
USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 243

vTurbo: Accelerating Virtual Machine I/O Processing
Using Designated Turbo-Sliced Core

Cong Xu, Sahan Gamage, Hui Lu, Ramana Kompella, Dongyan Xu
Department of Computer Science, Purdue University

Abstract

In a virtual machine (VM) consolidation environment,
it has been observed that CPU sharing among multiple
VMs will lead to I/O processing latency because of the
CPU access latency experienced by each VM. In this pa-
per, we present vTurbo, a system that accelerates I/O pro-
cessing for VMs by offloading I/O processing to a des-
ignated core. More specifically, the designated core –
called turbo core – runs with a much smaller time slice
(e.g., 0.1ms) than the cores shared by production VMs.
Most of the I/O IRQs for the production VMs will be
delegated to the turbo core for more timely processing,
hence accelerating the I/O processing for the production
VMs. Our experiments show that vTurbo significantly
improves the VMs’ network and disk I/O throughput,
which consequently translates into application-level per-
formance improvement.

1 Introduction
Cloud computing is arguably one of the most transforma-
tive trends in recent times. Many enterprises and busi-
nesses are increasingly migrating their applications to
public cloud offerings such as Amazon EC2 [1] and Mi-
crosoft Azure [8]. By purchasing or leasing cloud servers
with a pay-as-you-go charging model, enterprises bene-
fit from significant cost savings in running their applica-
tions, both in terms of capital expenditure (e.g., reduced
server costs) as well as operational expenditure (e.g.,
management staff). On the other hand, cloud providers
generate revenue by achieving good performance for
their “tenants” while maintaining reasonable cost of op-
eration.

One of the key factors influencing the cost of cloud
platforms is server consolidation—the ability to host
multiple virtual machines (VM) in the same physical
server. If the cloud providers can increase the level of
server consolidation, i.e., pack more VMs in each phys-
ical machine, they can generate more revenue from their
infrastructure investment and possibly pass cost savings
on to their customers. Two main resources that typi-
cally dictate the level of server consolidation, memory
and CPU. Memory is strictly partitioned across VMs,
although there are techniques (e.g., memory ballooning
[29]) for dynamically adjusting the amount of memory
available to each VM. CPU can also be strictly parti-
tioned across VMs, with the trend of ever increasing
number of cores per physical host. However, given that

each core is quite powerful, another major scaling fac-
tor comes by allocating multiple VMs per core. While
the ever increasing core count in modern systems may
suggest the possibility of a dedicated core per VM, it
is not likely to happen any time soon, as evidenced in
current cloud computing environments such as Amazon
EC2, where a 3GHz CPU may be shared by three small
instances.

In practice, CPU sharing among VMs can be quite
complicated. Each VM is typically assigned one or more
virtual CPUs (vCPUs) which are scheduled by the hy-
pervisor on to physical CPUs (pCPUs) ensuring propor-
tional fairness. The number of vCPUs is usually larger
than the number of pCPUs, which means that, even if
a vCPU is ready for execution, it may not find a free
pCPU immediately and thus needs to wait for its turn,
causing CPU access latency. If a VM is running I/O-
intensive applications, this latency can have a significant
negative impact on application performance. While sev-
eral efforts [30, 12, 17, 28, 19, 25] have made this obser-
vation in the past, and have in fact provided solutions
to improve VMs’ I/O performance, the improvements
are still moderate compared to the available I/O capac-
ity because, they do not explicitly focus on reducing the
most important and common component of I/O process-
ing workflow—namely IRQ processing latency.

To explain this more clearly, let us look at I/O process-
ing in modern OSes today. There are two basic stages
involved typically. (1) Device interrupts are processed
synchronously in an IRQ context in the kernel and the
data (e.g., network data, disk reads) is buffered in kernel
buffers; (2) The application eventually copies the data
from kernel buffer to its user-level buffer in an asyn-
chronous fashion whenever it gets scheduled by the pro-
cess scheduler. If the OS were running directly on a
physical machine, or if there were a dedicated CPU for
a given VM, the IRQ processing component gets sched-
uled almost instantaneously by preempting the currently
running process. However, for a VM that shares CPU
with other VMs, the IRQ processing may be significantly
delayed because the VM may not be running when the
I/O event (e.g., network packet arrival) occurs.

IRQ processing delay can affect both network and disk
I/O performance significantly. For example, in the case
of TCP, incoming packets are staged in the shared mem-
ory between the hypervisor (or privileged domain) and
the guest OS, which delays the ACK generation and can
result in significant throughput degradation. For UDP

244 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

flows, there is no such time-sensitive ACK generation
that governs the throughput. However, since there is lim-
ited buffer space in the shared memory (ring buffer) be-
tween the guest OS and the hypervisor, it may fill up
quickly leading to packet loss. IRQ processing delay
can also impact disk write performance. Applications of-
ten just write to memory buffers and return. The kernel
threads handling disk I/O will flush the data in memory
to the disk in the background. As soon as one block write
is done, the IRQ handler will schedule the next write and
so on. If the IRQ processing is delayed, write throughput
will be significantly reduced.

Unfortunately, none of the existing efforts explicitly
tackle this problem. Instead, they propose indirect ap-
proaches that moderately shorten IRQ processing latency
hence achieving only modest improvement. Further, be-
cause of the specific design choices made in those ap-
proaches, the IRQ processing latency cannot be funda-
mentally eliminated (e.g., made negligible) by any of the
designs, meaning that they cannot achieve close to op-
timal performance. For instance, the vSlicer approach
[30] schedules I/O-intensive VMs more frequently us-
ing smaller micro time slices, which implicitly lowers
the IRQ processing latency, but not significantly. Also
it does not work under all scenarios. For example,
if two I/O latency-sensitive VMs and two non-latency-
sensitive VMs share the same pCPU, the worst-case IRQ
processing latency will be about 30ms, which is still
non-trivial, even though it is better than without vS-
licer (which would be 90ms). Similarly, another ap-
proach called vBalance [10] proposes routing the IRQ
to the vCPU that is scheduled for the corresponding VM.
This may work well for SMP VMs that have more than
one vCPU, but will not improve performance for sin-
gle vCPU VMs. Even in the SMP case, it improves the
chances that at least one vCPU is scheduled; but fun-
damentally it does not eliminate IRQ processing latency
because each vCPU is contending for the physical CPU
independently.

To solve this problem more fundamentally, we aim to
make the IRQ processing latency for a CPU-sharing VM
almost similar to the scenario where the VM is given a
dedicated core. To achieve this, we propose a new solu-
tion called vTurbo, that involves two basic ideas. First,
we leverage the existence of multiple cores in modern
processors to designate a specialized turbo-sliced core
(or turbo core for short), for synchronous processing
threads in the guest OS. In terms of actual hardware,
the turbo core is no different from a regular core, ex-
cept that the hypervisor-level scheduler schedules VMs
on this core with extremely small quantum (e.g., 0.1ms).
Second, we expose this turbo-sliced core to each VM
as a “co-processor” just dedicated to kernel threads that
require synchronous processing, such as IRQ handling.

The other regular kernel threads are scheduled on a reg-
ular core with regular slicing just like what exists to-
day. Since the IRQ handlers are executed by the turbo
core, they are handled almost synchronously with a mag-
nitude smaller latency. For example, assuming 5 VMs
and 0.1ms quantum for the turbo core, an IRQ request is
processed within 0.4ms compared to 120 ms (assuming
30ms time slice for regular cores).

The turbo core is accessible to all VMs in the system.
If a VM runs only CPU-bound processes, it may choose
not to use this core since its performance is not likely to
be good due to frequent context switches. Even if a VM
chooses to schedule a CPU-bound process on the turbo
core, it has virtually no impact on other VMs’ turbo core
access latency thus providing good isolation between
VMs. We ensure fair-sharing among VMs with differ-
ential requirement between regular/turbo cores because,
otherwise, it would motivate VMs to push more process-
ing to the turbo core. Thus, for example, if there are two
VMs—VM1 requesting 100% of the regular core, and
VM2 requesting 50% regular and 50% turbo cores, the
regular core will be split 75-25% while VM2 obtains the
full 50% of the turbo core, thus equalizing the total CPU
usage for both VMs. We also note that, while we men-
tion one turbo core in the system, our design seamlessly
allows multiple turbo cores in the system driven by I/O
processing load of all VMs in the host. This makes our
design extensible to higher bandwidth networks (10Gbps
and beyond) and higher disk I/O bandwidths that require
significant IRQ processing beyond what a single core can
provide.

To summarize, the main contributions of this paper are
as follows:

(1) We propose a new class of high-frequency schedul-
ing CPU core named turbo core and a new class of co-
vCPU called turbo vCPU. The turbo vCPU pinned on
turbo core(s) is used for timely processing of the I/O
IRQs thus accelerating I/O processing for VMs in the
same physical host.

(2) We develop a simple but effective VM scheduling
policy giving general CPU cores and turbo core magni-
tudes different time-slice. The very small CPU time-slice
on turbo cores grants VM low scheduling delay and low
I/O IRQ processing latency.

(3) We have implemented a prototype of vTurbo based
on Xen. Various evaluations prove the effectiveness of
vTurbo. Our micro-benchmark results show that vTurbo
can significantly improve the TCP throughput (up to 3×),
UDP throughput (up to 4×), and disk write throughput
(up to 2×). Our evaluation with application-level bench-
marks shows that vTurbo improves application-specific
performance as well. For example, Olio’s throughput is
increased by 38.7%. NFS’ throughput is improved by up
to 2×.

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 245

VM2 VM3VM4

Time
Request

Response

30 ms

VM1

90 ms

Hypervisor

t1 t2

Scheduled VMs

Figure 1: Impact of VM CPU sharing on I/O processing.

The rest of the paper is organized as follows. We mo-
tivate the problem in detail in Section 2 followed by the
vTurbo design in Section 3. In Section 4 we describe
the implementation of vTurbo prototype based on Xen.
Section 5 presents evaluation results, followed by related
work and conclusions.

2 Motivation
Let us first focus on receive-side I/O processing. In a
non-virtualized system, all receive-side I/O events (e.g.,
network packet arrival) are typically handled by specific
IRQ routines corresponding to each device (i.e., disk
controller or NIC) in the OS kernel. The data is stored in
a kernel buffer first, and once the user process is sched-
uled, it copies the data from the kernel buffer to the user
buffer. Since I/O-bound processes usually have higher
priority, they get scheduled relatively quickly and the
data is subsequently processed by the application thus
achieving high I/O throughput. However, in a virtualized
system with several VMs sharing a physical CPU, each
VM gets only a slice of the physical CPU, which means
the incoming I/O event will need to wait until the VM
gets access to the CPU. Such a CPU access latency will
significantly affect the timeliness of IRQ processing, re-
sulting in low I/O throughput.

We illustrate this negative effect using an example
shown in Figure 1. In this example, 4 VMs share a
physical CPU. VM1 runs a mixed workload that in-
cludes both CPU-bound tasks and I/O-bound applica-
tions, while VM2 to VM4 run only CPU-bound appli-
cations. Assuming a proportional-share VM scheduling
policy (adopted by Xen and VMware ESX), VM1 gets
only 25% of CPU when all VMs are busy, which means
that roughly 75% of time, VM1 has to wait in runqueue
and cannot process I/O events immediately. When an
I/O request for VM1 reaches the hypervisor at t1, VM1
cannot process this request and respond until t2. If the
I/O-bound application in VM1 is a TCP server, for in-
stance, the client will stop sending data to the server once
the client’s TCP window is full, due to lack of acknowl-
edgments from the server while VM1 is in runqueue. If
VM1 runs a UDP server, even though the client can con-
tinue to send data to the server without getting responses,
the packets will be dropped by the hypervisor once the
shared buffers (between the hypervisor and guest OS) are
full. As a result, throughput of either TCP or UDP for

 0
 200
 400
 600
 800

 1,000

0.1 1 10 30TC
P

Th
ro

ug
hp

ut
 (M

bp
s)

Time Slice (ms)

(a) TCP throughput

 0
 2,000
 4,000
 6,000
 8,000

 10,000
 12,000
 14,000

0.1 1 10 30M
em

. T
hr

ou
gh

pu
t (

M
B

ps
)

Time Slice (ms)

(b) Memory throughput
Figure 2: Impact of micro-timeslice on TCP throughput
and memory throughput

VM1 would be much lower than the available capacity.
In the reverse direction (i.e., when a process sends

packets or writes to the disk), the user process first copies
data to the kernel buffer associated with the particular
output (e.g., socket, file descriptor). For some I/O mech-
anisms such as asynchronous network packet sends and
disk writes, the call to output the data will return to the
user process immediately after the data is copied to the
kernel buffer. The kernel components associated with the
corresponding device will asynchronously write the data
to the device. However, this task cannot be continued ef-
ficiently if the hypervisor schedules the vCPU out while
the kernel component is waiting for the completion of the
write to the device, resulting in low throughput.

There are other sources of delay for interrupt process-
ing even after the I/O event reaches the VM. These in-
clude long periods in which, the VM runs with inter-
rupts disabled, locking conflicts for shared data struc-
tures (such as TCP accept queue [26]) and overhead
of dispatching interrupts in virtualized environments
[13]. However, most of these latencies lie within sub-
millisecond range in the average case [20, 18], while the
scheduling delay causes the interrupt processing to be de-
layed for tens of milliseconds (in our example, the aver-
age scheduling delay is about 35ms for Xen VMM).

Symmetric multi-processing (SMP) VMs can take ad-
vantage of a multi-core architecture to execute many dif-
ferent applications in parallel and improve the overall
system throughput. In an SMP-VM, two or more al-
located vCPUs are scheduled by the hypervisor sched-
uler on any available pCPUs and thus, each vCPU has a
higher chance to get scheduled. However, the SMP-VM
may still suffer from scheduling delays, if none of the
vCPUs can be scheduled in because the pCPUs are all
busy executing other vCPUs. Thus, we cannot guaran-
tee that the vCPU running an IRQ gets scheduled in time
when a target VM receives an I/O request.

2 .1 Existing Approaches
Now we discuss several existing approaches addressing
the problem of CPU sharing impacting I/O performance
of VMs and discuss why they do not work well.
Reducing CPU time-slice . One intuitive approach to
solve the scheduling latency problem is to uniformly re-

246 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

duce the VM scheduling time-slice [15]. In proportional-
share scheduling, the worst-case scheduling delay of
each VM is (Number of sharing VMs -1) × time-slice.
A small scheduling time-slice enables VMs to get sched-
uled more frequently thus improving the I/O through-
put of VMs. However, the short time-slice results in
more frequent context switches which may hurt the per-
formance of memory-intensive or CPU-bound applica-
tions. We conduct a simple experiment to demonstrate
this problem.

In our experiment, 4 single vCPU VMs share one
physical CPU. One VM hosts a TCP server, the client is
running in another physical machine in the same LAN.
Iperf [5] is used to measure the server’s TCP throughput.
We vary the scheduling time-slice from 0.1ms to 30ms,
which is the default time-slice of Xen. From Figure 2(a)
we can find that, smaller time-slice leads to higher TCP
throughput. Especially, with a 0.1ms time-slice, the aver-
age TCP throughput is up to 900 Mbps which is close to
the bandwidth of 1Gbps network card used in our experi-
ment. However, the performance of memory/CPU bound
applications degrades under smaller time-slice as shown
in Figure 2(b). Here, we run STREAM [6] benchmark in
one of the 4 VMs1. So, simply reducing the CPU time-
slice cannot simultaneously benefit both I/O-intensive
applications and CPU-intensive applications. Hence this
approach is not suitable for cloud environments where
mixed workloads are common.
Sending I/O interrupts to active vCPU To reduce the
IRQ processing delay and improve I/O throughput for
SMP-VMs, a recent approach called vBalance [10] sends
I/O interrupts to the active vCPU of the target VM. In this
way, I/O interrupts can be processed in a more timely
fashion and I/O throughput may be improved. However,
there are still several issues with this method. As dis-
cussed before, an SMP-VM may have increased chances
to get scheduled because of the multiple vCPUs assigned
to it. But there is no fundamental guarantee that the
SMP-VM have at least one vCPU running at any time.
If none of the vCPUs is running, an I/O interrupt still
cannot be processed in time. Besides, even if the I/O
interrupt is sent to an active vCPU successfully, the I/O
cannot be finished if the vCPU executing the I/O appli-
cation is not running simultaneously. This specifically
impacts TCP, where the application vCPU may be in the
runqueue holding the ownership of the lock structure,
hence the kernel-level TCP processing cannot generate
an ACK in time for incoming TCP packets. We suspect
this is the main reason [10] only reports 400Mbps TCP
throughput in a 1Gbps LAN environment.
Differentiated VM scheduling Tuning VM scheduling

1We conducted a similar experiment in [30]. But here we set even
smaller time-slice (0.1ms) and contrast TCP and memory throughput
under such a time-slice.

VMM

Hardware
CPU 0 CPU 1

. . .

vTurbo Scheduler

CPU n-1CPU m-1... ...CPU m

Regular Cores Turbo Cores

VM 1

vCPU vTurbovCPU...

I/O IRQs

I/O-bound

Applications

CPU-bound

Applications

Kernel Buffer

VM l

vCPU vTurbovCPU...

I/O IRQs

I/O-bound

Applications

CPU-bound

Applications

Kernel Buffer

Figure 3: Architecture of vTurbo

policy is another method to speed up I/O processing. vS-
licer [30] schedules each latency-sensitive VM (LSVM)
more frequently with a smaller micro time-slice, which
enables more timely processing of I/O events by LSVMs.
There are two caveats of this approach. First, we need to
know which VMs are LSVMs running latency-sensitive
applications in advance and adjust the VM scheduler
configuration accordingly. Second, vSlicer reduces the
scheduling delay but does not completely eliminate it,
as discussed earlier. It, therefore, does not improve the
TCP/UDP throughput significantly, although it does re-
duce application-perceived I/O latency.

3 Design
The discussion in the previous section suggests that if
we use a very small value as the CPU time-slice, I/O
performance of CPU-sharing VMs can be significantly
improved. However, we also showed that such an ap-
proach may hurt the performance of CPU-bound VMs,
for which larger time-slice is desirable. To address this
dilemma, we leverage one key degree of freedom that has
not been exploited hitherto: The CPU time-slice for each
core may not be the same for a multi-cores system.

Thus, in our approach called vTurbo, we designate one
(or more) core(s) in the system as what we call a turbo
core, which is just any regular physical core, except that
we set a very small (e.g., 0.1ms) CPU time-slice for it.
We expose the turbo core to each VM in addition to the
regular cores, and allow the guest OS to schedule I/O-
bound threads (e.g., IRQ handling) in the turbo core thus
speeding up I/O processing significantly. The guest OS
still schedules CPU-bound workloads on cores with the
regular time-slice. As such vTurbo achieves I/O process-
ing speedup without impacting CPU-bound workloads.

In effect, vTurbo focuses on re-factoring the interface
between the hypervisor and guest OS, with the new ab-
straction of turbo core. This approach is completely
transparent to applications running in VMs, a key advan-
tage of practicality. Another benefit of vTurbo is that it
does not require classification of VMs into I/O- or CPU-
intensive VMs, as required by some solutions such as
vSlicer [30]. Such classification is difficult as most VMs

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 247

in practice run a combination of I/O and CPU workloads.
Of course, the guest OS now needs to identify I/O-bound
threads such as IRQ processing and schedule them on the
turbo core. But that is not hard as there are only a handful
of such threads. Our approach also guarantees CPU fair-
ness among all VMs. Any VM using the turbo core will
essentially not obtain any “extra” CPU beyond its fair
share—an important property in multi-tenancy clouds.

The architecture of vTurbo requires changes to both
the hypervisor and the guest OS. At the hypervisor level,
the VM scheduler needs to accommodate the new turbo
core abstraction. At the guest kernel-level, we need to
modify the VM process scheduler to pin certain threads
to the turbo core in addition to a few changes to the TCP
protocol stack. In the following subsections, we discuss
these in more detail.

3.1 Modifications to Hypervisor
We mainly need to modify the VM scheduler in the hy-
pervisor to support the turbo core abstraction. Upon
host initialization, we designate a set of cores in the
host as turbo cores. The number of turbo cores is con-
figurable, and our current version statically assign turbo
cores based on user configuration. However, we believe
that our system can be improved by having a dynamic
method to assign turbo cores based on the available ma-
chine capacity (i.e., total number of cores), number of
VMs, demand for the turbo core, and overall I/O inten-
sity (e.g., a host with multiple active NICs or 10GB/s
NICs may require more turbo cores). One can also dy-
namically change the number of turbo cores via adminis-
trative tools (such as xm tools in Xen). While the current
implementation of vTurbo randomly selects the turbo
cores, we can incorporate parameters such as cache affin-
ity to further improve their performance.

In vTurbo, each VM is assigned a turbo vCPU in addi-
tion to its regular vCPUs. The turbo vCPU is assigned to
one of the turbo cores in the host. This step is performed
during VM initialization. For instance, if a user launches
an SMP-VM configured with 2 vCPUs, the VM will have
3 vCPUs after initialization. Among these, the 0th vCPU
is the turbo vCPU, whereas the 1st and 2nd vCPUs are
regular vCPUs.

Based on our empirical study (discussed in Section 2),
we set 0.1ms as the CPU scheduling time-slice for turbo
cores (as it enables the VM to reach up to 900Mbps TCP
throughput for a 4 CPU-sharing VMs scenario). Since
only interrupt processing runs on turbo cores, frequent
context switches caused by the small turbo core time-
slice does not affect the performance of interrupt pro-
cessing much because of the very short duration of the
processing. According to our measurements (Figure 4),
when 4 VMs each running an iperf server share one turbo
core, the order of magnitude of cache miss per second on

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0.1 0.5 1 5 10 30C
ac

he
 M

is
s R

at
e

(1
0-5

/s
ec

)

Time-slice (ms)

4 VMs sharing a turbo core

Figure 4: Impact of time-slice size on cache misses on
turbo cores.
the turbo core is only 10−5, which is negligible. The
CPU time-slice for regular cores is set be a much larger
value — 30ms in the current implementation which is
the default time-slice of Xen. The vTurbo VM scheduler
uses per-core scheduling timer to trigger scheduling code
to select the next vCPU from the runqueue. We achieve
CPU time-slice differentiation by setting these timers to
0.1ms for turbo cores and 30ms for regular cores.

Once the vCPUs are assigned to turbo cores and reg-
ular cores, our next concern is to correctly handle vCPU
migration in the presence of turbo cores. vCPU migra-
tion allows to balance the CPU load among the available
cores in the system. However, if we let the vCPUs to mi-
grate freely among available cores, there is a possibility
that a regular vCPU be migrated to a turbo core making
undesirable effects. To solve this, we restrict migration
of regular vCPUs to only among all regular cores and
migration of turbo vCPUs only among turbo cores. We
do not allow a turbo vCPU to migrate to a regular core
or vice versa. This is done by changing each vCPU’s
affinity to the corresponding set of cores. Hence vTurbo
scheduler not only determines the appropriate mapping
between vCPUs and physical cores, but also ensures fair
CPU sharing among all VMs.
VM scheduling policy Since we intend to use the turbo
core only for I/O activity, we cannot treat it as a regular
core and apply the existing scheduling policy to guaran-
tee fair sharing among VMs. The challenge is to deter-
mine the CPU share of VMs for turbo and regular cores
in the presence of heterogeneous workloads (i.e., when a
VM is CPU intensive, I/O-intensive, or both).

Current schedulers (e.g., Xen’s) use simple credit-
based scheduling algorithm for achieving global load
balancing and work-conservation. For instance, in Xen’s
credit scheduler, a VM is assigned some amount of cred-
its periodically based on the priority of the VM. As the
vCPUs belonging to a particular VM run on physical
CPUs, credits are deducted from that VM. When the
scheduler needs to make a decision, it uses the amount of
available credits for each VM to decide which vCPU will
run on the physical CPU. To accommodate turbo cores
in our system, we mainly need to modify the credit as-
signment portion of the credit scheduling algorithm to
account for the turbo vCPU execution time.

Specifically, assume l VMs are sharing an n-core host
with m regular cores and n-m turbo cores. Let rdi denote

248 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

the percentage demand for regular cores (CPU-bound
component) and let tdi denote the percentage demand
for turbo cores (I/O-bound component) for VMi. We as-
sume the demand for regular core and turbo core in two
consecutive scheduling periods does not change much (if
it does, we account for and adjust it in future rounds). So
both rdi and tdi are calculated based on the consumed
CPU cycles by the VM in the previous scheduling period.
Since our scheduler is work-conserving, the division of
the total capacity among the regular and turbo cores is
determined by the following:

CR
tot =

l∑
i=1

rdi and CT
tot =

l∑
i=1

tdi

The total capacity demand of the system is:

Ctot = CR
tot + CT

tot

The fraction of CPU allocated for a VM out of this
total capacity is determined by its assigned weight wti.
Hence each VM’s fair share (FSi) of CPU is given by:

FSi = (Ctot × wti)/(

l∑
j=1

wtj)

In vTurbo, we first allocate turbo core capacity fairly
among VMs, as all of the VMs’ IRQ processing is per-
formed by the turbo vCPUs and starvation of turbo vC-
PUs (even for CPU-bound VMs) will result in applica-
tion performance hit. So VMi’s fair share of the turbo
core (FST

i) is calculated as:

FST
i = (CT

tot × wti)/(

l∑
j=1

wtj)

Once VMi’s turbo core share is determined, we allo-
cate the rest of its CPU share from the regular cores. The
fraction of the allocation is given by:

FSR
i = FSi −

ˆFST
i

where ˆFST
i denotes the actual usage of the turbo core

by VMi in the previous scheduling period. We use FST
i

and FSR
i to determine the proportion of credits given to

VMs out of total credits in the turbo core pool and reg-
ular core pool, for the next scheduling period. Table 1
shows the CPU allocation results from experiments with
our prototype, where two VMs—with equal weight—
share one regular core and one turbo core, under vari-
ous workload demands. Columns 2 and 3 of the table
indicate the CPU demand of each VM (i.e., CPU utiliza-
tion if they were run without CPU sharing); Columns
4 and 5 indicate measured consumption in the previous
scheduling period; Columns 6 and 7 indicate the allo-
cated shares of regular and turbo cores based on our pol-
icy; and Columns 8 and 9 show the measured consump-
tion of regular (ˆFSR

i) and turbo (ˆFST
i) core capacity in

the next scheduling period. The results confirm that our
policy allocates CPU with proportional fairness.

Demand Measured Allocated Consumed
Reg. Turbo rdi tdi FSR

i
FST

i

ˆFSR

i

ˆFST

i

VM1 100 0 50 0 50 0 50 0
VM2 100 0 50 0 50 0 50 0
VM1 100 0 50 0 100 0 100 0
VM2 100 100 50 100 0 100 0 100
VM1 100 100 50 50 50 50 50 50
VM2 100 100 50 50 50 50 50 50
VM1 100 15 50 15 70 35 70 15
VM2 100 55 50 55 30 35 30 55

Table 1: VMs’ CPU demand and allocated CPU shares
under different scenarios
3.2 Modifications to Guest OS
Process scheduler As noted before, if CPU-bound
workload were scheduled on the turbo cores, its perfor-
mance would degrade due to frequent context switches.
Since process scheduling inside the VM is transparent
to the hypervisor’s VM scheduler, we should make the
guest OS’s process scheduler aware of the turbo core
to prevent user processes and non-I/O-related kernel
threads from being scheduled on the turbo core. This
can be achieved by setting scheduler affinity rule which
sets the affinity of the non-I/O related threads to regular
vCPUs. In Linux, this can be easily done by a schedul-
ing mechanism known as Linux CPU isolation [3] (by
setting a kernel parameter).
I/O buffers in guest OS With the above change, we can
reduce IRQ processing delay to extremely small values.
However, low IRQ processing delay by itself does not au-
tomatically translate into high I/O throughput, because of
a critical locking behavior between the kernel and appli-
cation threads as we explain below. The network receive
path in typical OSes (e.g., Linux) consists of two main
steps: (1) Processing IRQ in kernel and buffering data in
kernel buffer; (2) Application reading the data from ker-
nel buffer and clearing it. Since the CPU time-slice of
regular cores is still 30ms in vTurbo, the CPU access de-
lay on the regular core will make the kernel buffer full
very quickly and stop the IRQ threads from buffering
more data, which would lead to poor I/O performance.

To address this problem and to keep the turbo vCPU
busy processing IRQs, we need to tune the kernel buffer
to store more received data while the application running
on regular vCPU is blocked. As an example when 4
single-vCPU (excluding turbo vCPU) VMs are sharing
one regular core, the CPU access delay is up to 90ms
((4 - 1) × 30ms). To keep the IRQ threads on turbo
vCPU busy, all data received during this period need
to be buffered. So if the bandwidth of NIC is BN , the
minimum kernel buffer required (Bmin) is: Bmin =
BN×Scheduling Delay (i.e., the required kernel buffer
is proportional to the number of VMs sharing the same
CPU core). In fact, the real kernel buffer we need is

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 249

almost always much larger than Bmin. For example,
in our experimental environment with 1Gbps NICs, if 4
VMs share one CPU, the kernel buffer for UDP should
be around 11.25MB. However, we did not obtain high
throughput (more than 900Mbps) until we set the UDP
kernel buffer (net.core.rmem max) to about 40MB.

Algorithm 1 Generating ACK for Backlog Queue
1: rcv.nxt is the seq. number of expected packet for receive queue
2: bl.nxt is the seq. number of expected packet for backlog queue
3: seq is the seq. number of received packet
4: if backlog queue is empty then
5: if rcv.nxt ≥ bl.nxt then
6: /* initial status or packets in backlog queue are all acked by

process context */
7: bl.nxt = rcv.nxt;
8: bl.online = 1; /* enable ACK generation */
9: else

10: if bl.online == 0 and bl.nxt ≤ rcv nxt then
11: /* packets in backlog queue are acked by process context */
12: bl.online = 1; /* enable ACK generation */
13: bl.nxt = rcv.nxt;
14: if bl.online == 1 then
15: if bl.nxt == seq then
16: /* packet to be added to backlog queue is in order */
17: update(bl.nxt);
18: else
19: /* stop ACK generation due to out-of-order packet */
20: bl.online = 0;
21: if add backlog() is successful and bl.online == 1 then
22: tcp ack backlog(); /* generate and send ACK */

Modifications to VM’s TCP stack While simply set-
ting the guest kernel buffer to a high value ensured good
UDP performance, it did not improve TCP throughput at
all. Upon a deeper investigation, we found the following
problem: In TCP, when a data segment is received, the
receiver generates an ACK to inform the reception of the
segment. The sender uses this ACK to confirm the re-
ception of data as well as for congestion control. Now,
using the turbo core, we eliminate the long delay for pro-
cessing incoming data segments. With our additional I/O
buffering enabled, the IRQ context now buffers all these
data packets. However, the locking behavior in the VM’s
TCP stack still prevents the ACK generation in a timely
manner, hence reducing TCP throughput significantly.

Specifically, when the user process is calling function
recv(), it locks the socket to prevent the IRQ threads from
modifying the socket structure while it is reading from
the socket buffers. If a new data segment arrives during
this period, the IRQ process will queue it in the backlog
queue without generating an ACK. When the receiving
process engages in a tight receiving loop, the socket gets
locked frequently by the process context. Moreover, the
process can get scheduled out of the regular core while it
is holding the lock. When this happens, ACKs will not be
generated for a long period (until the process gets sched-
uled and releases the lock), even though the turbo core
can accept and buffer TCP segments from the network.
As a result, the sender will throttle down the sending rate
leading to sub-par TCP throughput.

We make a simple modification to the VM’s TCP stack
to enable ACK generation from the IRQ context run-
ning in the turbo core, even when the socket structure
is locked by the user process. The high-level steps per-
formed by our modification are shown in Algorithm 1
which runs in the softIRQ context just before queuing the
packet in the TCP backlog queue. Here, when the IRQ
thread discovers that the socket is locked by the user pro-
cess, it checks whether the new data segment is in-order.
If so, an ACK is generated for the data packet, which
will then be marked as acknowledged and queued. Note
that we are not modifying the socket structure as it is cur-
rently owned by the process context. This is somewhat
similar to vSnoop [17], although vSnoop is implemented
purely in the driver domain whereas the ACK generation
here is from within the guest VM. Thus we have access
to VM’s TCP information and can afford much larger
buffers (compared to the limited ring buffer space in vS-
noop). If a flow encounters an out-of-order packet, we
disable this ACK generation until the missing segments
are recovered by the usual slow path of TCP processing.
This small modification helps achieve TCP throughput
close to the line rate.

4 Implementation
We have implemented a prototype of vTurbo based on
Xen 4.1.2. vTurbo only requires small modifications to
the VM scheduler in hypervisor (about 400 lines of code)
and guest OS kernel (less than 200 lines of code).
Hypervisor To differentiate between regular cores and
turbo cores, we added a field to the per-core data struc-
ture schedule data, to indicate the CPU time-slice for
the specific core–30ms for regular cores and 0.1ms for
turbo cores. Our implementation allows the flexibility of
changing these values dynamically via xm tools.

Our vTurbo scheduler inherits most of its functional-
ity from Xen’s credit scheduler which provides the pro-
portional fairness and work-conserving properties. We
added and modified functionality of the main scheduler
code of the credit scheduler to accommodate turbo cores
and turbo vCPUs. Specifically, we modified function
csched schedule(), which is responsible for selecting vC-
PUs from the runqueue to run on physical cores and set-
ting the scheduling timer of turbo cores to 0.1ms.

We assign each VM a turbo vCPU by modifying the
VM’s configuration so that an extra vCPU is added dur-
ing the configuration parsing step of VM initialization
performed by the Xen tools. Also during this step, the
turbo vCPUs are pinned to the set of turbo cores and reg-
ular vCPUs are pinned to the regular cores by modifying
the loaded VM’s configuration. By doing this, we do not
have to modify the scheduler code to prevent undesirable
vCPU migrations (discussed in Section 3), because the
credit scheduler will adhere to the CPU affinity rules set

250 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

in the configuration.

Algorithm 2 vTurbo accounting algorithm
Require: num tcore ≥ 1

Require: num rcore ≥ 1

Require: num vm ≥ 1

Regular accounting triggered every 30ms:
tcore usage = get rcore usage(); /* CR

tot
*/

rcore usage = get tcore usage(); /* CT
tot

*/
for vm in vm list do

vm.credits = vm.weight×
(tcore usage+ rcore usage)/vm weight sum;

vm.tcredits = get turbo core usage(vm);

vm.rcredits = vm.credits − vm.tcredits;
ratio = 300; /* = 30/0.1 */
vm.vturbo slice = vm vcredits/ratio;
update rcredits(vm.rcredits);

vTurbo accounting triggered every 0.1ms:
for vm in vm list do

update tcredits(vm.vturbo slice);

CPU accounting is conducted by function
csched acct() in the credit scheduler. We extended
this function by implementing two accounting routines
for regular and turbo vCPUs individually as shown
in Algorithm 2. They run at different frequencies in
accordance with CPU scheduling frequencies (e.g.,
30ms for regular vCPUs and 0.1ms for turbo vCPUs),
because updating credits faster or slower than the
scheduling frequency would cause inaccurate state
of vCPUs in terms of OVER and UNDER priorities
in Xen. The vTurbo accounting routines are simple,
incurring very low overhead considering the high fre-
quency of their execution. Functions get rcore usage()
and get tcore usage() retrieve the consumed clock
cycles by regular vCPUs and turbo vCPUs of all VMs
respectively; while functions update rcredits() and
update tcredits() set the calculated credits for regular
cores and turbo cores for the next scheduling period.
Function get turbo core usage() retrieves the the clock
cycle usage by the turbo vCPU of a given VM. We
do not change method burning credits() in the credit
scheduler, which deducts credits from the VMs based on
their running time on the cores. Instead we implement a
new method for vTurbo credit deduction.

Guest OS Our modification to the TCP stack, to gener-
ate early ACKs for packets buffered in backlog queue,
is mainly in function tcp v4 rcv(). There are 3 ker-
nel buffers to buffer received TCP packets: (1) receive
queue, (2) prequeue, and (3) backlog queue. When a
socket is not locked, received packets are buffered in re-
ceive queue. However, if the application process locks
the socket while fetching data from the kernel, packets
received during that period will be buffered in backlog
queue. We modified the backlog queuing path of func-
tion tcp v4 rcv() to verify a received packet is “expected”
and if so, call function tcp ack() to generate an ACK for

the received packet. Since very few packets (less than
0.1%) go to prequeue in CPU sharing VMs, we disable
prequeue in vTurbo to simplify our implementation.

5 Evaluation
We first evaluate the effectiveness of vTurbo for different
types of I/O operations via a series of micro-benchmarks.
We then use NFS, SCP, and Apache Olio [2] to eval-
uate the application-level performance improvement by
vTurbo.
Experimental setup Our testbed consists of servers
with quad-core 3.2GHz Intel Xeon CPUs and 16GB of
RAM. They are connected via Gigabit Ethernet, except
for the experiments with 10Gbps Ethernet. These servers
run Xen 4.1.2 as hypervisor and Linux 3.2 in both do-
main0 and guest VMs. We pin domain0 to one of the
cores in all our experiments.

5 .1 Micro-Benchmark Results
In this section we evaluate the performance of vTurbo
for various types of I/O. We use lookbusy [7] to keep the
CPU utilization at determined levels during experiments.
File read and write We use IOzone benchmark [4]
to read/write a 1GB file from/to disk and measure the
read/write throughput. Figure 5 shows the read and write
throughput—in comparison with the vanilla Xen–when
we vary the record size from 1MB to 16MB.

From Figure 5(a) we see that the disk write through-
put is improved significantly (by 75% to 82%); whereas
the disk read throughput (Figure 5(b)) sees less improve-
ment (only up to 26%). The main reason is that, when
the process performs a write, the data is immediately
written to the file system cache and the write() call re-
turns. So the process can keep writing while the reg-
ular vCPU is scheduled. The dirty pages of the disk
cache are flushed to the disk by a kernel thread executed
by the turbo vCPU. Therefore with vTurbo, disk write
throughput is greatly improved. However, when the pro-
cess performs a read for a fresh block from the disk, it
gets blocked until the actual data blocks are read from
the disk. Meanwhile the hypervisor may schedule other
vCPUs on the regular core. The turbo vCPU will be able
to handle the disk read completion interrupt and place
the data in the process’ buffer while the regular vCPU is
scheduled out. But the process will not be able to make
further read requests until it is scheduled again. Hence in
this case, vTurbo achieves less throughput improvement
than in the case of disk write.
UDP throughput To measure the benefit of vTurbo to
network I/O we first measure the UDP throughput im-
provement achieved by vTurbo. In these experiments, we
use iperf to send a stream of UDP packets for 10 seconds
to a VM sharing a core with 2, 3, or 4 other VMs. The av-
erage throughput (averaged over 10 runs) observed at the

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 251

 0

 20,000

 40,000

 60,000

 80,000

 100,000

 120,000

1M 2M 4M 8M 16M

Th
ro

ug
hp

ut
 (K

B
ps

)

Record Size(B)

Xen
vTurbo

(a) Write

 0

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

1M 2M 4M 8M 16M

Th
ro

ug
hp

ut
 (K

B
ps

)

Record Size(B)

Xen
vTurbo

(b) Read
Figure 5: File read/write throughput.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1,000

3 4 5

Th
ro

ug
hp

ut
 (M

bp
s)

Number of VMs

Xen−UDP
vTurbo−UDP
Xen−TCP
vTurbo−TCP

(a) 1Gbps Network

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

3 4 5

Th
ro

ug
hp

ut
 (M

bp
s)

Number of VMs

Xen−UDP
vTurbo−UDP
Xen−TCP
vTurbo−TCP

(b) 10Gbps Network
Figure 6: TCP and UDP throughput.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1,000

X
en

vT
ur

bo

X
en

vT
ur

bo

X
en

vT
ur

bo

X
en

vT
ur

bo

Th
ro

ug
hp

ut
 (M

bp
s)

Number of I/O Intensive VMs
 1 2 3 4

vm4
vm3
vm2
vm1

Figure 7: UDP throughput: multiple I/O-intensive VMs.

VM on vanilla Xen and vTurbo is shown in Figure 6(a)
by blue and yellow bars, respectively. With vanilla Xen,
the UDP throughput starts to decrease when the number
of VMs sharing the core increases. This is because, when
UDP packets arrive at domain0, the target VM may not
be scheduled and the packets have to be buffered in do-
main0. But the space in domain0 is limited and hence
once this buffer fills up, packets will be dropped caus-
ing the throughput to go down. With vTurbo, the target
VM’s network IRQ processing threads get scheduled fre-
quently and hence the buffer in domain0 can be drained
frequently. This leads to much less packet drops thereby
achieving close-to full network bandwidth (1Gbps).

Next, we evaluate the impact of sharing the turbo core
among multiple I/O-intensive VMs. We reuse the setup

in the previous experiment. But instead of 1 VM re-
ceiving a UDP packet stream, we increase the number of
VMs receiving UDP streams from 1 to 4. Figure 7 shows
the aggregate throughput achieved as well as the through-
put seen by individual VMs. In both vanilla Xen and Xen
with vTurbo configurations, we see that the I/O band-
width is fairly shared among VMs. However, vTurbo
achieves (close to) wire speed and outperforms vanilla
Xen irrespective of the number of I/O-intensive VMs.

TCP throughput We use a setup similar to the UDP
experiments to measure the TCP throughput improve-
ment achieved by vTurbo. In this experiment, we send a
200MB file using iperf to a VM from another server and
we vary the number of VMs sharing the same core with
the receiving VM. Figure 6(a) shows the TCP through-
put on vanilla Xen and Xen with vTurbo by grey and
red bars, respectively. Recall that with vTurbo, the TCP
stack is modified to generate ACKs when the regular
vCPU is holding the socket ownership and scheduled
out. As the figure shows, vTurbo improves TCP through-
put significantly (by 63% - 200%). However the TCP
throughput achieved by vTurbo still does not reach the
full available network bandwidth. The reason is, even
with our modification, if a packet loss happens, we have
to resort to the (usual) slow code path where packet loss
recovery is subject to regular vCPU scheduling delay,

252 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1,000

UDP TCP

Th
ro

ug
hp

ut
 (M

bp
s)

Protocol

Xen
Xen+irqbalance
vTurbo

Figure 8: UDP and TCP throughput for VSMP VMs.

which negatively affects the TCP throughput.

10Gbps Ethernet To evaluate the benefit of vTurbo
with 10Gbps Ethernet, we repeat the UDP and TCP ex-
periments. In our setup, two physical servers are con-
nected via 10Gbps Ethernet. In the UDP experiment,
we use netperf [9] to send a 10-second UDP stream to
the target VM sharing a core with 2 to 4 other VMs. In
the TCP experiment, we send a 500MB file using iperf
from one physical server to a VM running in the other
server, varying the number of VMs sharing the same core
with the receiving VM. The results in Figure 6(b) indi-
cate that, in a 10Gbps network, vTurbo achieves a pat-
tern of improvement for both UDP and TCP throughput
similar to that in the 1Gbps network. However, since
the regular core is shared by multiple VMs, the applica-
tion does not get enough CPU cycles to copy the buffered
data from kernel space to user space, hence we can not
achieve line speed.

Benefit of vTurbo to VSMP VMs To show the ben-
efit of vTurbo to SMP VMs, we use iperf to send TCP
and UDP traffic (in different runs) to a VM which is
assigned 2 vCPUs. In this experiment, we run 4 VMs
each with 2 vCPUs. These vCPUs are restricted to
run in the first 2 cores of the quad-core processor, but
are allowed to migrate between the two cores. Simi-
lar to previous experiments, we pin domain0 to the 3rd
core and, for vTurbo, we use the 4th core as the turbo
core. In the vanilla Xen configuration, we first dis-
able irqbalance in VM and allow the interrupts to be di-
rected only to vCPU0 of the VM. Next we enable irqbal-
ance so that the interrupts can be balanced between the
two vCPUs. In the vTurbo configuration, interrupts are
routed to the turbo vCPU. Figure 8 shows the TCP and
UDP throughput when transferring 200MB of data to the
VSMP VM. vTurbo vastly outperforms both irqbalance-
on and irqbalance-off configurations. However, the TCP
throughput is lower than that under the “4 single-vCPU
VMs” configuration (for both vanilla Xen and vTurbo
configurations – see Figure 6(a)) . We conjecture that
this is due to the vCPU migrations between the two phys-
ical cores and the iperf receiver process migrations be-
tween the two vCPUs of the VSMP VM.

 0

 20

 40

 60

 80

 100

 120

W
rite

Re−
write

Read

Re−
rea

d

Th
ro

ug
hp

ut
 (M

B
ps

)

Test

Xen
vTurbo

(a) NFS read/write throughput.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

3 4 5

Th
ro

ug
hp

ut
 (M

B
ps

)

Number of VMs

Xen
vTurbo

(b) SCP throughput.

Figure 9: SCP and NFS throughput.

5.2 Application-Level Results
NFS server throughput NFS uses TCP to transport
commands and data blocks between the NFS client and
server. We use the NFS tests in IOzone to evaluate the
benefit of vTurbo to the NFS server. We export a direc-
tory of a VM using NFS and run IOzone in another server
which mounts this exported directory. We pin the NFS
server VM’s vCPU to a single core shared by three other
VMs with 30% CPU utilization. Figure 9(a) shows the
file read and write throughput (file size: 1GB). vTurbo
significantly outperforms vanilla Xen for all types of op-
erations. The results for “Read” and “Re-read” opera-
tions are especially interesting (and somewhat surpris-
ing). Recall that, for file read/write micro-benchmarks,
vTurbo does not improve disk read throughput much. Yet
we observe significant improvement in NFS read and re-
read throughput. After some investigation, we figure out
the reasons for the improvements here: First, NFS uti-
lizes pre-fetching for sequential read operations where
multiple read operations are issued in advance. Second,
Linux NFS implementation uses in-kernel data transfer
from files to sockets. As such, the server process is able
to process many read requests while the regular vCPU is
scheduled and to delegate the actual file block transfer
operations to the kernel threads run by the turbo vCPU,
hence achieving much higher throughput.

Secure copy (SCP) throughput SCP involves both
CPU activity (for encryption and decryption of data) and
I/O activity. We copy a 1GB file using SCP from a client
to a VM sharing a core with 2, 3, or 4 other VMs. In this
experiment the sshd process which is receiving the file
is scheduled at the regular vCPU while both TCP pro-
cessing and disk I/O handling threads are scheduled at
the turbo vCPU. Figure 9(b) shows that vTurbo improves
SCP throughput by 53% to 66%.

Apache Olio To assess the benefit of vTurbo to a cloud
application, we use Apache Olio, an event calender de-
veloped using Web 2.0 technologies. The Apache Olio
benchmark consists of 3 components: (1) a web server
to process user requests, (2) a MySQL database server to

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 253

Single Instance Two Simultaneous Instances
Instance 1 Instance 2

Operation Count Count Count Count Count Count
Vanilla Xen vTurbo Vanilla Xen vTurbo Vanilla Xen vTurbo

HomePage 4028 5602 3918 5334 3839 5311
Login 1629 2190 1524 2121 1540 2109
TagSearch 5183 7198 4888 6822 4892 6778
EventDetail 3856 5274 3701 5075 3630 5013
PersonDetail 405 562 379 550 381 508
AddPerson 127 178 131 177 120 167
AddEvent 300 402 280 416 279 413
Total 15528 21406 14821 20495 14681 20299
Rate(ops/sec) 51.8 71.3 49.4 68.3 48.9 67.7
Improvement (%) - 37 .6% - 38 .2% - 38 .4%

Table 2: Results from Apache Olio experiment (single- and two-instance)

store user profiles and event information, and (3) an NFS
server to store images and documents specific to events.
We use the PHP version of the benchmark.

In our setup, we host the 3 Olio components in 3 dif-
ferent VMs each in a separate physical host. In each host
we pin the Olio VM’s vCPU to a single core, which is
shared by 3 other VMs having 20% of CPU load. We
stress the Olio service with 400 client threads generating
requests using the Faban client simulator for 6 minutes.

In Table 2, the “Single Instance” (2nd and 3rd)
columns show the breakdown of total operations (aver-
aged over 3 runs) performed by Olio on vanilla Xen and
on vTurbo, respectively. vTurbo achieves higher oper-
ation counts than vanilla Xen for all types of operations
during the same period. This is because vTurbo improves
communication performance among the three Olio com-
ponents as well as file write performance of MySQL and
NFS servers. With vTurbo the overall throughput of the
Olio service is improved from 51.8 ops/second to 71.3
ops/second – a 37.6% improvement.

Next, we evaluate the performance of two simultane-
ous instances of Olio, with the same set of components
hosted by the same physical servers. In this experiment,
of the 4 CPU cores of each server, we dedicate one core
to domain0 and one core as the turbo core shared by
all VMs. In our replicated Olio configuration, we pin
the two copies of each Olio component to the 2 remain-
ing cores respectively, with each core shared by 3 other
VMs. Columns 4, 5, 6, 7 of Table 2 show the breakdown
of total operations performed by the two Olio instances,
which are started at the same time and run for the same
6-minute period. Compared with the “Single Instance”
results, most rows see a slight reduction of operation
throughput for both vanilla Xen and vTurbo configura-
tions. We believe this is due to the sharing of resources
such as the disk and network. However, we observe that
with vTurbo, the overall Olio throughput is increased by
38.2% and 38.4% for instances 1 and 2, respectively.

6 Related Work
We have discussed some of the recent and most related
efforts in optimizing I/O processing for virtualized sys-

tems in Section 1 and Section 2. In this section, we
discuss other related work in the same problem space.
These efforts can be categorized into two categories: I/O
path tuning and VM scheduling optimization.
I/O path improvements vSnoop [17] and vFlood [12]
are two related efforts to improve TCP throughput of
VMs. vSnoop offloads ACK generation from a VM to its
driver domain to hide the VM scheduling delay from the
TCP sender. We adopt a similar idea in vTurboinside the
guest OS to generate ACKs while the receiving process
on the regular core has locked the socket. vSnoop only
benefits TCP receiving, it does not benefit UDP or disk
I/O. Moreover, due to the limited shared buffer space in
the driver domain, vSnoop can only accelerate small TCP
flows. On the other hand vTurbo can improve throughput
of TCP/UDP receive—regardless of flow size—and disk
write. It can also benefit disk read if data pre-fetching
is used by applications (as shown by the NFS through-
put results in Section 5.2). One can consider vTurbo as
an alternative to vSnoop with extra features. vFlood of-
floads TCP congestion control to driver domain to hide
VM scheduling delay from receiver thus improving the
performance of TCP send. vFlood has the same problem
as vSnoop: It only works for small TCP flows. IsoStack
[27] offloads the entire TCP processing engine to a ded-
icated core. The main advantage of IsoStack is that, it
can reduce cache misses and reduce synchronized ac-
cesses to shared state of the TCP stack by multiple cores
(e.g., socket structures). vTurbo in spirit offloads IRQ
processing (only) to a separate core, with the goal of mit-
igating the impact of VMs’ regular core access latency.
In [24, 22, 23], Menon et al.propose optimizations for
device virtualization using techniques such as checksum
offload, segmentation offload, packet coalescing, scat-
ter/gather I/O, and offloading device driver functional-
ity. SR-IOV [11] devices and IOMMUs such as Intel VT-
d [14] enable the hypervisor to directly assign devices to
guests. This allows the guest to directly interact with the
device eliminating the virtulization overhead. However,
even in this case, scheduling delays still impact the inter-
rupt processing delay. We believe that vTurbo is comple-
mentary to both SR-IOV and VT-d, since it enables the

254 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

processing of the interrupt and data associated with the
interrupt as soon as the interrupt is delivered to the VM.

VM scheduling optimization Adapting the schedul-
ing policy in the hypervisor-level VM scheduler can also
improve I/O performance perceived by applications run-
ning in VMs. vSlicer [30] reduces CPU scheduling delay
and hence the application-perceived latency—to a certain
degree by setting smaller time-slice for latency-sensitive
VMs. Still, that time-slice is not small enough to im-
prove TCP/UDP throughput in LAN/datacenter environ-
ments. With vTurbo, IRQ processing delay is reduced to
sub-millisecond. And the concurrent I/O processing on
regular and turbo cores brings significant I/O throughput
improvement. We note that vTurbo and vSlicer can be in-
tegrated to achieve both low latency and high throughput
for VM I/O. A soft-realtime VM scheduler is proposed in
[21] to reduce response time of I/O requests thus improv-
ing the performance of soft-realtime applications such as
media servers. But its preemption-based scheduling pol-
icy may violate CPU share fairness when a VM is per-
forming heavy I/O activities. MRG [16] is a VM sched-
uler to improve I/O performance for MapReduce jobs.
This scheduler facilities MapReduce job fairness by in-
troducing a two-level group credit-based scheduling pol-
icy. Through batching of I/O requests within a group
the efficiency of map and reduce tasks is improved and
superfluous context switches are eliminated. However
MRG is a MapReduce-specific scheduler; and it works
well only when the VMs and the driver domain share the
same CPU core.

7 Conclusion
We have presented vTurbo, a system that aims at accel-
erating I/O processing for VMs sharing the same core
in a multi-core host. More specifically, vTurbo signifi-
cantly reduces IRQ processing latency by dedicating one
or more turbo core(s) to IRQ processing for all hosted
VMs. The time-slice of a turbo core is magnitudes
smaller than that of a regular core hence achieving neg-
ligible IRQ processing latency. vTurbo involves a VM
scheduling policy that enforces fair sharing of both reg-
ular and turbo cores among VMs. Our evaluation of a
vTurbo prototype shows that it vastly improves network
and disk I/O throughput and consequently application-
level performance for hosted VMs.

8 Acknowledgments
We thank our shepherd, Jonathan Walpole and the anony-
mous reviewers for their insightful comments and sug-
gestions. This work was supported in part by NSF grants
0855141, 1054788, and 1219004. Any opinions, find-
ings, and conclusions in this paper are those of the au-
thors and do not necessarily reflect the views of the NSF.

References
[1] Amazon Elastic Compute Cloud (Amazon EC2). http://

aws.amazon.com/ec2/.
[2] Apache Olio. http://http://incubator.apache.

org/olio/.
[3] CPU isolation extensions. http://lwn.net/Articles/

270623/.
[4] IOzone Filesystem Benchmark. http://www.iozone.

org/.
[5] The Iperf Benchmark. http://www.noc.ucf.edu/

Tools/Iperf/.
[6] J. McCalpin. The STREAM benchmark. http://www.cs.

virginia.edu/stream/.
[7] Lookbusy-a synthetic load generator. http://www.devin.

com/lookbusy/.
[8] Microsoft Cloud Platform (Microsoft Azure). http://www.

windowsazure.com/.
[9] The Netperf Benchmark. http://www.netperf.org.

[10] CHENG, L., AND WANG, C.-L. vbalance: Using interrupt load
balance to improve i/o performance for smp virtual machines. In
ACM SoCC (2012).

[11] DONG, Y., YU, Z., AND ROSE, G. SR-IOV networking in Xen:
architecture, design and implementation. In WIOV (2008).

[12] GAMAGE, S., KANGARLOU, A., KOMPELLA, R. R., AND XU,
D. Opportunistic flooding to improve TCP transmit performance
in virtualized clouds. In ACM SoCC (2011).

[13] GORDON, A., AMIT, N., HAR’EL, N., BEN-YEHUDA, M.,
LANDAU, A., SCHUSTER, A., AND TSAFRIR, D. ELI: bare-
metal performance for I/O virtualization. In ACM ASPLOS
(2012).

[14] HIREMANE, R. Intel virtualization technology for directed I/O
(Intel VT-d). Technology@ Intel Magazine 4, 10 (2007).

[15] HU, Y., LONG, X., ZHANG, J., HE, J., AND XIA, L. I/o
scheduling model of virtual machine based on multi-core dynam-
ical partitioning. In ACM HPDC (2010).

[16] KANG, H., CHEN, Y., WONG, J. L., SION, R., AND WU, J.
Enhancement of Xen’s scheduler for MapReduce workloads. In
ACM HPDC’11 (2011).

[17] KANGARLOU, A., GAMAGE, S., KOMPELLA, R. R., AND XU,
D. vSnoop: Improving TCP throughput in virtualized environ-
ments via acknowledgement offload. In ACM/IEEE SC (2010).

[18] KAPOOR, R., PORTER, G., TEWARI, M., VOELKER, G. M.,
AND VAHDAT, A. Chronos: predictable low latency for data
center applications. In ACM SoCC (2012).

[19] KESAVAN, M., GAVRILOVSKA, A., AND SCHWAN, K. Differ-
ential Virtual Time (DVT): Rethinking I/O service differentiation
for virtual machines. In ACM SoCC (2010).

[20] LARSEN, S., SARANGAM, P., HUGGAHALLI, R., AND KULKA-
RNI, S. Architectural breakdown of end-to-end latency in a tcp/ip
network. International Journal of Parallel Programming 37, 6
(2009), 556–571.

[21] LEE, M., KRISHNAKUMAR, A. S., KRISHNAN, P., SINGH, N.,
AND YAJNIK, S. Supporting soft real-time tasks in the Xen hy-
pervisor. In ACM VEE (2010).

[22] MENON, A., COX, A. L., AND ZWAENEPOEL, W. Optimizing
network virtualization in Xen. In USENIX ATC (2006).

[23] MENON, A., SCHUBERT, S., AND ZWAENEPOEL, W. Twin-
Drivers: semi-automatic derivation of fast and safe hypervisor
network drivers from guest OS drivers. In ACM ASPLOS (2009).

[24] MENON, A., AND ZWAENEPOEL, W. Optimizing TCP receive
performance. In USENIX ATC (2008).

[25] PATNAIK, D., KRISHNAKUMAR, A., KRISHNAN, P., SINGH,
N., AND YAJNIK, S. Performance implications of hosting enter-
prise telephony applications on virtualized multi-core platforms.
Tech. rep., IPTComm, 2009.

[26] PESTEREV, A., STRAUSS, J., ZELDOVICH, N., AND MORRIS,
R. T. Improving network connection locality on multicore sys-
tems. In ACM EuroSys (2012).

[27] SHALEV, L., SATRAN, J., BOROVIK, E., AND BEN-YEHUDA,
M. IsoStack: Highly efficient network processing on dedicated
cores. In USENIX ATC (2010).

[28] WALDSPURGER, C., AND ROSENBLUM, M. I/O virtulization.
In Communications of the ACM (2012).

[29] WALDSPURGER, C. A. Memory resource management in
VMware ESX server. In USENIX OSDI (2002).

[30] XU, C., GAMAGE, S., RAO, P. N., KANGARLOU, A., KOM-
PELLA, R. R., AND XU, D. vslicer: Latency-aware virtual
machine scheduling via differentiated-frequency cpu slicing. In
ACM HPDC (2012).

