
CAFE: A Virtualization-Based Approach to Protecting
Sensitive Cloud Application Logic Confidentiality

Chung Hwan Kim†, Sungjin Park‡¶, Junghwan Rhee§,
Jong-Jin Won‡, Taisook Han¶, Dongyan Xu†

†Purdue University, ‡The Attached Institute of ETRI, §NEC Laboratories America, ¶KAIST
†{chungkim,dxu}@cs.purdue.edu, ‡{taiji,wonjj}@ensec.re.kr,

§rhee@nec-labs.com, ¶taisook@kaist.ac.kr

ABSTRACT
Cloud application marketplaces of modern cloud infrastruc-
tures offer a new software deployment model, integrated
with the cloud environment in its configuration and policies.
However, similar to traditional software distribution which
has been suffering from software piracy and reverse engi-
neering, cloud marketplaces face the same challenges that
can deter the success of the evolving ecosystem of cloud soft-
ware. We present a novel system named CAFE for cloud in-
frastructures where sensitive software logic can be executed
with high secrecy protected from any piracy or reverse en-
gineering attempts in a virtual machine even when its op-
erating system kernel is compromised. The key mechanism
is the end-to-end framework for the execution of applica-
tions, which consists of the secure encryption and distri-
bution of confidential application binary files, and the run-
time techniques to load, decrypt, and protect the program
logic by isolating them from tenant virtual machines based
on hypervisor-level techniques. We evaluate applications in
several software categories which are commonly offered in
cloud marketplaces showing that strong confidential execu-
tion can be provided with only marginal changes (around
100-220 lines of code) and minimal performance overhead.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

Keywords
Cloud Computing Marketplace, Secure Execution Environ-
ment, Code Confidentiality Protection

1. INTRODUCTION
Cloud computing infrastructures are becoming increas-

ingly popular and mature. Gartner estimated the size of
public cloud service market to grow to $131 billion by 2017
from $111 billion in 2012 [20]. As the technologies for cloud

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ASIA CCS ’15, April 14 - 17, 2015, Singapore, Singapore
Copyright 2015 ACM 978-1-4503-3245-3/15/04 ...$15.00.
http://dx.doi.org/10.1145/2714576.2714594.

infrastructures have become mature, there is an increasing
demand for software services especially in Infrastructure-as-
a-Service (IaaS) clouds, where computers (physical or vir-
tual) are provided to tenants with full flexibility. It is, how-
ever, difficult for cloud providers to fulfill all of the diverse
needs of software that are continuously increasing. Conse-
quently, major cloud computing services (such as Amazon
Web Services (AWS), IBM Cloud, and Microsoft Azure) op-
erate marketplaces where application developers can upload
and retail software, and cloud users can purchase the soft-
ware that they need.

The ecosystem of cloud marketplaces and services in gen-
eral involves three parties: cloud users, application develop-
ers, and cloud providers. Cloud users seek and purchase the
cloud applications suitable to their needs in terms of func-
tionality, price, the easiness of management, etc. Compared
to traditional software that requires installation and man-
agement specific to each user (e.g., desktop applications),
cloud applications are optimized to run on a cloud platform
utilizing various services delivered from the cloud provider.

Cloud application developers submit their packages to the
marketplace after placing program binaries and dependent
components in a disk image. Cloud users search for the soft-
ware that meets their needs in the marketplace and purchase
them. When the cloud users create a virtual machine (VM),
they are prompted with a list of the disk images that include
the purchased applications. The selected disk image is then
written to the virtual disk of the VM, so the application can
be used by the cloud users. The applications can be eas-
ily deployed using VM images without tedious installation
procedures that traditional applications require.

While this new form of distribution simplifies the deploy-
ment of software, one of the key problems in software dis-
tribution still remains in cloud marketplaces: the deployed
software faces the risk of piracy and reverse engineering,
similar to what conventionally distributed software is fac-
ing. Because cloud users typically own an entire VM with
all privileged permissions given, technically they have no re-
striction on the inspection and replication of the applications
installed in the VM.

Existing approaches [16, 15, 10] leveraging virtualization-
based memory protection protect partial code confidential-
ity or do not address necessary issues in a practical cloud
marketplace setting where code confidentiality must be fully
protected throughout the entire life span of software after its
submission.

As a new alternative, we propose a system named Cloud
Application Function Enclaving (CAFE) to address these

651

challenges. CAFE provides a cloud application execution
environment with code confidentiality so that it can protect
sensitive cloud application logic from any piracy or reverse
engineering attempts performed by cloud users, even in the
case that the guest OS of the cloud user VM is compromised.

CAFE works in the following way. First, developers create
software or port existing software in two groups of program
binary files: a group that can be open to cloud users and
the other that contains confidential logic that needs to be
protected. We name the binary files of the former public
binaries and the latter secret binaries. The public binaries
are submitted in the form of a VM image that also contains
other files related to the application (e.g., configuration files)
and the VM environment but does not contain the secret bi-
naries. A cloud user may be able to copy the files or extract
the in-memory images of the public binaries as in the exist-
ing cloud application distribution.

In contrast, the secret binaries are submitted in the form
of separate files and are automatically managed by the cloud
providers with protection. When the application is run in
the user VM, the secret binaries are fetched on demand at
runtime for execution via a secure deployment protocol by
the hypervisor. The hypervisor securely loads the secret
binaries through a cryptographically protected channel after
the authentication of the VM. The end-to-end framework
ensures that the sensitive logic is completely isolated from
cloud users at all times. Throughout the whole lifetime of
the VM, the binary and runtime states of the sensitive logic
stay confidential and are strictly protected from the entire
guest OS in the VM by the hypervisor.

This paper is structured as follows: Section 2 presents the
adversary model. The design is presented in Section 3. The
evaluation of CAFE is presented in Section 4. Related work
is discussed in Section 5, and Section 6 concludes this paper.

2. ADVERSARY MODEL
We present our adversary model based on a reasonable

cloud environment in modern systems. The main goal of
an adversary would be to obtain the content (in any form)
of program binaries that are protected by our system. We
note that the guest OSes running in cloud user VMs are
untrusted, which means that an attacker can execute arbi-
trary executable code at any privilege. That is, an attacker
can compromise all software including the kernel, drivers,
libraries, and applications in the user and kernel mode run-
ning in the user VM. Specifically, an attacker can attempt
to obtain and reverse-engineer the binary codes containing
sensitive application logic using the following methods.

Access to file system: As described in Section 1, appli-
cations are distributed to user VMs as a set of files written
to the VM’s disk image. The most obvious way to obtain
the program is to access the files inside the file system us-
ing file I/O. Based on our adversary model, the attacker has
privilege to mount and access any file system. Therefore,
once the program is stored in a file system in a plain form,
he should be able to obtain it.

Access to runtime process memory: A more elevated
attack to obtain the program binary is to capture the run-
time states of the program. We consider that the attacker
can access the memory of application processes. For in-
stance, using a debugging tool or by injecting malicious code
into its memory the attacker can obtain the binary code from
the runtime memory of the target processes.

Application
Developer

Secret
Binary
Server

VM Image
Server

Public
Binary

Secret
Binary

Hypervisor
Authentication

Deployment of
Secret Binary

Deployment of
Public Binary Isolated Execution

Request for
Secret Binary

User VM

Hypervisor

Cloud Provider DomainMarketplace

Public
Binary

Secret
Binary

Submission
of Application

Figure 1: Overview of CAFE.

Access to network: Another attack method to obtain
the binary would be using the network layer. We assume
that the attacker can eavesdrop and modify network traffic
between cloud provider servers and cloud user VMs. There-
fore, if a binary file is transferred in a plain form, the attacker
may be able to obtain it from network packets.

3. DESIGN
To support confidential execution of various kinds of ap-

plications in a practical cloud marketplace setting, the con-
fidentiality of sensitive logic should be systematically main-
tained in the entire work-flow from the development of pro-
grams to the delivery to the cloud users and their execu-
tion. CAFE achieves this goal using an end-to-end frame-
work for the confidential execution of cloud applications by
using hypervisor-level techniques. This is one of the key
novelties of this paper compared to previous work which
only focus on a local view of protection [11, 13, 14, 10, 16,
15]. The overview of the CAFE architecture is illustrated in
Figure 1.

Application development and submission: As men-
tioned in Section 1, cloud application developers build their
program code into two separate groups to be supported by
CAFE: the public binary and secret binary groups. In our
model, application developers have the responsibility to de-
termine which part of application logic needs confidentiality.
The application is annotated to use the APIs of CAFE, a
set of hypercalls that request the hypervisor to load, unload,
and execute a secret binary. The public binaries are pack-
aged in a VM image along with other binary files on which
the application depends. When the application is submitted
to the marketplace, the VM image that contains the public
binaries, and the secret binary files are submitted separately.
Upon submission, the public VM image is transferred to the
VM image server that stores and manages VM images as in
existing cloud infrastructures. In contrast, the secret binary
files are stored in the secret binary server (SBS), a secure
storage for sensitive application logic. Both the VM image
server and the SBS are a part of the cloud provider domain
linked to user VMs with a dedicated high bandwidth con-
nection.

Purchase and deployment of applications: Cloud
users purchase applications from the cloud marketplace and
then the cloud provider lets the cloud user create a VM
using the corresponding VM image that includes the public
binaries of the purchased application. The secret binaries,
on the other hand, are not delivered this time. Instead, they
are delivered to the hypervisor through a secure channel
when the binaries are requested for use.

652

Cloud

Application
Hypervisor

Secret

Binary

Server

EncryptedSecretBinary

Verify(CertAIK)

Attest(SignedDigest)

Load(SecretBinary)

Nonce

Establish Secure Channel

GenRand(Nonce)

SignedDigest

EncK(SecretBinary)

DecK(EncryptedSecretBinary)

LoadResult

AttestResult

VmID, SecretBinaryID

SecretBinaryAddress

SecretBinaryID

CheckLicense
(VmID, SecretBinaryID)

Insecure Channel
Secure Channel

Legend:

(PCR17, Nonce, Locality)
TPM_Quote2

Figure 2: Secret binary deployment protocol.

Execution of an application: When the cloud user
runs the purchased application in the VM, the application
requests the hypervisor to load the secret binaries via a hy-
percall. The hypervisor, in turn, communicates with the
SBS to prove the authenticity of itself and the user’s license
for the application. Specifically, the hypervisor and the SBS
exchange the session key to establish a secure channel, and
the SBS attests the integrity of the hypervisor leveraging
the Trusted Platform Module (TPM) to ensure the genuine-
ness of hypervisor. After that, the SBS transfers the secret
binaries encrypted using the session key shared with the hy-
pervisor. Upon receiving them, the hypervisor decrypts and
loads the secret binaries in a secure runtime environment
which is completely isolated from the user VM.

Designation of sensitive code: Security sensitive code
has the key logic of an application requiring a high degree
of protection. Since this is typically a small portion of the
entire application code, the cost to achieve confidentiality is
generally amortized in the overall performance of programs.
Our evaluation in Section 4 will confirm that this high se-
crecy property can be achieved with minimal overhead.

3.1 Secure Authentication and Deployment of
Secret Binary

Figure 2 depicts our deployment protocol of secret bina-
ries, designed to defend against attacks.

Secure channel establishment: When an application
requests a secret binary from the hypervisor, a secure chan-
nel is established between the hypervisor and the SBS for
tamper-resistant communication. The details of the secure
channel establishment are as follows.

Among several candidate key exchange algorithms (i.e.,
Diffie-Hellan and RSA), we choose a variant of Transport
Layer Security (TLS) [3] as our handshake protocol and RSA
as our key exchange algorithm. TLS allows two parties of
the secure channel (i.e., the SBS and the hypervisor) to au-
thenticate each other with the other’s certificate. The certifi-
cate authority (CA) guarantees the certificates of both sides;
thereby, they can securely authenticate each other. Unlike
the standard handshake protocol of TLS, CAFE leverages
the TPM to generate an RSA key pair of the hypervisor

and a pre-secret which is used to derive shared secrets such
as an encryption key, an initial vector (IV), and a HMAC
key. With the use of the TPM, we provide a level of security
higher than the standard TLS.

CAFE generates an RSA key pair inside the TPM and
wraps it with the TPM’s Storage Root Key (SRK). The
SRK is a unique, non-migratable 2048-bit RSA key and is
guaranteed to always be present in the TPM. Due to these
features, a key wrapped by the SRK can only be used in the
machine on which the same TPM is placed. Therefore, even
in the case that the attacker acquires a wrapped RSA key
pair, he cannot unwrap it without the same TPM used to
generate and wrap it.

Remote attestation of the hypervisor: After estab-
lishing a secure channel, the SBS generates a nonce (Nonce)
and sends it to the hypervisor. The nonce is used as a pa-
rameter of the TPM_Quote2 operation, a TPM operation used
for integrity measurement [12]. The hypervisor performs
TPM_Quote2 and transfers the resulted digest (SignedDigest)
to the SBS which verifies the integrity of the hypervisor by
matching the received digest with the certificate (CertAIK)
from the private CA.

Verification of application licenses: Upon successful
attestation of the hypervisor, the cloud application sends the
VM ID and the secret binary ID to the SBS requesting the
transmission of the encrypted secret binary image. A VM
ID is the unique identifier of a VM managed internally by
the cloud infrastructure. A secret binary ID is the unique
identifier of a secret binary determined upon the submission
of the application to the cloud infrastructure, and it is known
to both the SBS and the application that uses the secret
binary. The cloud infrastructure maintains the association
between a VM ID and a user, and what licenses the user
has for billing purposes. Based on this information, the SBS
determines whether the user associated with the VM ID has
a valid license for the application of the secret binary ID. If
the license is valid, the SBS proceeds to the transmission,
otherwise it refuses the request.

Transmission of secret binaries: The SBS encrypts a
secret binary with the encryption key and the IV using the
HMAC message authentication of the encrypted secret bi-
naries with the shared HMAC key. The SBS and the hyper-
visor establish a new secure channel with a different session
key (K in Figure 2) at every request of a secret binary, and
the secret binary is encrypted using the session key. There-
fore, the deployment protocol can resist brute-force attacks
on the secure channel and the secret binary encryption.

Loading of secret binaries: After the transmission,
the secret binaries remain encrypted in the user VM’s disk
throughout the all steps of the secret binary loading and
execution. The hypervisor decrypts and loads secret binaries
in the confidential execution environment that is isolated
from the user VM. The integrity of the secret binaries is
checked using the shared HMAC key with the SBS before
the loading. Finally, the result of the loading is sent back
to the SBS, and the application receives the address of the
secret binary.

3.2 Runtime Protection of Secret Binary
In this section, we describe how CAFE protects secret

binaries on disk and memory.
Protection of the secret binary on disk: The se-

cret binary file on disk is cryptographically protected by an

653

encryption algorithm. Among various available encryption
algorithms, we choose AES-256 in the CBC mode to en-
crypt and decrypt secret binaries. The SBS performs the
encryption of the binary on demand when a request for a
binary is received from an application. The session key ob-
tained from the session channel establishment (Section 3.1)
is used for encryption to prevent brute-force attempts that
target the transmission of the secret binary. The application
uses an API provided by CAFE to load the secret binary.
The secret binary file remains encrypted until it is verified
and loaded into an isolated memory maintained by the hy-
pervisor. Therefore, any attempts to reverse-engineer the
decrypted content of the binary file on disk fail.

Protection of the secret binary in memory: Once
the secret binary is loaded into memory, it is protected
by the hardware-assisted memory virtualization technology.
Several types of hardware-support for memory virtualiza-
tion are readily available in modern commodity processors
such as Intel Extended Page Tables and AMD Rapid Vir-
tualization Indexing. CAFE uses this technique to load the
secret binary into the memory and create a secure execution
environment isolated from the user VM.

Specifically before the secret binary is loaded, there is one
set of nested page tables (NPTs) that is maintained by the
hypervisor to map all guest physical addresses to machine
physical addresses. When the binary is loaded, the NPTs
are split into two exclusive sets: the public NPTs and the
secret NPTs. The public NPTs contain the page entries for
all memory blocks used by the user VM except those used by
the secret binary, whereas the secret NPTs contain the page
entries for the secret binary only. The hypervisor ensures
that the user VM uses the public NPTs while the public
binary is running. Thus, any memory access to the secret
binary during the execution of the public binary is blocked
by the MMU. On the other hand, when the application ex-
ecutes the secret binary the hypervisor switches the public
NPTs with the secret NPTs which enforce the exclusive ac-
cess by the secret binary providing strong isolation between
the secret binary and the user VM.

Previous work leveraging memory virtualization primar-
ily focus on the runtime isolation of the program binary in
memory [16, 15]. Compared to the existing work, CAFE en-
sures that the sensitive application logic is inaccessible from
the user VM at any time.

3.3 Secure Hypervisor Loading of Secret Bi-
nary

A program’s execution is performed through low level op-
erations such as allocation of system resources, program
loading and linking, and the bootstrapping of the program.
These operations are typically performed by the high priv-
ileged software layer in the OS or system level libraries.
In our setting, the user VM including its OS is untrusted.
Therefore, CAFE has its own mechanism for such operations
to ensure the confidentiality of the program throughout its
execution. In this section, we describe how this execution
environment is established.

Loading of an executable binary: Program code typi-
cally consists of multiple binary codes: the main executable
and a number of shared libraries linked to the main exe-
cutable. When a binary is loaded, the location in the vir-
tual memory of the process and the symbols (e.g., exported
global variables and functions) are determined dynamically

by the loader. Thus, any instructions of the program that
refer to the symbols must be updated with the addresses de-
termined at runtime and this process is known as relocation.
When the executable file is built, the compiler constructs a
relocation table that includes the information necessary for
the relocation: the locations of the instruction operands to
be patched, the location of the symbols in the binary, and
how the loader is expected to perform relocation (i.e., the
relocation type). This table is used by the loader when the
executable file is loaded or when the relocation is necessary
in a lazy manner depending on the configuration.

Loading by the hypervisor: The application requests
the hypervisor to load the secret binary using the APIs pro-
vided CAFE. Then the hypervisor decrypts the secret bi-
nary into the memory isolated from the user VM. Since the
OS loader is untrusted, we use the hypervisor to perform
the loading, the decryption, and the relocation of the secret
binary. When the binary is loaded into the isolated mem-
ory, the hypervisor performs the decryption. After that it
performs the relocation of the binary. When the applica-
tion requests CAFE to load a secret binary, it locates the
relocation section of the secret binary, and the encrypted
relocation information is sent to the hypervisor via a hyper-
call. When the hypervisor receives the hypercall, it decrypts
the relocation information. If decryption is successful, then
it performs relocation on all sections of the secret binary.

4. EVALUATION
CAFE consists of three major components: the hypervi-

sor, the secret binary server (SBS), and the user level APIs
that the cloud applications use to send requests to the hy-
pervisor via hypercall.

The hypervisor is implemented on top of eXtensible and
Modular Hypervisor Framework (XMHF) [22] which is used
in several related work [22, 15, 23]. We implement the au-
thentication/verification layer that interacts with the SBS
and the loading and unloading mechanism for secret bina-
ries that involve the hypervisor level relocation.

We use two separate machines for our experiments for the
hypervisor and the SBS. Both machines are equipped with
an AMD Turion II P520 2.30GHz processor, 4GB RAM, and
a 256GB SSD, and run the 32-bit version of Ubuntu 12.04.
The virtual machines and the SBS are connected to a 1Gb/s
network.

4.1 Use Cases
We demonstrate that various types of application code

can be protected by CAFE using six applications grouped
into three distinct categories (as listed in Table 1). The
applications are selected based on their popularity in real-
world usages and cloud marketplaces. We use the source
code of these applications to slice out example sensitive code
that is compiled into secret binaries. The chosen program
logic may not be “confidential” in real world, but they are
selected to simulate the developers’ efforts to take the benefit
of confidential execution of CAFE. Our experiment shows
the applicability of CAFE to various types of application
software to verify that similar program logic can be executed
confidentially.

Table 1 shows the details of the applications that run
on CAFE with confidential execution. The first column
presents three categories of program logic: decision-making
logic, cryptographic operations, and data processing work-

654

Application Program Binary Code info Runtime info
Category Name Name Protected code |L| |F | |C| |D| |R| Overhead

Decision- NGINX nginx-access Access module 169 1 4 44 19 1.90%
making logic Sendmail sendmail-filter Mail Filter (Milter) 106 1 52 52 559 2.81%

Cryptographic Google Authenticator gauth-otp One-time passcode generation 102 1 8 44 16 2.52%
operations EncFS encfs-aria ARIA block encryption/decryption 220 3 24 48 346 900.13%

Data processing MapReduce mapreduce-kmeans k-means clustering 173 1 12 44 380 8.04%
workload Hadoop hadoop-wcount Word counting 180 2 4 44 32 5.82%

Table 1: Use cases of confidential execution of secret cloud application binaries.

load. The following columns show the program information
(program name, binary name), the description of the pro-
tected program logic (Protected Code), the number of lines
of code added as porting attempts (|L|), the number of se-
cret functions (|F |) and runtime characteristics of the secret
binaries (|C|: code section size, |D|: data section size, |R|:
relocation table size, overhead). The characteristics of the
applications in the three categories are as follows.

Decision-making logic: Application code in this cate-
gory determines the behaviors of the application. For exam-
ple, the access module, nginx-access, of NGINX decides
whether the web server allows or denies an incoming web
request based on the configuration. Another application,
the mail filter module, sendmail-filter, of the sendmail
server analyzes the content of an outgoing mail and decides
whether to send out the mail or not. Specifically the ported
code examines the header of an input mail and finds whether
the sender’s address is illegal using a regular expression.

Cryptographic operations: If the OS is compromised,
cryptographic operations are no longer safe because OS can
look into their runtime states which can potentially be used
to infer their operations. We show several use cases of well
known cloud applications. We port the Google Authen-
ticator Pluggable Authentication Module (PAM), gauth-

otp, that protects the passcode generating code, and EncFS
which is a file system with the block-level encryption. We
selected a EncFS, encfs-aria, that uses the ARIA cipher
[4]. The encryption and decryption algorithms along with
the key initialization function are protected.

Data processing workload: Some security sensitive
code may involve intensive computation. We use two parallel
data processing algorithms running on a parallel computing
framework to show the support of this category. mapreduce-
kmeans is an implementation of k-means clustering based
on Phoenix [19], a shared-memory and C language based
MapReduce framework. The protected code partitions n-
dimensional integer points into a number of clusters. Lastly,
hadoop-wcount is an algorithm based on Apache Hadoop
which analyzes an input text file and outputs the total num-
ber of distinct English words.

The number of lines of code added to the applications for
conversion depends on the amount of the confidential code of
the application. In our use cases, it ranges 100-220 (average
1.18%). Compared to the total LoC of the entire program,
it is a small portion of the program.

4.2 Performance of Confidential Execution of
Cloud Applications

We present the overhead of the applications for confiden-
tial execution in CAFE (Table 1). We calculate the over-
head by comparing the performance of the original version
with the modified version with confidential protection. In
general, one major source of overhead is VM-level context
switches that occur while the secret code is running and dur-

ing marshaling for input and output data. Specifically, the
overhead highly depends on the frequency of secret function
calls and the size of the marshaled data. The complexity of
the protected logic has a minor impact on the overhead.

We have evaluated several server programs by setting up
the client for benchmarking workload in a separate physical
machine in a local network. To measure the overhead of
nginx-access, we have the Apache Benchmark issue 10K
transactions per trial. Diverse content of each page is sim-
ulated with a binary blob filled with randomly-generated
bytes. We experimented the average size of the web page in
top 100 web sites as of July, 2014 [1]. The overhead com-
paring the number of requests per second is 1.9%.

We use the Mstone SMTP performance testing tool [2]
to measure the overhead of sendmail-filter. The test is
run for 30 seconds with one client which repeatedly sends an
email with the default Mstone email content. The evaluation
shows that the overhead is only 2.81%.

To evaluate gauth-otp case, the SSH client repeatedly
logins to and logouts from the server for 30 seconds using
one-time passcodes generated by secret binary. The over-
head for confidential execution is as trivial as 2.52%.

The overhead of encfs-aria is measured using the IOzone
Filesystem Benchmark [7]. We use the average through-
put (KB/sec) of each process writing a 512KB file using a
4KB buffer. The benchmark result shows that the appli-
cation with the confidential execution support is about 9
times slower than with the binary without the support. We
note that this benchmarking is a stress case where the file
system is stressed with very frequent secret function calls,
which cause high context switch cost. In typical real-world
cloud applications such workload is unusual especially when
an encrypted disk is used, thereby we expect the overhead
in the realistic setting to be much lower.
mapreduce-kmeans is configured to partition 8,192 two-

dimensional integer points (64 MB) into 4,096 clusters. The
application is about 8% slower with the confidentiality sup-
port than the original application, both given the same in-
put. hadoop-wcount is run with an input text file that con-
tains 10,000 words (108 KB). We use the CPU time spent
during the two phases as the unit of the comparison. The
overhead introduced by CAFE for this binary is 5.8%.

4.3 Performance Impact to Applications with-
out Protection

We use the XMHF hypervisor framework [22] as the base
of our implementation for basic hypervisor primitives and
DRTM-related code. To evaluate the performance impact
we run benchmarks (UnixBench) on CAFE without any se-
cret binaries loaded and compare the results with a vanilla
XMHF hypervisor with the basic VM management function-
ality only. The results confirm that CAFE does not impact
unprotected applications in the VM (zero overhead).

655

5. RELATED WORK
Flicker [16] and TrustVisor [15] provide an infrastructure

for executing security-sensitive code in isolated memory based
on the remote attestation of binary code. However, they
primarily focus on blocking user VM’s accesses to the ap-
plication code in memory only while the memory isolation
is enabled at runtime. This design may compromise code
confidentiality because attackers in the VM may obtain a
copy of the application code from the file system or mem-
ory during the deployment before the protection is enabled.
In contrast, CAFE protects the confidentiality of the bina-
ries in an end-to-end manner for the entire lifetime of the
deployed software.

Overshadow [10] provides cloaking for general purpose
legacy unmodified applications and untrusted kernel. Re-
lated work [9, 18] have shown that a malicious kernel is
able to compromise the protected OS even with the protec-
tion schemes by Overshadow. CAFE provides stronger code
confidentiality than Overshadow by providing tightly veri-
fied and sanitized input and output via marshaling layer,
and a constrained scope of sensitive code which in combina-
tion significantly reduce the chance of vulnerability.

Software vendors have been working hard to protect their
code from reverse engineering and software piracy. There
has been a large body of work on obfuscators [14, 17, 21, 13,
5, 6, 8] which make disassembly hard. While the code ob-
fuscation techniques can impede the analysis of code, they
are not designed to provide the complete secrecy of exe-
cutable code because obfuscated code may still retain code
semantics. Unlike such solutions, CAFE provides full confi-
dentiality by cryptographically encrypting the binary code
and running the decrypted code in an isolated environment.

6. CONCLUSION
The secure distribution and execution of cloud applica-

tions is an essential feature to prevent the illegitimate usage
of cloud applications and further for the success of the evolv-
ing ecosystem of cloud systems. In order to defeat software
piracy and reverse engineering of sensitive software logic, we
present CAFE which provides the confidential distribution
and execution of cloud applications even when the entire OS
of the tenant VM is compromised. We present its evalua-
tion on a number of applications commonly offered in cloud
marketplaces showing the effectiveness and practicality of
CAFE.

7. REFERENCES
[1] Average Web Page Breaks 1600K.

http://www.websiteoptimization.com/speed/tweak/
average-web-page/.

[2] Mstone. http://mstone.sourceforge.net/.
[3] The Transport Layer Security (TLS) Protocol Version 1.2.

http://tools.ietf.org/html/rfc5246.

[4] A Description of the ARIA Encryption Algorithm, 2010.
http://tools.ietf.org/search/rfc5794.

[5] Themida, 2010. http://www.oreans.com.
[6] VMProtect, 2010.

http://vmpsoft.com/products/vmprotect/.
[7] IOzone Filesystem Benchmark, Feb. 2013.

http://www.iozone.org/.

[8] A. Averbuch, M. Kiperberg, and N. J. Zaidenberg.
Truly-Protect: An Efficient VM-Based Software Protection.
IEEE Systems Journal, 7(3):455–466, Sept. 2013.

[9] S. Checkoway and H. Shacham. Iago attacks: Why the
system call api is a bad untrusted rpc interface. In

Proceedings of the Eighteenth International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’13, pages 253–264, New
York, NY, USA, 2013. ACM.

[10] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam,
C. A. Waldspurger, D. Boneh, J. Dwoskin, and D. R. Ports.
Overshadow: a virtualization-based approach to retrofitting
protection in commodity operating systems. In Proceedings
of ASPLOS’08, New York, NY, USA, 2008.

[11] C. Collberg, C. Thomborson, and D. Low. A taxonomy of
obfuscating transformations. Technical Report 148
Department of Computer Science University of Auckland
July, page 36, 1997.

[12] David Challener, Kent Yoder, Ryan Catherman, David
Safford, Leendert Van Doorn. A Practical Guide to Trusted
Computing. IBM Press, 2007.

[13] B. Lee, Y. Kim, and J. Kim. binOb+: A framework for
potent and stealthy binary obfuscation. In Proceedings of
ASIACCS’10, New York, NY, USA, 2010.

[14] C. Linn and S. Debray. Obfuscation of executable code to
improve resistance to static disassembly. In Proceedings of
CCS’03, New York, NY, USA, 2003.

[15] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor,
and A. Perrig. TrustVisor: Efficient TCB Reduction and
Attestation. In Proceedings of SP’10, DC, USA, 2010.

[16] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: An Execution Infrastructure for TCB
Minimization. In Proceedings of the Eurosys’08, pages
315–328, New York, NY, USA, 2008.

[17] I. V. Popov, S. K. Debray, and G. R. Andrews. Binary
Obfuscation Using Signals. In Proceedings of USENIX
Security’07, Berkeley, CA, USA, 2007.

[18] D. R. K. Ports and T. Garfinkel. Towards application
security on untrusted operating systems. In Proceedings of
the 3rd Conference on Hot Topics in Security,
HOTSEC’08, pages 1:1–1:7, Berkeley, CA, USA, 2008.
USENIX Association.

[19] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis. Evaluating MapReduce for Multi-core and
Multiprocessor Systems. In Proceedings of HPCA’07,
Washington, DC, USA, 2007.

[20] Rob van der Meulen, Janessa Rivera. Gartner Says
Worldwide Public Cloud Services Market to Total $131
Billion. http://www.gartner.com/newsroom/id/2352816.

[21] M. Sharif, A. Lanzi, J. Giffin, and W. Lee. Impeding
Malware Analysis Using Conditional Code Obfuscation.
Proceedings of NDSS’08, 2008.

[22] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome,
and A. Datta. Design, Implementation and Verification of
an eXtensible and Modular Hypervisor Framework. In
Proceedings of SP’13, pages 430–444, DC, USA, 2013.

[23] Vasudevan, Amit and Parno, Bryan and Qu, Ning and
Gligor, Virgil D and Perrig, Adrian. Lockdown: Towards a
Safe and Practical Architecture for Security Applications
on Commodity Platforms. In Proceedings of the 5th
International Conference on Trust and Trustworthy
Computing, 2012.

656

