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Abstract
Causality inference, such as dynamic taint anslysis, has many ap-
plications (e.g., information leak detection). It determines whether
an event e is causally dependent on a preceding event c during ex-
ecution. We develop a new causality inference engine LDX. Given
an execution, it spawns a slave execution, in which it mutates c
and observes whether any change is induced at e. To preclude non-
determinism, LDX couples the executions by sharing syscall out-
comes. To handle path differences induced by the perturbation, we
develop a novel on-the-fly execution alignment scheme that main-
tains a counter to reflect the progress of execution. The scheme
relies on program analysis and compiler transformation. LDX can
effectively detect information leak and security attacks with an av-
erage overhead of 6.08% while running the master and the slave
concurrently on seperate CPUs, much lower than existing systems
that require instruction level monitoring. Furthermore, it has much
better accuracy in causality inference.

Keywords Causality Inference, Dual Execution, Dynamic Analy-
sis

1. Introduction
Causality inference during program execution determines whether
an event is causally dependent on a preceding event. Such events
could be system level events (e.g., input/output syscalls) or indi-
vidual instruction executions. A version of causality inference, dy-
namic tainting, is widely used to detect information leak, namely,
sensitive information is undesirably disclosed to untrusted entities,
and runtime attacks, in which exploit inputs subvert critical execu-
tion state such as stack and heap (Qin et al. 2006; Song et al. 2008;
Kemerlis et al. 2012; Clause et al. 2007; Bosman et al. 2011).

Most existing causality inference techniques are based on pro-
gram dependences, especially data dependences. There is data de-
pendence between two events if the former event defines a variable
and the later event uses it. These techniques have a few limitations.
First, they have difficulty in handling control dependence. There is
control dependence between a predicate and an instruction if the
predicate directly determines whether the instruction executes. The
challenge lies in that control dependences sometimes lead to strong
causality, but some other times lead to very weak causality that can-
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not be exploited by attackers and hence should not be considered.
Most existing solutions (McCamant and Ernst 2008; Kang et al.
2011; Cox et al. 2014) rely on detecting syntactic patterns of con-
trol dependences and hence are incomplete. Second, existing tech-
niques are expensive (e.g., a few times slow-down (Kemerlis et al.
2012)), as memory accesses need to be instrumented to detect data
dependences. Third, the complexity in implementation is high. De-
pendence tracking logic needs to be defined for each instruction,
which is error-prone for complex instruction sets. Instrumenting
third party libraries, various languages and their runtimes, is very
challenging.

We observe that these limitations root at tracking causality by
monitoring program dependencies. We propose to directly infer
causality based on its defintion. In (Lewis 1973), counterfactual
causality was defined as follows. An event e is causally depen-
dent on an earlier event c if and only if the absence of c also leads
to the absence of e. Program dependence tracking in some sense
just approximates counterfactural causality. Our technique works
as follows. It perturbs the program state at c (the source) and then
observes whether there is any change at e (the sink). There are a
number of challenges. (1) We need at least two executions to in-
fer causality. Thus, we must prune the differences caused by non-
determinism such as different external event orders. (2) Meaningful
comparison of states across executions requires execution align-
ment. Due to perturbation, the event e may occur at different lo-
cations. Naive approaches such as using program counters hardly
work due to path differences (Xin et al. 2008). (3) The second exe-
cution is not a simple replay of the first one, as the perturbation may
cause path differences and then input/output syscall differences. (4)
Ideally, the two executions should proceed in parallel. Otherwise,
the execution time is at least doubled.

The core of our technique is a novel runtime engine LDX, which
stands for Lightweight Dual eXecution. Its execution model is sim-
ilar to Dual Execution (DualEx) (Kim et al. 2015). Given an orig-
inal execution (the master), a new execution (the slave) is derived
by mutating the source(s). Later, by comparing the output buffer
contents of the two executions at the sink(s), we can determine if
the sink(s) are causally dependent on the source(s). The master and
the slave are coupled and run concurrently. The slave tries to reuse
syscall and nondeterministic instruction outcomes (e.g., rdtsc)
from the master to avoid nondeterminism. To avoid side effects, the
slave often ignores output syscalls. Since perturbation may cause
path differences and hence syscall differences, an on-the-fly execu-
tion alignment scheme is necessary. DualEx has a very expensive
alignment scheme based on Execution Indexing (Xin et al. 2008).
The slow-down reported in (Kim et al. 2015) is three orders of
magnitude. In contrast, LDX features a novel lightweight on-the-fly
alignment scheme that maintains a counter that reflects the progress
of execution. The counter is computed in such a sophisticated way



that an execution with a larger counter value must be ahead of an-
other with a smaller one. The slave blocks if it reaches a syscall
earlier than the master. If different paths are taken in the execu-
tions, the scheme can detect them and instructs the executions to
perform their syscalls independently. It also allows the executions
to realign by ensuring that they have the same counter value at the
join point of the different paths. Without such fine-grained align-
ment, when the slave encounters a syscall different from that in the
master, it cannot decide if the master is running behind (so that it
can simply wait) or the two are taking different paths so that the
syscall will never happen in the master.

Our contributions are summarized in the following.

• We study the limitations of program dependence based causal-
ity and propose counterfactual causality instead.
• We develop a lightweight dual execution engine that enables

practical counterfactual causality inference.
• We develop a novel scheme that computes a counter cost-

effectively at runtime using simple arithmetic operations. The
counter values from multiple executions indicate their relative
progress, facilitating runtime alignment. The scheme handles
language features such as loops, recursion, and indirect calls.
• Our evaluation shows that LDX outperforms existing program

dependence based dynamic tainting systems LIBDFT (Kemerlis
et al. 2012) and TAINTGRIND (Khoo 2013). In the effectiveness
aspect, LIBDFT and TAINTGRIND can only detect 31.47% and
20% of the true information leak cases and attacks detected by
LDX. Also, LDX does not report any false warnings. In the effi-
ciency aspect, the overhead of LDX is 6.08% to the original exe-
cution while it requires running the master and the slave concur-
rently on two separate CPUs. In contrast, the other two cause a
few times slowdown although they do not require the additional
CPU and memory. Note that the counter scheme allows align-
ing and continuing executions in the presence of path differ-
ences, which makes LDX superior to TIGHTLIP (Yumerefendi
et al. 2007), which often terminates when it detects misaligned
syscalls.

Limitations. LDX requires access to source code. Specifically,
the target application should be compiled with LLVM because
our analysis and instrumentation techniques are implemented in a
LLVM pass. LDX occupies more resources than a single execution.
In the worst case scenario, it may double the resource consumption
on memory, processor, and external resources such as files on disk.
Our performance evaluations assume that the machine has enough
capacity to accomodate such resource duplication. In practice, if
the slave and the master executions are coupled most of the time,
only the processor and memory consumptions are doubled because
the slave can shares most external I/Os with the master. LDX may
have false positives. For example, low level data races that are
not protected by any locks may induce non-deterministic state
differences and eventually lead to undesirable output differences.
However, for shared memory accesses protected by locks, LDX
ensures the same synchronization order across the master and the
slave. Furthermore, heap addresses are non-deterministic across
the two runs, if heap pointer values are emitted as part of the
output, LDX reports causality even though the two pointers may be
semantically equivalent. However, In our experience, pointer values
are rarely printed as part of the outputs at sink points.

LDX may also have false negatives. The current implementation
may not capture causality through covert channels. For example,
information can be disclosed through execution time and file meta-
data (e.g. last accessed time). We will leave it to our future work.
Furthermore, program execution may run into extremal conditions

(e.g., running out of disk/memory space), the current implementa-
tion of LDX does not handle such conditions.

2. Counterfactual Causality
Counterfactual causality (CC) (Hume 1748; Lewis 1973) is the
earliest and the most widely used definition of causality: an event
e is causally dependent on an event c if and only if, if c were not
to occur, e would not occur. Later, researchers also introduce the
notion of causal strength: c is a strong cause if and only if it is the
necessary and sufficient condition of e (Miller and Johnson-Laird
1976; Kushnir and Gopnik 2005; Cheng 1997). Otherwise, c is a
weak cause.

We adapt the definition in the context of program and program
execution as follows. Given an execution, we say a variable y at
an execution point j is causally dependent on a variable x at an
earlier point i, if and only if mutating x at i will cause change of y
at j. The causality is strong if and only if any change to x must lead
to some change of y. We call this causality a one-to-one mapping.
The causality is weak if multiple x values lead to the same y value.
We call it a many-to-one mapping. The strength of the causality is
determined by how many x values map to the same y.

Most existing causality inference techniques including dynamic
tainting are based on tracking program dependences, especially
data dependencies. Two events are causally related if there is a de-
pendence path between them during execution. As we discussed in
Section 1, these techniques have inherent limitations because pro-
gram dependences are merely approximation of CC. Next, we dis-
cuss the relation between CC and dynamic program dependences
to motivate our design.
(1) Most Data Dependences Are Essentially Strong CCs. Consider
Fig. 1 (a). There is a strong CC between s at the source (line 1) and
x at the sink (line 4) as any change to s leads to some change at
the sink, and there is a data dependence path 4→ 3→ 1 between
the two. Other data dependences have similar characteristics, which
implies that conventional dynamic tainting (based on data depen-
dence) tracks strong CCs. On the other hand, if there is a technique
that infers all strong CCs, it must subsume dynamic tainting.
(2) Control Dependences Induce Both Strong and Weak CCs. In
Fig. 1 (b), assume the true branch is taken and x = 1. We can
infer that s must be 10; there is strong causality between x and
s. This strong CC is induced by the control dependence 14→13,
together with data dependences 15→ 14 and 13→ 11. If control
dependence is not tracked (like in most existing dynamic tainting
techniques), the CC is missed. However in many cases, control
dependences only lead to weak CC. In case (c), assume s = 50
and hence x = 1. There is a dependence path 25→ 24→ 23→ 21
if control dependence 24→ 23 is tracked. However, the casuality
between x at 25 and s at 21 is weak as many values of s lead to the
same x = 1. Such weak causality is very difficult for the attacker to
exploit. For example with x = 1, the adversary can hardly infer s’s
value, even with the knowledge of the program. Moreover in code
injection attacks, the attacker can hardly manipulate the sink (e.g.
function return address) by changing the source. According to (Bao
et al. 2010), if control dependences are not tracked, 80% strong
CCs are missed; if all control dependences are tracked, strong CCs
are never missed but 45% of the detected causalities are weak. In
some large programs, an output event is causally dependent on
almost all inputs with 90% of them being weak causalities that
cannot be exploited. In summary, control dependences are a poor
approximation of strong CCs.
(3) Tracking both Data and Control Dependences May Still Miss
Strong CCs. Fig. 1 (d) presents such a case. Assume s = 10 and
hence the else branch is executed. As such, x is not updated. How-
ever, the fact that x is not updated (and hence has the value of 0)
allows the adversary to infer s = 10. It is a strong CC: any change



Figure 1. Examples to illustrate the comparison of counterfactual causality and program dependences. Arrows denote strong causalities between x at the
sink and s at the source. Case (a) shows strong CC by data dependence; (b) shows strong CC by control dependence; (c) shows control dependence does not
imply (strong) CC; (d) strong CC missed by both data and control dependences.

to s makes x have a different value. Unfortunately, such strong CC
cannot be detected by tracking program dependences as line 37 is
only data dependent on line 32 as the true branch is not executed.
More cases are omitted due to the space limitations. They can be
found in our technical report (tr).

The above discussion suggests that program dependences are
a poor approximation of strong CCs. Hence, we propose LDX, a
cost-effective technique that allows us to directly infer strong CCs,
strictly following the definition.

3. Overview and Illustrative Example
We use an example to illustrate LDX. Here we are interested in
information leak detection. We mutate the secret inputs. If output
differences are observed at the sinks, there are strong CCs between
the sinks and the secret inputs, and hence leaks.

Specifically, given the master execution, LDX creates a slave
and runs the two concurrently in a closely coupled fashion. The
master interacts with the environment and records its syscall out-
comes. In most cases, the slave does not interact with the environ-
ment, but reuses the master’s syscall outcomes, to eliminate state
differences caused by nondeterministic factors such as external
event orders. The slave mutates the sources, which potentially leads
to path differences and hence syscall differences. A novel feature of
LDX is to tolerate syscall differences in a cost-effective manner. It
maintains a counter for each execution that indicates the progress.
Execution points (across runs) with the same counter value and the
same PC are guaranteed to align (in terms of control flow). An exe-
cution with a larger counter value is ahead of another with a smaller
value. Aligned syscalls can share their outcomes; if the slave en-
counters a syscall with a counter larger than that in the master, the
slave blocks until the master catches up; if the slave encounters an
input syscall that does not have an alignment in the master, it will
execute the syscall independently. The counter is computed as fol-
lows. It is incremented by 1 at each syscall. When two executions
take different branches of a predicate –since the branches may have
different numbers of syscalls– the values added to the counter may
be different. The technique compensates the counter in the branch
that has a smaller increment so that the counter must have the same
value when the join point of the branches is reached. As such, the
executions are re-synchronized.

Figure 3. Syscall traces and the synchronization action sequence by LDX
for the example in Fig. 2 with title the secret. The shaded entries are
aligned.

Example. Consider the program in Fig. 2 (a). It reads informa-
tion of an employee, computes his/her raise and sends it to a re-
mote site. If the employee is a regular staff, function SRaise()
is called to compute the raise (line 4). If he/she is a manager, func-
tion MRaise() is called (line 6). Moreover, the program reads
the department information to compute the bonus for the manager.
Finally (lines 10 and 11), the name and the raise are reported to
a remote site. SRaise() opens and reads a contract file that de-
scribes the rate of raise. MRaise() calls SRaise() to compute
the basic raise, using a different contract file. Furthermore, it saves
all the junior managers with a salary higher than C1 to a local file.

The control flow graphs (CFGs) and their instrumentation for
counter computation (i.e. code along CFG edges) are shown in
Fig. 2 (b). The number beside a node denotes the counter value
at the node, computed by the instrumentation starting from the
function entry. It can be intuitively considered as the maximum
number of syscalls encountered along a path from the entry to the
node. In SRaise(), the counter is incremented twice along edges
Entry→ 12 and 12→ 13 before the two syscalls. The total incre-
ment is hence 2, as shown beside the exit node. In MRaise(),
the counter value of line 15 is 2, although the edge is not instru-
mented. This is because of the increments inside SRaise(). The
true branch of line 16 has an increment of 1 due to the write
syscall. To ensure identical counter values at the join point, the false
branch (i.e., edge 16→ 18) is compensated with +1. As a result,
the total increment of MRaise() is 3 along any path. Similarly in
main(), the path 3→ 5→ 6→ 7→ 8→ 10 has an increment of
4, due to the three syscalls inside MRaise() and the syscall at line
7. As such, we compensate the edges 4→ 10 and 9→ 10 by +2
and +4, respectively.

Assume title=STAFF is the secret. In the slave, it is mutated
to MANAGER. Also assume age=JUNIOR. Fig. 3 shows the syscall
sequences of the two executions and the corresponding counter
values. The first two entries are the syscalls at lines 1 and 2 in
both executions, and they align due to the same counter value.
Hence, the slave copies the syscall results from the master. The two
executions diverge at line 3 and different syscalls are encountered.
In particular, the master executes two syscalls inside SRaise()
and the slave executes the two syscalls inside SRaise() in a
different context, followed by the write at line 17 and the read
at 7. Since these syscalls do not align, both the master and the
slave execute them separately. Assume the master finishes its (true)
branch first and continues to the send syscall at line 11. At this
time, the counter is 7 in the master and larger than the slave’s. The
master blocks until the slave’s counter also reaches 7, at which the
two syscalls (at line 11) align again. Since the syscall is a sink, LDX
compares the outputs and identifies differences. It hence reports a
leak. Note that even though there is no direct data flow from title
to raise, the value of raise still leaks the secret title through
control dependences. Many existing techniques cannot detect such
causality. 2

One may notice in Fig. 3 that the third and the fourth syscalls
in both executions have the same counter. In fact, both are syscalls



main ( ) {

1.   read(stdin, &name, &title, 

           &salary, &age);

2.   fout=open(✁);

3.   if (title==STAFF) 

4.      raise=SRaise(�staff.std✂,salary);

5.   else if (title==MANAGER){

6.      raise=MRaise(name,salary,age);

7.      read(stdin, &dept);

8.      raise+=BONUS[dept];

9.   } else ...

10. sprintf (buf, �✁✂, &name, &raise);  

11. send(socket, buf);

 }

SRaise(standard, salary) {

12.   FILE fin=open(standard,...);

13.   read (fin, &rate);

14.   return salary*rate;

 }

MRaise(name,salary,age) {

15.   raise=SRaise(�mngr.std✂,salary);

16.   if (salary>C1 && age==JUNIOR) 

17.      write(fout,&name);

18.   return raise;

 }    

3.  if (title==S..)

4. raise=SRaise(✁);

5. if (title==M )

10. sprint(buf, ✁ );

1. read( ✁ );

6. MRaise( ✁ );

2. fout=open(✁)

7. read( ✁ );

8. raise=...;

9. ...

11. send (✁)

Entry

cnt++

cnt++

cnt++

12. fin=open( ✁ );

13. read(✁)

Entry

cnt++

cnt++

14. return

15. raise= SRaise();

Entry

cnt++

16.  if (salary...)

17. write(✁)

18. return...

cnt++

cnt++

cnt+=4cnt+=2

(a) Program (b) Control Flow Graphs and Instrumentation
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0

1

2

2
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2
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2
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2

0
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2
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Figure 2. Illustrative Example. The code along control flow edges represents instrumentation. #cnt+=2 inside SRaise(); ##cnt+=3 in MRaise().

in SRaise(). To recognize syscalls that are different but have
the same counter value and the same PC, LDX compares their
parameters.
Fixed versus Dynamically Computed Counter values. One may
also be curious that why LDX does not assign a fixed counter value
to each syscall. This is because a function may be invoked under
different contexts such that the counter value computed for a syscall
inside the function may vary.
Use of LDX. LDX is fully automated during production runs. It has
a predefined configuration of sources (e.g., socket receives) and
sinks (e.g., file writes). The user can also choose to annotate the
sources and sinks in the code during instrumentation. At runtime,
all the specified sources are mutated. If output differences are
observed at any sink, LDX considers that there is strong causality
between the sink and some source(s) and reports an exception. It
does not require running multiple times for individual sources.

4. Basic Design
The basic design consists of two components. The first is for
counter computation and the second is for synchronizing the ex-
ecutions and sharing syscall results. For now, we assume programs
do not have loops, recursion, or indirect calls. They are discussed
in later sections (loops/recursion in Section 5 and indirect calls in
Section 6).

4.1 Counter Computation
In LDX, each execution maintains a counter to allow progress com-
parison across runs. The basic idea of counter computation is to en-
sure that the current counter value represents the maximum number
of syscalls along a path from the beginning of the program to the
current execution point. If the program does not have any loops,
recursion, or indirect calls, such a number can be uniquely com-
puted. Hence, our instrumentation compensates the paths other than
the one that has the maximum number of syscalls, by incrementing
the counter, to make sure the counter must have the same value
(i.e. the maximum number of syscalls) along any path. Intuitively,
when the two executions take different branches of a predicate, the
counter computation ensures that they align when the branches join

again, because the counter will have the same value regardless of
the branch taken.

Algorithm 1 Basic Counter Instrumentation Algorithm.
Input: The CFGs of the m functions of a program P, denoted as
〈N1,E1〉, ..., 〈Nm,Em〉

Output: Instrumented CFGs
1: function INSTRUMENTPROG
2: for 〈Ni,Ei〉 in reverse topological order of the call graph do
3: INSTRUMENTFUNC (〈Ni,Ei〉)
4: end function

Input: The CFG of a function F , denoted as 〈N,E〉
Output: The instrumented CFG
5: function INSTRUMENTFUNC
6: for each node n ∈ N do
7: cnt[n]← 0
8: for node n ∈ N in topological order do
9: cnt[n]← maxp→n∈E (cnt[p])

10: if n is a syscall then
11: cnt[n]← cnt[n]+1
12: for each edge p→ n ∈ E do
13: if cnt[p] 6= cnt[n] then
14: instrument p→ n with “cnt+=”·cnt[n]− cnt[p]
15: if n is a call to user function Fx then
16: cnt[n]← cnt[n]+FCNT [Fx]

17: FCNT [F ]← cnt[exit node of F ]
18: end function

The instrumentation procedure is presented in Algorithm 1. It
consists of two functions: INSTRUMENTPROG() that instruments
the program and INSTRUMENTFUNC() that instruments a function.
INSTRUMENTPROG() instruments functions in the reverse topolog-
ical order. As such, when a function is instrumented, all its callees
must have been instrumented. In INSTRUMENTFUNC(), cnt[n] con-
tains the number of maximum syscalls along a path from the func-
tion entry to n. In lines 6-7, cnt[] is initialized to 0. Then in the loop
from lines 8-16, the algorithm traverses the CFG nodes in the topo-
logical order and computes cnt[]. In particular, cnt[n] is first set to
the maximum of cnt[p] for all its predecessors p (line 9). It is fur-



ther incremented by one if n is a syscall (lines 10-11). Then for any
incoming edge p→ n, the algorithm instruments it with a counter
increment of cnt[n]− cnt[p], ensuring the counter value must be
cnt[n] along all edges (lines 12-14). After that, if n denotes a func-
tion call to Fx, cnt[n] is incremented by the counter of the function
FCNT [Fx], which denotes the maximum number of syscalls that
can happen inside Fx along any path (line 15-16). Note that this
increment does not cause any instrumentation on n because the in-
crement denoted by FCNT [Fx] is realized inside Fx. At the end,
FCNT [F ] is set to the computed counter value for the exit node. It
will be used in counter computation in the callers of F .
Example. In Fig. 2, the algorithm first instruments SRaise().
The cnt[] values are showed beside the nodes. Observe that cnt[12] =
1 and cnt[13] = 2, which lead to the instrumentation on entry→ 12
and 12→ 13. FCNT [SRaise] = cnt[14] = 2. MRaise() is in-
strumented next. Due to FCNT [SRaise], cnt[15] = 2. Note that
node 15 is not instrumented. Node 18 has two predecessors and
thus cnt[18] = max(cnt[17],cnt[16]) = 3, which entails the instru-
mentation on 16→ 18. At last, function main() is instrumented.
cnt[10] = max (cnt[8],cnt[4],cnt[9]) = cnt[8] = 6, causing the in-
strumentation on 4→ 10 and 9→ 10. 2

Algorithm 2 Syscall Wrapper for Master.
Input: Syscall id sys id and parameters args.
Output: Syscall return value.
Definition: Qm the syscall outcome queue maintained by the master; Os

the latest sink syscall by the slave; cntm and cnts the local counters
in master and slave, respectively; readym the counter value in master
exposed to the slave; similarly, readys the counter value in the slave
exposed to the master.

1: function SYSCALLWRAPPER(sys id, args)
2: if sys id denotes a sink syscall then
3: while cntm > readys do
4: {}
5: if cntm < readys ∨ Os.sys id 6= sys id ∨Os.args 6= args then
6: report causality
7: r← SYSCALL (sys id, args)
8: Qm.enq(〈cntm, sys id, args, r〉)
9: readym← cntm

10: return r
11: end function

4.2 Dual Execution Facilitated by Counter Numbers
To support dual execution, LDX intercepts syscalls to perform
synchronization and syscall outcome sharing. In the master, when
a syscall is encountered, if it is not a sink, LDX executes the syscall
and saves the outcome for potential reuse by the slave. Otherwise,
it waits for the slave to reach the same sink so that their parameters
can be compared. In the slave, upon a syscall, it first checks whether
it is ahead of the master. If so, it waits until the master finishes
the corresponding syscall so that it can copy the master’s result.
If the corresponding syscall does not appear in the master (due to
path differences), which can be detected by the counter scheme, the
slave executes the syscall.
Execution Control in the Master. Algorithm 2 shows the con-
troller of the master. It is implemented as a syscall wrapper. Each
syscall in the master must go through the controller. Inside the con-
troller, cntm and cnts denote the current counter values in the mas-
ter and the slave, respectively. They are local to their execution and
invisible to the other execution. It also uses two shared variables
readym and readys to facilitate synchronization. They are assigned
the values of cntm and cnts when the master and the slave are ready
to disclose the effects of the current syscall to the other party.

Lines 2-6 handle a sink syscall. At line 3, the master spins until
the slave catches up. Note that the value of readys is the same as

cnts when the state of the slave’s syscall denoted by cnts becomes
visible. There are four possible cases after the master gets out of
the spin loop.
(1) cntm < readys. This happens when there is not a syscall denoted
by the value of cntm in the slave. For example in Fig. 2, assume
the master takes the false branch at line 3 and is now at line 7
with cntm = 6 while the slave takes the true branch and now it just
returns from the call to SRaise() at line 4 with cnts = readys = 4.
Assume we make line 7 a sink. Then the master will wait at line 7.
However, the next time readys is updated (in the slave) is at line 11,
at which readys = 7, larger than cntm = 6.
(2) cntm ≡ readys but the syscall in the slave represented by readys
is different from the sink syscall in the master. This is due to path
differences.
(3) cntm ≡ readys and both the master and the slave align at the
same sink syscall. However, their arguments are different.
(4) The counters, syscalls, and arguments are all identical.

The first three cases denote causality between the source and
the sink, suggesting leak or exploit. The last case is benign. In the
first two cases, there is causality because the sink (in the master)
disappears in the slave with the input perturbation. The three com-
parisons at line 5 correspond to the first three cases, respectively.

If the current syscall is not a sink, lines 7-8 in the algorithm
perform the real syscall and enqueue the syscall and its outcome,
which may be reused by the slave. At last (line 9), readym is set
up-to-date, indicating the syscall outcome for cntm is ready (for the
slave).

Execution control in the slave is similar. Details can be found in
our technical report (tr).

Syscall Handling. LDX’s policy of handling syscalls is similar
to that in dual execution (DualEx) (Kim et al. 2015). For most
input/output syscalls, the slave simply reuses the master’s syscall
outcome if their alignments in the master can be found. Otherwise,
it executes the syscall. To avoid undesirable interference, the slave
may need to construct its own copy of the system state before
executing the syscall. For example, before the slave executes a
file read, the file needs to be cloned, opened, and then seeked
to the right position. Some special syscalls are always executed
independently such as process creation. Since the policy is not our
contribution, we refer the interested reader to (Kim et al. 2015).

Dual Execution Model Comparison between LDX and DualEx
(Kim et al. 2015). Similar to LDX, DualEx also has the master
and the slave. However, its synchronization and alignment control
is through a third process called the monitor. Both the master and
the slave simply send their executed instructions to the monitor,
which builds a tree-like execution structure representation called
index and aligns the executions based on their indices. The monitor
also determines if a process needs to be blocked, achieving lockstep
synchronization. As such, its overhead is very high (i.e., 3 orders of
magnitude). In contrast, LDX is much more lightweight. It is based
on counter values and uses spinning to achieve synchronization.

5. Handling Loops
The basic design assumes programs without loops. Handling loops
is challenging because the number of iterations for a loop is un-
known at compile time. The master and the slave may iterate dif-
ferent numbers of times due to the perturbation at sources, leading
to different increments to the counters and hence difficulty in align-
ment. Our solution is to synchronize two corresponding loops at the
iteration level. In particular, it aligns the ith iteration of the master
with the ith iteration of the slave by synchronizing at the backedges,
i.e. the edge from the end of the loop body back to the loop head. It
is analogous to having a barrier at the end of each iteration. Along
the backedge, LDX also resets the counter to the value before it en-
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Figure 4. Loop Example.

tered the loop. Doing so, the value of the counter is bounded and
does not grow with the number of iterations. If an execution gets
out of the loop, its counter is incremented by the maximum number
of syscalls along any path inside the loop. As such, a counter value
beyond the loop is larger than any counter values within the loop,
correctly indicating that the execution beyond the loop is ahead of
the one in the loop.

Algorithm 3 Counter Instrumentation with Loops.

Input: The CFG of a function F , denoted as 〈N,E〉
Output: The instrumented CFG
1: function INSTRUMENTFUNCWITHLOOP
2: for each back edge t→ h ∈ E do
3: Let h→ n be the exit edge of the loop
4: E← E−{t→ h, h→ n} . Remove loop exit and back edges
5: E← E ∪{t→ n} . Add dummy edge
6: INSTRUMENTFUNC(〈N,E〉)
7: remove all dummy edges and their instrumentation
8: restore all the removed edges in the original CFG
9: for each original back edge e : t→ h do

10: instrument e with “sync();cnt−=”·cnt[t]− cnt[h]
11: for each original loop exit edge e : h→ n do
12: instrument e with “cnt+=”·cnt[n]− cnt[h]
13: end function

Algorithm 3 presents the instrumentation algorithm for a func-
tion with loops. It transforms the CFG to an acyclic graph by re-
moving loop edges. As such, the cnt[] values in the acyclic graph
are statically computable. The computed cnt[] values are then lever-
aged to construct the instrumentation, including that for the orig-
inal loop edges. Particularly, the algorithm first removes all the
backedges and the loop exit edges (line 2-5). A loop exit edge is
from the loop head h to the next statement n beyond the loop. A
dummy edge is inserted from the end of the loop body t to the next
statement n beyond the loop. Our discussion focuses on for and
while loops, do-while loops can be similarly handled.

At line 6, the acyclic graph is instrumented through INSTRU-
MENTFUNC(). After that, the dummy edges and their instrumen-
tation are removed as they do not denote real control flow (line 7).
The backedges and loop exit edges are then restored. Lines 9-10 in-
strument the backedges. For a backedge t→ h, the instrumentation
first calls a barrier function sync(), which is similar to lines 3-4
in Algorithm 2, to synchronize with the backedge of the same iter-
ation in the other execution. It then resets the counter to the value
at h such that the counter increment of the next iteration has a fresh
start. Lines 11-12 instrument the loop exit edges. For a loop exit
h→ n, the instrumentation increments the counter by the differ-
ence between cnt[n] and cnt[h]. Intuitively, it raises the counter to
the value of cnt[n].

Example. Fig. 4 (a) shows a loop example. There are two loops:
the i loop and the j loop. Their iteration numbers are determined
by the inputs from line 2. Figure (b) shows the transformed CFG
and part of the instrumentation generated by INSTRUMENTFUNC()
in the basic design. Observe that the backedges 8→ 5 and 12→ 3,
the loop exit edges 3→ 13 and 5→ 9 are removed. Dummy edges
8→ 9 and 12→ 13 are added. They do not represent real control
flow, but allow cnt[9] to be computed as cnt[8] + 1 and cnt[13] =
cnt[12] + 1. Figure (c) shows the instrumentation for backedges
and loop exit edges. Note that the CFG in (c) is the original CFG.
The backedge 8→ 5 is instrumented with the call to the barrier
function and the decrement of the counter by cnt[8]− cnt[5] =
1. The loop exit edge 5 → 9 is instrumented with the counter
increment of cnt[9]− cnt[5] = 2, which makes the counter value of
node 9 always larger than those within loop j. The instrumentation
for loop i is similar.

Fig. 5 shows the dual execution when the loop bounds n and
m are the sources. Assume the master executes with n = 1 and
m = 2 and the slave executes with n = 2 and m = 1. Along the
syscall sequences, we also show the loop iterations to facilitate
understanding. The first three syscalls (up to inside the first iteration
of j) align in the two executions. At A©, the two executions are
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Figure 5. Syscalls and the sequence of synchronizations by LDX for the
example in Fig. 4 with n and m the sources. The shaded entries are aligned.
The indentation shows the loop nesting.

synchronized and counters are reset to 2. However at B©, the slave
exits loop j while the master continues to the second iteration of j.
As such, the slave’s counter becomes 4, which blocks its execution.
At C©, the master finishes the second iteration of j and its counter
is reset to 2. At D©, the master also exits loop j and its counter
is incremented to 4, which aligns the two syscalls at line 9. At
E©, the two runs are synchronized at the backedge of loop i and
their counters are reset to 2 due to the instrumentation on 12→ 3.
At F©, the master exits the i loop; its counter becomes 5 due to
the instrumentation on 3→ 13, which blocks its execution as the
master needs the parameters of the send() from the slave to infer
causality. In contrast, the slave executes the remaining i iteration
before it reaches the aligned sink (line 13). 2

Recursive functions are handled similarly. Also note that we
only need to instrument loops that include syscalls. Hot loops
are usually computation intensive and should not have syscalls.
Therefore, they are unlikely to be instrumented.

6. Handling Indirect Function Calls
The challenge for handling indirect calls is that the call targets are
usually unknown at compile time. As a result, we cannot use the
counter values in the callee(s) to compute those in the caller. To
handle indirect calls, LDX saves a copy of the current counter to the
stack when an indirect call is encountered, and resets the counter to
0 such that the two executions start a fresh alignment from the in-
direct call site. When the executions return from the indirect call,
the counter value is restored. As such, we do not need to know the
precise counter increment inside the indirect call to support align-
ment in the caller. LDX supports components that cannot be instru-
mented such as third party libraries and dynamic loaded libraries
by synchronizing at their interface. Longjmp and setjmp are ig-
nored during the CFG analysis. They are supported at runtime by
saving a copy of the counter stack at the setjmp which will be re-
stored upon the longjmp. Moreover, an artificial sink is inserted
before the longjmp so that if one process longjmps but the other
does not, LDX reports exception. More details can be found in (tr).

7. Handling Concurrency and Library Calls
LDX supports real concurrency, which is completely different from
DualExec (Kim et al. 2015). Threads have their own counters.

Threads in the master and the slave are paired up. LDX treats
pthread library calls as syscalls. The two executions hence syn-
chronize on those calls and share the outcomes of lock acquisitions
and releases. Note that sharing synchronization outcomes induces
very similar thread schedules in the two executions. However, path
differences may lead to synchronization differences which may in
turn lead to deadlocks in LDX if not handled properly. We taint
locks that have encountered differences and avoid sharing synchro-
nization outcomes for those locks. Moreover, low-level data races
that are not protected by any locks may induce non-deterministic
state differences, leading to false positives in strong CC inference.
In Section 8, our experiment shows that false positives rarely hap-
pen (for the programs we consider). Intuitively, non-determinism
during computation may not lead to non-determinism at the sinks.
Light-weight Resource Tainting. In our current implementation, a
file/directory is considered a resource. Taint metadata is associated
with each resource. When an operation for a resource is misaligned,
the resource is tainted to indicate state differences so that any future
syscalls on the resource cannot be coupled. When a tainted resource
is accessed by the other execution, LDX will create a copy of
the related resource(s) so that the master and the slave operate on
their own copies, without causing interference. For example, if the
master creates a directory while the slave does not, the directory
is tainted. When the slave tries to access the directory later, it gets
into the de-coupled mode. The slave’s syscall will be performed
on a clone of the parent directory without the created directory.
Similarly, if a file is renamed or removed from a directory in
one execution but not the other, the file is tainted. Any following
acceses to the file lead to de-coupled execution.
Handling Library Calls. Regarding local file outputs, the slave
does not perform any outputs to the disk if they are aligned. Instead,
it skips the calls or buffer the output values for causality inference
if local file outputs are considered sinks. The slave ignores its own
signals and receives its signals from the master. Upon a signal, LDX
allows the slave to execute the signal handler. Handler invocations
are handled similar to indirect calls. Note that the slave may invoke
system calls to cause different signals or events such as creating
threads or processes different from the master. LDX buffers such
different system calls and all the system calls caused by such sig-
nals and events for causality inference. The threads and processes
unique to either execution run in the de-coupled mode.
Handling UI Library Calls. LDX is intended to be transparent to
the user. Hence, it is undesirable to have two (almost identical) user
interfaces. Therefore, LDX allows the master to handle all the UI
library calls as usual. The slave does not have its own interface.
It tries to reuse the UI library call outcomes from the master as
much as possible. Misaligned UI library calls, if they are input
related, return random values to the slave. Misaligned output UI
calls are ignored, or buffered for causality inference if the outputs
are considered sinks.

8. Evaluation
LDX is implemented in LLVM 3.4. We evaluate its runtime per-
formance, the capability of handling misaligned syscalls, and the
effectiveness of causality inference with two applications: infor-
mation leak detection and attack detection. Experiments are on a
machine with Intel i7-4770 3.4GHz CPU (4 cores), 8GB RAM,
and 32-bit LinuxMint 17.
Benchmark Programs. We used 28 programs as shown in Table 1.
They include four different subsets: SPECINT2006 (the first 12);
the network and system related set for information leak detection
(the next 5), the vulnerable program set for attack detection (the
next 6), and the concurrency set (the last 5) for evaluation of
concurrency control. The detailed introduction of these programs
can be found in (tr).



Table 1. Benchmarks and Instrumentation.
Program LOC Instrumented instances Syscalls Max Dyn. Cnt. Mutated inputsInst. Loop Recur. FPTR Sinks Total Cnt. Value Stack∗

400.perlbench 128K 5540 (1.56%) 10233 634 852 4 62 72K 3392 2.91/7 Input perl source file
401.bzip2 5739 43 (0.24%) 360 0 57 4 10 7 4.5 0/1 Input data file
403.gcc 385K 791 (0.07%) 45702 2928 463 3 31 424 96.1 0.11/5 Input C source file
429.mcf 1579 27 (1.32%) 44 1 0 3 11 8 4.3 0/0 Input data file
445.gobmk 157K 235 (0.22%) 7910 74 47 3 15 37 1.7 1.68/4 Input data file
456.hmmer 20K 1762 (3.59%) 1611 11 13 4 25 281 83.2 0/1 Input file and arguments
458.sjeng 10K 26 (0.13%) 978 10 1 4 12 6 2.7 0.07/1 Input data file
462.libquantum 2611 52 (1.08%) 153 11 0 3 17 8 1 0/0 Input arguments
464.h264ref 36K 102 (0.09%) 1994 38 362 4 20 101 26.4 0.26/2 Configuration file
471.omnetpp 26K 121 (0.09%) 6102 46 838 2 22 20 4.5 2.3/6 Configuration file
473.astar 4285 56 (0.47%) 224 0 1 1 18 51 32.8 0.12/1 Configuration file
483.xalancbmk 266K 116 (0.01%) 28381 312 10265 5 25 5 1.5 1.34/9 Input XML file
Firefox 14M 83 (0.01%) 21 0 9 3 26 71 41.2 0.09/1 nsIURI object accesses
lynx 204K 13157 (6.92%) 6799 109 1179 6 132 15M 578K 0.3/6 Cookie, network packet
nginx 287K 4672 (4.27%) 1541 21 850 6 110 518 17.9 3.8/7 Configuration file
tnftp 152K 2452 (6.31%) 1093 17 210 8 125 5878 2623 0.01/1 Input arguments
sysstat 29K 811 (6.94%) 271 0 1 3 47 365 70.7 0.01/1 Returns of lib. calls
gif2png 16K 246 (7.76%) 62 0 0 7 36 76 18.2 0/0 Input image file
mp3info 9252 205 (8.34%) 91 0 0 3 31 88 6.4 0/0 Input mp3 file
prozilla 13K 1116 (8.19%) 285 0 14 5 67 5680 713 0/0 Network packet
yopsweb 1961 282 (5.93%) 97 0 1 4 44 24 3.7 0/1 Network packet
ngircd 66K 1052 (6.70%) 417 24 1031 4 62 2863 1524 0/1 Network packet
gocr 54K 2801 (5.48%) 2581 4 2 3 24 23K 2182 0/1 Input image file
Apache 208K 640 (0.61%) 2700 23 183 6 126 89 43.7 1.56/4 Input HTML file
pbzip2 4527 735 (6.74%) 226 0 3 4 49 1997 578.83 0/0 Input data file
pigz 5766 996 (5.85%) 434 2 15 6 54 9288 432.82 0.99/1 Input data file
axel 2583 342 (8.24%) 162 1 3 6 35 271 73.66 0/0 Network packet
x264 98K 2071 (1.30%) 2218 1 2295 8 49 881 76.58 15K/18K Input video file
* It shows avg/max

Instrumentation Details. Table 1 shows the instrumentation de-
tails. Columns 3-6 describe the numbers of instrumented instruc-
tions (and their percentage), instrumented loops, instrumented re-
cursive functions, and instrumented indirect calls. The next two
columns show the number of sinks and syscalls instrumented. For
programs that have network connections, we use the outgoing net-
working syscalls as sinks. For other programs, we treat the local
file outputs as sinks. The “max cnt.” column shows the maximum
counter value in a program. It denotes the largest number of syscalls
along some static program path. For firefox, we were not able
to instrument the whole program as LLVM failed to generate the
whole program bitcode (supposedly larger than 600MB). We iden-
tified the source files for event processing and the JS engine and
only instrumented those. The resulted object files are then linked
with the rest.

We have a few observations. (1) We have some large and com-
plex programs such as lynx, 403.gcc, and apache. (2) The
percentage of instrumented instructions is low (3.44% on average).
(3) Some programs (e.g., 403.gcc and 400.perlbench) have
a large number of recursive functions and indirect calls. LDX han-
dles all of them.

The last column of Table 1 shows the source mutations. For the
SPEC and network/system programs, we mutate the data files and
the configuration files. For the vulnerable program set, we mutate
the inputs from untrusted sources and detect whether differences
are observed at function return addresses (for buffer overflow at-
tacks) and at parameters of memory management functions (for in-
teger overflow attacks). We perform off-by-one mutations. In order
to avoid invalid mutations, we only mutate data fields, not magic
values or structure related values.
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Figure 6. Normalized overhead of LDX.

8.1 Performance
We study the performance of LDX using SPECINT2006 and pro-
grams that are not interactive and have non-trivial execution time.
For server programs such as nginx and apache, we run the
server and send 10,000 requests, and then measure the throught-
put. For web servers such as apache, we use ApacheBench
to provide the requests. Firefox and lynx are omitted because
they are interactive. Sysstat and mp3info are also excluded as
their running time is trivial (¡0.01sec). We use the reference inputs
for SPEC. We run each program twice. In the first run, we do not
mutate the input so that the master and the slave perfectly align.
The overhead is thus for counter maintenance and syscall outcome
sharing. In the second run, the master and the slave execute with
different inputs. Since they can take different paths and have dif-
ferent syscalls, the overhead includes that for synchronization and
realignment. The results are shown in Fig. 6. The baseline is the



native execution time for the uninstrumented programs with the
original inputs. The geometric means of the overhead are 4.45%
and 4.7%, while the arithmetic means are 5.7% and 6.08%. Ob-
serve that the overhead of LDX is very low. We have also measured
the overhead of LIBDFT (Kemerlis et al. 2012), one of the state-of-
the-art dynamic tainting implementations that works by instruction
level monitoring. Its slow-down over native executions is roughly
6X on average. LDX is also three orders of magnitude faster than
dual execution (Kim et al. 2015).

Another observation is that the input differences and hence
the syscall differences do not cause much additional overhead. As
we will show later, the syscall differences are not trivial. This is
because our alignment scheme allows the misaligned syscalls to
execute separately and concurrently. The “dyn. cnt.” columns in
Table 1 show the runtime characteristics of the counter values.
Observe that the average counter values are much smaller than the
maximum values (column 9). The maximum depth of the stack is
also small, meaning that we rarely encounter nesting indirect calls.

Table 2. Dual Execution Effectiveness.
Program Input 1 / Input 2 # of syscall diffs

LDX TightLip Input 1 Input 2
lynx O / X O / O 1801 (4.13%) 1272 (3.0%)
nginx O / X O / O 202 (13.92%) 181 (13.02%)
tnftp O / X O / O 2443 (19.19%) 381 (15.74%)
sysstat O / X O / O 53 (7.42%) 58 (19.21%)
gcc O / X O / O 38161 (24.99%) 3590 (3.11%)
xalancbmk O / X O / O 102 (2.60%) 91 (2.32%)
gobmk O / X O / O 345 (1.68%) 114 (0.55%)
perlbench O / X O / O 17 (7.08%) 11 (4.58%)
bzip2 O / X O / O 53 (54.63%) 49 (50.51%)
mcf O / X O / O 20 (0.01%) 17 (0.01%)
sjeng O / X O / O 729 (45.45%) 132 (8.22%)
h264ref O / X O / O 141 (31.68%) 12 (2.69%)
hmmer O / - O / - 2 (0.03%) -
libquantum O / - O / - 1 (12.5%) -
omnetpp O / - O / - 0 -
astar O / - O / - 11 (73.33%) -

8.2 Effectiveness of Dual Execution
In this experiment, we answer the question why we need to align
the master and the slave. The experiment is in the context of de-
tecting information leak. For each program, we construct two input
mutations with the following goal: one input mutation leads to sink
differences (and hence leakage) and the other does not. Both mu-
tations may trigger syscall differences. We also compare LDX with
TIGHTLIP, which does not align executions and often has to termi-
nate at syscall differences, reporting leakage. Table 2 presents the
results. Symbol ‘O’ denotes that leakage is reported and ‘X’ denotes
normal termination without any warning. The last two columns
show the syscall differences before the sink difference and their
percentage over the total number of dynamic syscalls. We have the
following observations. (1) LDX correctly identifies that one input
mutation causes leakage while the other one does not (except for
the last four cases), whereas TIGHTLIP reports leakage for both in-
put mutations. Note that a lot of syscall differences are not output
related. (2) The syscall differences caused by input mutations are
not trivial and are sometimes substantial. LDX can properly handle
all such differences. (3) For numerical computation oriented pro-
grams (i.e., the last four in the table), we were not able to construct
the input mutation that does not cause leakage as any input muta-
tion always leads to sink differences.
8.3 Effectiveness of Causality Inference
Comparison with Dynamic Tainting. We first compare LDX with
TAINTGRIND (Khoo 2013) and LIBDFT (Kemerlis et al. 2012) 1.

1 We have tried DECAF (formerly TEMU), but encountered build problems.

Table 3. Comparison with Dynamic Tainting

Program # of tainted sinks Total #
LDX TAINTGRIND LIBDFT of sinks

gcc 3 0 0 146
perlbench 1 0 0 5
bzip2 7 0 0 20
mcf 12 4 3 36
gobmk 68 39 39 84
hmmer 17 4 4 29
sjeng 83 8 6 112
libquantum 4 2 2 7
h264ref 28 3 3 37
omnetpp 24 4 2 52
astar 16 3 3 53
xalancbmk 45 21 0 419
lynx 5 3 1 8
nginx 10 5 0 22
tnftp 5 2 0 32
sysstat 6 3 0 12
gif2png 1 1 1 7
mp3info 1 1 1 8
prozilla 1 1 1 100799
yopsweb 1 1 0 41
ngircd 1 1 1 597
gocr 1 1 1 5
total 340 107 68 -

We compare the number of tainted sinks for all the benchmarks.
For the set of programs with vulnerabilities, their sinks include
function returns and memory management library calls. The results
are shown in Table 3. The three columns in the middle report the
number of tainted sinks. The last column shows the total number of
sinks encountered during execution.

We have the following observations. (1) The tainted sinks re-
ported by TAINTGRIND and LIBDFT and are only 31.47% and 20%
of those reported by LDX. This is because the other two are based
on tracking data dependences. As we discussed in Section 2, data
dependences are essentially strong causalities. Hence, LDX can de-
tect what the other two detect. In addition, LDX can detect strong
causalities induced by control dependences. We have validated that
all the sinks reported by LDX have one-to-one mappings with the
tainted inputs (i.e., no false positives). (2) The tainted sinks re-
ported by TAINTGRIND are a superset of those reported by LIBDFT.
Further inspection shows that LIBDFT does not correctly model
taint propagation for some library calls. This indeed illustrates a
practical challenge for instruction tracking based causality infer-
ence, which is to correctly model taint behavior for the large num-
ber of instructions and libraries. The last six rows show the results
for the vulnerable program set. Observe that LDX can detect the
attacks by correctly inferring the causality between the untrusted
inputs and the critical execution points.
Effectiveness for Concurrent Programs. LDX supports real con-
currency by sharing the thread schedule as much as possible be-
tween the two executions (Section 7). However, low level races
may introduce non-deterministic state differences, leading to false
positives in causality inference. In this experiment, we collect 5
concurrent programs. For each program, we mutate the input and
dual execute it 100 times. We used the standard inputs provided
with the programs. As shown in column 3 of Table 4, the num-
ber of tainted sinks rarely changes, whereas syscall differences do
change (column 2) due to low level races. However, the syscall dif-
ference changes are not substantial because LDX was able to en-
force the same schedule for most cases. This supports the effec-
tiveness of the concurrency control of LDX (for the programs we
consider). The tainted sink changes for x264 are caused by the ex-



ecution statistics report (e.g., the bits processed per sec.). Although
LDX forces the master and the slave to share the same schedule and
the same timestamps, the number of bits processed per unit time is
non-deterministic across tests and beyond control. The tainted sink
changes for axel are because the program makes Internet connec-
tions in each run, which are non-deterministic.

Table 4. Effectiveness of concurrent programs.

Program # of syscall diffs # of tainted sinks
(Min/Max/Std. Dev.) (Min/Max/Std. Dev.)

Apache 114 / 123 / 1.66 39 / 39 / 0
pbzip2 288 / 332 / 11.59 8 / 8 / 0
pigz 490 / 546 / 18.50 14/ 14 / 0
axel 1173 / 1252 / 25.39 813 / 834 / 6.5
x264 854 / 1211 / 89.38 350 / 353 / 0.3

Input Mutation. LDX performs off-by-one mutation on sources,
which must detect any strong CCs as proved in (tr). However in
some rare cases it may also detect weak causalities. We conduct an
experiment to study different mutation strategies. We observe that
other strategies do not supercede off-by-one. Details can be found
in (tr).

8.4 Case Studies
403.gcc. In this study, we use the source code of nginx as in-
put. Fig. 7 shows part of input code on the left. We specify the
configuration NGX HAVE POLL as the source. The master has
NGX HAVE POLL defined but the slave does not. As such, the
master includes poll.h while the slave does not. This corre-
sponds to 72, 82, and 102 (Fig. 7) occurring in the master but not
in the slave. Later on, both executions re-align at 2161 and run in
the coupled mode. In fact, 216 and 217 are in an output loop that
emits the preprocessed code. Due to the earlier differences, the pre-
processed code is different. The differences manifest as parameter
differences during executions of 216i, 217i in the master and 216 j,
217 j in the slave. The leak is reported. Note that the causality is
strong as one can infer from the preprocessed code the value of
NGX HAVE POLL.

Other tools such as LIBDFT and TAINTGRIND are not able to
detect the causality as it is induced by control dependences, Fig. 7
shows the relevant gcc code on the right. At line 472, gcc reads
the value of NGX HAVE POLL and stores it. Later, when the pre-
processor reaches the “#if NGX HAVE POLL” statement inside
do if(), it reads the stored value and compares it with 0. The out-
come is stored to skip at line 1329. Then, the variable is copied to
pfile->state.skipping (line 1331), which later determines
if the code block guarded by the if statement should be skipped or
not. Note that although there are data dependences 472→ 1329 and
1329→ 1331, the connection between pfile->node->value
and skip at line 1329 is control dependence, which breaks the
taint propagation in LIBDFT and TAINTGRIND.
Firefox. In this case, we detect information leak in a firefox
extension ShowIP 1.2rc5 that displays the IP of current page.
It sends the current url to a remote server. LDX instruments the
event handling component and part of the JS engine in firefox
to align JS code block executions that correspond to page loading
and user event handling. It successfully detects the leak whereas
TAINTGRIND and LIBDFT fail because the leak goes through con-
trol dependences. Details can be found in (tr).

9. Related Work
Dual Execution. LDX is closely related to dual execution (Kim
et al. 2015). The main differences are the following. (1) LDX is very
lightweight (6.08% overhead) whereas (Kim et al. 2015) relies on
the expensive execution indexing (Xin et al. 2008), causing 3 orders

of magnitude slowdown. (2) LDX allows threads to execute concur-
rently whereas (Kim et al. 2015) does not. (3) The applications are
different. The low overhead of LDX makes it a plausible causality
inference engine in practice. (4) Their dual execution models are
different as explained in Section 4.2. TIGHTLIP (Yumerefendi et al.
2007) also uses the master-and-slave execution model to detect in-
foramtion leak. It uses a window to tolerate syscall differences. The
simple approach can hardly handle nontrivial differences.
Execution Replication and Replay. Execution replication has
been widely studied (Birman 1985; Chereque et al. 1992; Tulley
and Shrivastava 1990; Black et al. 1998; Castro et al. 2003; Berger
and Zorn 2006; Vandiver et al. 2007; Chun et al. 2008; Hosek
and Cadar 2015). The premise is similar to n-version program-
ming (Chen and Avizienis 1995), which runs different implemen-
tations of the same service specification in parallel. Then, voting
is used to produce a common result tolerating occasional faults.
There are many security applications (Cox et al. 2006; Bruschi
et al. 2007; Lvin et al. 2008; Salamat 2009; McDermott et al. 1997;
Yumerefendi et al. 2007) of execution replication by detecting dif-
ferences among replicas. There are also works in execution re-
play (Hower and Hill 2008; Montesinos et al. 2009; Narayanasamy
et al. 2006; Sorrentino et al. 2010; Park et al. 2009; Veeraragha-
van et al. 2012; Chandra et al. 2011; Goel et al. 2005; Kim et al.
2010). In contrast, LDX align different paths during execution.
RAIL (Chen et al. 2014) re-runs applications with previous inputs
to identify information disclosure after a vulnerability is fixed. To
handle state divergence between the original and replay executions,
it requires developers to annotate the program. DORA (Viennot
et al. 2013) is a replay system that records execution beforehand
to replay with a modified version of the application. Instead, LDX
runs two executions of an application with input perturbation to in-
fer causality at real-time. LDX focuses on aligning two executions
accurately using a counter algorithm, while (Viennot et al. 2013)
relies on heuristics to tolerate non-determinism.
Dynamic Taint Tracking. Most dynamic tainting techniques (Song
et al. 2008; Kemerlis et al. 2012; Clause et al. 2007; Bosman et al.
2011; Qin et al. 2006; Attariyan and Flinn 2010) work by tracking
instruction execution and hence are expensive. They have difficulty
handling control dependences (McCamant and Ernst 2008). Some
have limited support by detecting patterns (Kang et al. 2011) or
handling special dependences (Bao et al. 2010). In particular, (At-
tariyan and Flinn 2010) identifies and handles a subset of important
control dependencies using several heuristics. LDX provides a so-
lution to such problems by detecting strong CC based on the defini-
tion of causality instead of program dependencies. Approaches for
quantifying information flow (McCamant and Ernst 2008; Heusser
and Malacaria 2010; Backes et al. 2009; Mardziel et al. 2014) aim
to precisely ascertain figures like the number of sensitive bits of in-
formation that an attacker may infer, the number of attack attempts
required, or strategies for identifying secrets. Hardware based solu-
tions (Tiwari et al. 2009b,a; Li et al. 2011; Tiwari et al. 2011) have
been proposed to speed up or improve accuracy of taint analysis.
Secure Multiple Execution (SME). SME (Devriese and Piessens
2010; Austin and Flanagan 2012; Capizzi et al. 2008) splits an
execution into multiple ones for different security levels: the low
execution does the public outputs and the high execution does the
confidential outputs. SME can enforce the non-interference policy.
It blocks or terminates when the two executions diverge, which
is intended for non-interference. In comparison, LDX focuses on
causality inference and tolerates execution divergence.
Statistical Fault Localization (SFL). Recent approaches in SFL (Bai
et al. 2015; Baah et al. 2010; Shu et al. 2013) use causal inference
methodology in order to mitigate biases such as confoundings. In
particular, suspiciousness scores that guide to locate faults can be
distorted by such biases, producing inaccurate results. They run a



File 1: ngx_auto_config.h

1   #ifndef NGX_HAVE_POLL

2   #define NGX_HAVE_POLL 1

3   #endif

File 2: ngx_auto_config.h

4   #if (NGX_HAVE_POLL)

5   #include <poll.h>

6   #endif

7   #if (__FreeBSD__) && ✁

8   #include <sys/param.h>

     ...

Layout of output file

Common parts

Parts depend on poll.h and 

NGX_HAVE_POLL

Common parts

Input files to gcc

Cnt  Master

71  fd1 = open( file1 );

81  fxstat( fd1, ✁ );

101  read( fd1, ✁ );

72  fd2 = open( file2 );

82  fxstat( fd2, ✁ );

102  read( fd2, ✁ );

2161  fprintf( ✁ );

2171  _IO_putc( ✁ );

Cnt  Slave

71  fd1 = open( file1 );

81  fxstat( fd1, ✁ );

101  read( fd1, ✁ );

2161  fprintf( ✁ );

2171  _IO_putc( ✁ );

216i  fprintf( ✁ );

 _IO_putc( ✁ );

216j  fprintf( ✁ );

217j  _IO_putc( ✁ );

2181  fputs( ✁ );

2311  fprintf( ✁ );

2181  fputs( ✁ );

2311  fprintf( ✁ );

✁ ✁ 

✁ ✁ 

Data flow 

detected

File 3: cpplib.c

465      do_define (pfile) {

                ✁ 

472          pfile node.value = ( � ); // define a value

                ...

476      }

            ✁

1323    do_if (pfile) {

               ...

1326       int skip = 1;

               ...

1329          skip = ( pfile node.value == 0 );

1331       pfile state.skipping = skip;

1332    }

gcc preprocessor sourceLDX executions

Data flow

node.value ✂ Input Explicit

skip ✂ (node.value == 0); Implicit

472

1329

state.skipping ✂  skip; Explicit1331

Data flow 

detected

217i

Figure 7. Case study on 403.gcc. Input files on the left; relevant gcc code on the right; dual execution in the middle.

program over a set of inputs repeatedly to identify the causal ef-
fect of a statement on program failures. Such causal effect is then
used to improve the performance and accuracy of SFL by reducing
confounding bias. Instead, LDX infers causality by running multi-
ple executions concurrently while tolerating execution divergence
caused by the input purturbation.

10. Conclusion
We present LDX, a causality inference engine by lightweight dual
execution. It features a novel numbering scheme that allows LDX to
align executions. LDX can effectively detect information leak and
security attacks. It has much better accuracy than existing systems.
Its overhead is only 6.08% when executing both the master and
the slave concurrently on separate CPUs. This is much lower than
systems that work by instruction level tracing although they do not
require the additional CPU and memory.
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