacement policy for the service ad cache is based
on the items’ access frequency. In addition, when a
DS deletes a cached service ad, it also moves it one
level up to its parent DS.

� Service query processing A client’s service query
(step 3) is forwarded up the DS hierarchy (step 4).
At each level, besides normal query processing (i.e.
checking the query against stored service ad sum-
maries), the DS will also check if there are cached
service ads that satisfy this query. If a cache hit occurs,
the DS will select one of the qualified cached service
ads, based on the QoS feedbacks associated with each
of them, and return it to the querying client (step 5.a);
otherwise, the normal query processing will continue
(step 5.b). For the QoS-feedback-based selection,
there exist different policies - for example: always
selecting the one with the highest QoS feedback value;
or randomly selecting one of those whose QoS feed-
back values are beyond some threshold. [8] provides
a comparative study on the effectiveness of different
selection policies.

Discovery Server (DS)

Service Client

Service Provider (SP)

Completed Service Session

1

1 1

Highest Level QoS−

2

2

3

4

5.a

5.b

Similar Domain

Figure 3. Operations of Hierarchical Service
Ad Caching and Propagation

The new query processing operations can be easily
extended from the basic service query processing opera-
tions. Therefore, the additional overhead introduced is not
significant, comparing with the performance gain in query
response time. More importantly, the propagation of service

4

ad with QoS feedback is self-adaptive with respect to the
placement of cached service ads in the DS hierarchy. Via
the operation, a cached service ad is able to move ‘up’
and ‘down’ dynamically in the DS hierarchy, based on its
current query frequency. If clients in a domain request a
certain service frequently, then its service ad will soon settle
down at a DS close to these clients. Copies of the same
service ad at higher level DSes will gradually ‘evaporate’,
when their access frequency decrease. On the other hand,
for a less frequently requested service, its service ad tends
to stay in a higher-level DS, where the query frequency will
again build up - from a wider range of clients. Existence of
the same service ad at lower level DSes tend to be transient,
due to the low query frequency.

However, in order to achieve good QoS prediction for
service queries, the propagation of service ad with QoS
feedback should be kept within certain levels of DSes. For
this reason, we propose the concept of QoS-similar domain.
A QoS-similar domain is a domain in which a majority of
the clients tend to observe similar QoS provided by the
same SP. For example, domains at the lowest level are
usually QoS-similar domains, with relatively homogeneous
network connection for each client in the domain. Upper
level domains may also be QoS-similar. However, the
higher the domain level, the less the similarity it tends to
exhibit.

There are two possible ways to determine if a domain
is QoS-similar. First, it may be manually defined by
the domain administrator. Second, in a more automated
approach, DSes at different levels may periodically check
if their domains are QoS-similar. This is done by checking
the degree of similarity among QoS-feedbacks at each DS,
with respect to some public ‘benchmark’ services. A home
DS checks QoS feedbacks from the clients; while a higher-
level DS checks the aggregated QoS feedbacks, i.e. the
average QoS level reported by its children DSes. The QoS-
predictability of a domain tends to change only at a large
time scale - for example, in the magnitude of hours or
days. Therefore, the ‘similarity check’ does not have to be
performed frequently, and will not incur significant runtime
overhead.

With the concept of QoS-similar domains, the propaga-
tion operations should only be performed between DSes
of QoS-similar domains. As shown in Figure 3, service
ads with QoS feedbacks are only propagated between the
DSes ranging from a home DS to the DS of the highest-
level QoS-similar domain. Beyond the highest-level QoS-
similar domain, the QoS feedbacks become too diversified
to predict future service quality for the clients in such a wide
range domain.

3.2.2 Second Strategy: End-to-End Propagation of
Service Ads with QoS Feedbacks

We can further propagate service ads with QoS feedbacks,
so that even more clients can benefit from them. We propose
the second strategy: end-to-end propagation of service ads
with QoS feedbacks. The main difference between the end-
to-end propagation and the propagation described in Section
3.2.1 is the propagation direction: the latter is vertical
- between DSes at different levels; while the former is
horizontal - between DSes at the same level.

More specifically, if a client reports good QoS about
an SP to its home DS, the home DS will start the end-to-
end propagation, in addition to the hierarchical service ad
caching and propagation. The DS sends the corresponding
service ad with QoS feedback backward to the home DSes
along the path leading to the SP. The intuition is: if clients in
a domain

�
observe good QoS provided by an SP, then it is

very likely that clients in each intermediate domain between�
and the home domain of the SP will also receive good

QoS provided by the SP.

Discovery Server (DS)

Service Client

Service Provider (SP)

Completed Service Session

Highest Level QoS−

Domain D’

Highest Level QoS−

Highest Level QoS−

SP

1

2.b

3

2.a

4.b

4.a

c

Similar Domain

Similar Domain

Similar Domain

Figure 4. Operations of End-to-End Service
Ad Propagation (the Hierarchical Propagation
Triggered Is Also Shown

The operations of end-to-end service ad propagation is
shown in Figure 4. The service ad with QoS feedback
is propagated from the home DS of client � toward the
home DS of service provider ��� (steps 1, 2.a, 3, 4.a).
However, to avoid redundancy, the propagation will stop if
an intermediate DS (for example, the DS of domain

���
in

Figure 4) already caches this service ad. In addition, notice
that the end-to-end propagation also triggers a series of
hierarchical propagations: each DS at the lowest level will
also propagate the service ad with QoS feedback upward in
the hierarchy (steps 2.b, 4.b). The hierarchical propagation
will stop either at a higher-level DS which already caches

5

this service ad, or at the DS of the highest-level QoS-similar
domain.

With both hierarchical (vertical) and end-to-end (hori-
zontal) propagations, service ads with QoS feedbacks will
quickly spread through a wide range of domains. Com-
paring with a hierarchical-propagation-only approach, this
combined approach will benefit a larger range of clients.
The benefits include both a faster discovery of an SP, and a
better QoS in the service session to follow.

One remaining problem is how to identify the ‘next-hop’
DS on the path from a DS to an SP. One possibility is
to leverage the underlying network routing information, as
well as the Domain Name System (DNS). First, we propose
a new Resource Record (RR) type ‘DS’ in the DNS system.
A DNS lookup for a host � with the new RR type will return
the address of host � ’s home DS. This is similar to other RR
types such as MX, which returns the address of host � ’s mail
exchanger. Then, to determine the ‘next-hop’ DS on the
path toward an SP, the current DS (1) calls a traceroute-like
routine to find the next router � on the path [9]; (2) performs
a DNS lookup for � using the ‘DS’ RR type; and (3) if the
DNS lookup returns a DS different from the current DS,
then it is the ‘next-hop’ DS to propagate to; otherwise the
current DS goes back to step (1), with the TTL (Time-To-
Live) value [9] incremented by one for the traceroute-like
routine.

3.2.3 Third Strategy: QoS Feedback Probing

The first and second strategies are push-based, i.e. the
service ads with QoS feedbacks are propagated proactively
to DSes for future queries. In this section, we propose a
pull-based strategy. The strategy is useful when a service
query does not experience any service ad cache hit while
it is forwarded up in the hierarchy; and the query finally
results in multiple discovery results returned by home DSes
of the qualified SPs (via the basic query processing steps
in Section 2.2). These results are without QoS feedbacks.
Therefore, the DS which originally accepts the query from
a client may have to make a random selection. The penalty
is the potentially unsatisfactory QoS for the querying client.

We propose the strategy of QoS feedback probing, which
provides a degree of QoS predictability at the price of some
additional latency and overhead. As shown in Figure 5,
after a DS has received the discovery results (without QoS
feedbacks) for a service query, the DS will send out a QoS
feedback probing message for each service ad received.
Similar to the end-to-end service ad propagation, each prob-
ing message will be propagated to the intermediate DSes
toward the SP designated by the corresponding service ad
(steps 1, 2). If an intermediate DS does not cache the service
ad of the SP, the probing message will first be forwarded
up in the hierarchy (step 3), until it reaches the highest

level QoS-similar domain; and then be forwarded again
toward the SP (step 4)... If one of the DS traversed caches
the service ad of the SP, it will return the associated QoS
feedback to the original probing DS (step 5).

Discovery Server (DS)

Service Client

Service Provider (SP)

Highest Level QoS−

Highest Level QoS−

Highest Level QoS−

SP
c

1

2

4

5

3

6

Similar Domain

Similar Domain

Similar Domain

Figure 5. Operations of QoS Feedback Prob-
ing (Only Showing the Probing for One of the
Discovery Results)

The probing DS will then use the collected QoS feed-
backs to select one of the candidate SPs, which is likely to
bring good QoS for the querying client (step 6). However,
comparing with the first and the second strategies, the
strategy of QoS feedback probing has more limitations.
First, it is less predictive: the returned QoS feedbacks
may wrongly indicate the session QoS for clients in the
current domain. This is due to a lack of justification for
QoS similarity between the current domain and the domain
where the QoS feedback is found. Second, The probing
overhead and latency is non-trivial. For this reason, we
may limit the number of DSes to traverse during the QoS
feedback probing; and the original probing DS only selects
from the SPs whose QoS feedbacks are found within that
limit.

4 Simulation Results

In this section, we present our initial simulation results.
We show the improvement in both query responsiveness and
session QoS achieved by the enhanced service discovery
framework. The wide area environment we simulate is
shown in Figure 6. The domains are partitioned into a four-
level hierarchy. The corresponding DS hierarchy is also
shown in the Figure.

We assume that there are 20 different services in the
simulated environment. For each service ��� , we deployed
� � replicated SPs for ��� , and � � is randomly distributed in

6

II

I

III

A

D

B

C

F
E

I II III

B D E C F

Level 1

Level 2

Level 3

Level 4

A QoS−Similar Domains

QoS−Dissimilar Domains

Figure 6. Simulated Wide-Area Environment

���������
. We make sure that for each level-3 domain (with

a dotted-line border), there is no more than one SP for
each service. The popularity of each service, measured
in number of requests per minute, is randomly distributed
in
� 	
������

requests per minute. For each service query, the
client that makes the query is randomly selected from one of
the level-1 domains. For each service session that follows a
query, the duration of the session is randomly distributed in�����������

minutes. We also assume that each DS has a cache
with the capacity to store the service ads for five different
services (note that for each service, there may be multiple
service ads for the replicated SPs). Finally, the highest level
QoS-similar domains are level-2 domains (with dashed-line
borders) � and � , as well as level-3 domains � and ��� .

Service query responsiveness: We simulate the above
scenario for a period of 4000 minutes. As a comparison,
we also simulate the same scenario under the basic service
discovery framework. For each service query, the number of
DSes involved in the query processing is recorded. We use
the number of DSes involved in a query as an indication of
query responsiveness. Table 1 shows the average numbers
of DSes involved among queries from each of the level-
2 domains, under the basic (row 1) and the enhanced
(row 2) service discovery frameworks. The results show a
significant improvement in query responsiveness under the
enhanced framework.

Session QoS: To demonstrate improved session QoS,
our simulation focuses on one of the services. We simulate
the following scenario in Figure 7: service � has two
replicated SPs: ����� in domain

�
and ����� in domain � .

The average request rate for � is 60 requests per minute.
Each request is made by a client from a randomly chosen
domain. Each session of service � will require one unit of

local resource on the SP and one unit of end-to-end network
bandwidth between the SP and the client. The total amount
of each resource is randomly distributed between 50 and
300 units. Here, a resource can be the local resource on
����� or � ��� , or the bandwidth of any backbone network
segment shown in Figure 7. For simplicity, we assume that
service � only has two QoS levels - ‘1’ and ‘0’. A service
session results in QoS level ‘1’, if and only if both its local
and network resource requirements are satisfied throughout
the session; otherwise, the session results in QoS level ‘0’.

Framework/Domain A B C D E F

Basic 4.2 3.9 4.4 4.0 4.8 4.5
Enhanced 1.6 2.1 1.9 1.7 1.9 2.0

Table 1. Average Number of DSes Involved
in a Query - in Each Level-2 Domain and
under the Basic and Enhanced Framework,
Respectively

II

I

III

A

B

C

D

E
F

SPX

SPY

Any Host in This Domain

Figure 7. Simulated Scenario to Show Bet-
ter Session QoS Achieved by the Enhanced
Framework

We again compare the basic and the enhanced service
discovery frameworks. The former is QoS-unaware; while
the latter is with QoS feedback capability. Therefore, be-
tween the two replicated SPs, a DS in the basic framework
just randomly selects one to return to each querying client;
while a DS in the enhanced framework uses QoS feedbacks
(in the form of average QoS levels) to select an SP. In our
simulation, we adopt the following policy in selecting an
SP: select ����� with probability �����
����� �!�"�$# ; while
select ����� with probability �"�%�&�����!�!���$# . ��� (�"�)
is the QoS feedback associated with the service ad for �����
(�����).

7

Table 2 shows the average QoS level of service sessions
observed by clients in each level-2 domain, under the basic
and enhanced service discovery framework, respectively.
We notice that in every domain, the average session QoS
achieved by the enhanced framework is better than the QoS
achieved by the basic framework.

A B C D E F

Basic 0.72 0.71 0.73 0.73 0.71 0.70
Enhanced 0.83 0.84 0.85 0.84 0.85 0.85

Table 2. Average QoS Level of Service Ses-
sions - in Each Level-2 Domain and under
the Basic and Enhanced Framework, Respec-
tively

Although it is still simple and initial, our simulation
does show the effectiveness of the proposed enhancement
to the basic service discovery framework. More complex
and detailed performance analysis is our on-going work.

5 Related Work

Service discovery in a networked environment has been
an active research topic in recent years. The IETF Service
Location Protocol (SLP) [3] defines the basic architecture
for all brokerage-based service discovery frameworks. The
Discovery Agent (DA) in SLP correspond to the Discovery
Server (DS) in our framework. In addition, using SLP
glossary, we implicitly assume that in our framework, there
is a User Agent (UA) running on each client, and there
is a Service Agent (SA) running on each service provider
(SP). However, SLP was originally designed for service
discovery within one administrative domain, such as an
intranet, rather than in a wide-area grid environment. There
have been wide-area extensions to SLP [6, 2]. However,
none of them address the issues of service ad caching and
QoS feedback.

The hierarchy has been recognized as an efficient and
scalable architecture for wide-area information distribution
and discovery [2, 10, 11, 7]. We regard the Berkeley
SDS [2] as our ‘base’ service discovery framework. Other
frameworks [10, 11] also adopt a similar lossy aggregation
approach to control higher-level discovery server load and
bandwidth consumption due to service ad propagation.
Again, none of these framework address the issues of QoS
awareness and service ad caching in the hierarchy. On the
other hand, hierarchical caching has been introduced for
web content caching [1]. Interestingly, we find it also an
effective technique in service ad caching; and even better,
some of its disadvantages disappear in this context.

Application-level anycast [8, 13] is also related to QoS-
aware service discovery. It involves the selection of repli-

cated SPs based on their current service quality or capacity.
However, existing application-level anycast systems [8, 13]
focus more on the selection policy and mechanism, rather
than on the more active discovery capability. As a result,
the QoS feedbacks will only benefit clients within the same
domain. On the contrary, our enhanced service discovery
framework further propagates the service ads with QoS
feedbacks - both vertically and horizontally, so that a wider
range of clients can benefit in both query responsiveness
and session QoS.

Finally, a network-level anycast scheme is proposed
in [4]. It is more discovery-oriented comparing with its
application-level counterparts. However, the layer it works
at intrinsically limits the effectiveness in bringing good end-
to-end application-level QoS to clients.

6 Conclusion

In this paper, we study the issue of wide-area service
discovery in emerging service grids. Based on an existing
wide-area service discovery framework, we propose our
enhancement of service query responsiveness and QoS
awareness. On the client side, we propose the generation
of QoS feedbacks about completed service sessions; on the
Discovery Server side, we propose the caching and propa-
gation of service ads with QoS feedbacks. The enhanced
service discovery framework is scalable with respect to the
numbers of service providers, discovery servers, and service
queries. Furthermore, it achieves shorter query response
time, lower processing overhead, and better session QoS.

Current service discovery systems focus on the distri-
bution and matching of service information and service
queries, with less emphasis on domain-dependent session
QoS. On the other hand, current application-level anycast
systems focus on QoS-aware selection of replicated service
providers, whose locations are assumed to be known. Our
work addresses both problems, and provides an integrated
solution.

References

[1] A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz,
and K. Worrell. A Hierarchical Internet Object Cache. Pro-
ceedings of USENIX Annual Technical Conference, 1996.

[2] S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and R. Katz.
An Architecture for a Secure Service Discovery Service.
Proceedings of ACM MobiCom’99, Sept. 1999.

[3] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service
Location Protocol, Version 2. IETF RFC-2165, Nov. 1998.

[4] D. Katabi and J. Wroclawski. A Framework for Scalable
Global IP-Anycast (GIA). Proceedings of ACM SIGCOMM
2000, Aug. 2000.

8

[5] B. Li, W. Jeon, W. Kalter, K. Nahrstedt, and J. Seo.
Adaptive Middleware Architecture for a Distributed Omni-
Directional Visual Tracking System. Proceedings of
SPIE/ACM MMCN 2000, Jan. 2000.

[6] J. Rosenberg and H. Schulzrinne. Internet Telephony Gate-
way Location. Proceedings of IEEE Infocom ’98, Mar. 1998.

[7] M. Sheldon, A. Duda, R. Weiss, and D. Gifford. Discover:
a Resource Discovery System Based on Content Routing.
Computer Networks and ISDN Systems, pages 953–972,
1995.

[8] M. Stemm, S. Seshan, and R. Katz. A Network Measure-
ment Architecture for Adaptive Applications. Proceedings
of IEEE Infocom 2000, Mar. 2000.

[9] R. Stevens. Unix Network Programming, Prentice Hall,
1:672–685, 1998.

[10] N. Sturtevant, N. Tang, and L. Zhang. The Information
Discovery Graph: Towards a Scalable Multimedia Resource
Directory. Proceedings of IEEE Workshop on Internet
Applications ’99, Aug. 1999.

[11] R. van Renesse. Scalable and Secure Resource Location.
Proceedings of IEEE Hawaii International Conference on
System Sciences, Jan. 2000.

[12] D. Xu, D. Wichadakul, and K. Nahrstedt. Resource-Aware
Configuration of Ubiquitous Multimedia Service. Proceed-
ings of IEEE ICME 2000, Aug. 2000.

[13] E. Zegura, M. Ammar, Z. Fei, and S. Bhattacharjee.
Application-Level Anycasting: a Server Selection Archi-
tecture and Use in a Replicated Web Service. IEEE/ACM
Transactions on Networking, Aug. 2000.

9

