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ABSTRACT
In a virtualization-based cloud infrastructure, customers of the cloud
deploy virtual machines (VMs) with their own applications and
customized runtime environments. The cloud provider supports the
execution of these VMs without detailed knowledge of the guest
applications and operating systems in the VMs. In addition to elas-
tic resource provisioning for the VMs, a desirable “value-added”
service the cloud provider can provide is the emergency response
to runtime incidences of software bugs and vulnerabilities. The
challenge is to facilitate the automatic runtime detection, location,
and patching of the software vulnerability – outside the VMsand
without the source code. In this paper, we present CloudER, a
cloud “emergency room” architecture that automatically detect, lo-
cate, and patch software vulnerabilities in cloud application bina-
ries at runtime. CloudER leverages an existing taint-basedsystem
(Demand Emulation) for runtime anomaly detection, employsnew
algorithms for software vulnerability location and patch genera-
tion, and adapts a virtual machine introspection system (XenAc-
cess) for dynamic patching. Our preliminary evaluation experi-
ments with a number of real-world server applications show that
CloudER achieves timely response to runtime software faults or at-
tacks from outside the VMs.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: [Distribution and Maintenance];
D.4.6 [Operating Systems]: [Security and Protection]

General Terms
Security, Management

Keywords
Buffer Overflow, Automated Patch Generation, Software Security,
Cloud Computing

1. INTRODUCTION
Virtualization-based cloud computing platforms, such as Ama-

zon EC2 [1] and Eucalyptus [11], support the hosting of customers’
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virtual machines (VMs) in the cloud infrastructure. The customers
create the images of their VMs with their own applications and
guest operating systems (OSs) and the cloud provider will then host
the execution of the VMs withvalue-added functionalities such
as autonomic resource provisioning, cloning, migration, and sus-
pend/resume all without the customer’s involvement.

In this paper, we propose another desirable self-management ca-
pability in the cloud: automatic response to runtime software faults
and attacks, which arise from bugs and vulnerabilities in the ap-
plication binaries. More specifically, we envision that thecloud
should be able to detect a software fault or attack at runtime, lo-
cate the culprit code, generate a patch and apply it to the binary –
all automatically without the customer’s attention. Such capabil-
ity is highly desirable considering the wide existence of software
bugs and vulnerabilities in cloud applications, such as buffer over-
flow [2] and format string [18]. Automatic detection, location, and
patching of software vulnerabilities is challenging in thecloud be-
cause the cloud provider does not have the source code of applica-
tions running in the customers’ VMs. Moreover, as a cloud man-
agement function, the detection, location, and patching operations
have to be performed fromoutside the production VMs.

In this paper, we propose CloudER, a cloudemergency room
architecture, for automatic runtime location and patchingof soft-
ware vulnerabilities in response to software faults or attacks. More
specifically, CloudER leveragesDemand Emulation [6], an effi-
cient and effective taint-based system for detecting software run-
time anomalies from outside the VM being protected. Upon the
detection of a taint-based anomaly, CloudER will locate thein-
structions directly responsible for the anomaly and further generate
a binary patch to bypass those instructions yet maintainingthe le-
gitimate semantics of the application. The patch will be applied to
the protected VM via enhanced virtual machine introspection tech-
nique capable of VM binary write. Finally, the VM’s state will be
restored to the one right before the anomaly detection so that the
patched VM can resume execution properly. CloudER performsall
the above steps without human administrator involvement. More-
over, except for the binary patching, CloudER does not modify the
application and guest OS.

The main contributions of this paper are highlighted as follows:

• CloudER is an integrated architecture that improves the run-
time reliability of cloud applications. It covers the full life
cycle of exploit detection, culprit instruction location,patch
generation and application, and execution state recordingand
reset – all performed from outside the protected VM and
without the source code of the applications.

• While leveraging existing techniques for taint-based exploit
detection, CloudER involves new methods for culprit instruc-
tion location and binary patch generation. The methods cover
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Figure 1: CloudER Overview

some of the most common types of software vulnerabilities
and the patches generated are of small size (tens of bytes).

• CloudER incurs reasonable performance overhead to the ap-
plication in comparison with running the application in an
unprotected VM. The interruption to the production VM’s
execution (for culprit instruction location and patch genera-
tion) is less than half a minute in our experiments with real-
world applications.

2. OVERVIEW
An overview of CloudER is presented in Figure 1. It consists

of four components as indicated by the shaded boxes in the fig-
ure: page granularity taint tracking, byte granularity taint track-
ing, patch generation, and VM state recovery. The page and byte-
granularity taint tracking components leverageDemand Emulation
[6], which is a taint-based VM protection system via on-demand
emulation. UnderDemand Emulation, the page-granularity taint
tracking is performed for the production VM in Xen; whereas the
byte-granularity taint tracking is performed for the same VM but
by the QEMU emulator in domain0. The byte granularity taint
tracking is necessary to detect specific exploits/attacks and locate
specific culprit instructions. The patch generation component then
generates a binary patch for the corresponding vulnerability. The
application of the patch and resumption of the production VMare
performed by the recovery component (which in turn calls an adapted
version of XenAccess library to apply the patch).

The work flow of CloudER’s operations is also shown in Figure
1. In step 1©, the protected VM on Xen in the virtualization mode
is monitored by the page level taint tracking component. When the
component detects that the system registers (e.g., CS, ESP,EIP) of
the protected VM are tainted, it switches the protected VM toem-
ulation mode executed on QEMU inside domain0. QEMU shares
the memory space of the protected VM and leverages the byte-level
taint analysis to monitor the protected VM (step2©). Meanwhile
CloudER takes a live snapshot of the protected VM and saves the
snapshot image. When QEMU detects that the application in the
protected VM accesses a tainted security-sensitive object(e.g., re-
turn address, function pointer), it will locate those instructions that
taint the security-sensitive object (step3©). Then QEMU triggers
the patch generation module (4©) which automatically generates a
binary patch to bypass those culprit instructions. After binary patch
is generated, the recovery module is triggered to recover the saved

snapshot of the protected VM (step5©) and CloudER will apply the
binary patch to the application’s memory space (step6©) via virtual
machine introspection.

Next we use an example to demonstrate the usage of CloudER.
Figure 2(a) shows a sample source code that contains a bufferover-
flow vulnerability. Figure 2(b) is the corresponding disassemble
code of the program. Using a malicious input string, the buffer
overflow vulnerability can be exploited (line 9 in Figure2 (a)). The
root cause of the bug is that the write operation lacks boundary
check, and it may write to outside of the memory ofbuf1 (e.g,
overwriting the return address). CloudER will be able to detect
the exploit when the program executes theret instruction (line
33 in Figure 2(b)) with the tainted return value at the epilogue of
function main. Furthermore, CloudER locates the vulnerable in-
structions (line 24-25 in Figure 2(b)). Then CloudER generates
the binary patch, which will check whether the write instruction
(line 25 in Figure 2(b)) writes to the safe area of the memory (i.e.
from buf1 to return address) and then skip those write operations
that write to the security-sensitive area (object). Finally, CloudER
applies the patch and resumes the execution of the protectedVM.1 i n t a ; / / g l o b a l2 i n t m a i n ( )3 {4 c h a r b u f 1 [ 1 0 ] ;5 c h a r b u f 2 [ 1 0 0 ] ;6 s c a n f ( “ % 9 9 s ” , b u f 2 ) ;7 w h i l e ( b u f 2 [ a ] )8 {9 b u f 1 [ a ] = b u f 2 [ a ] ;1 0 a + + ;1 1 }1 2 b u f 1 [ a ] = ‘ \ 0 ’ ;1 3 r e t u r n 0 ;1 4 }
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Figure 2: An Illustrative Example

3. DETAILED DESIGN

3.1 Bug Location Approach
We leverage the on-demand taint-analysis system Demand Em-

ulation [6]. When Demand Emulation detects an exploit, it does
not perform any specific remedial actions of its own. Instead, trig-
gered by the detection point, CloudER will proceed to locatethe
instructions to be patched.

CloudER records memory tainted information under the emula-
tion mode. More precisely, CloudER records the memory written
instructions which propagate the taint flag as well as the tainted
memory in the form of (M, W). M is the memory which is tainted,
and W is the memory write instruction which taints M. With the
(M, W) records, CloudER locates the bug in the following steps.
First, CloudER detects the attack, it regards M’ aserror_address.
Then, it uses M’ to find the write instruction W’ which taints M’
based on the (M, W) records. In order to replace the write instruc-
tion with our binary patch, we require that the size of the replaced



instructions to be no less than 5 bytes1. However, the write instruc-
tion is often 2-3 bytes long (e.g.,mov %al,(%edx) is 2 bytes),
thus we put the previous instructions into thebug instructions to
guarantee the bug instructions be no less than 5 bytes.

Consider the example in Figure 2, suppose the attacker injects
100 bytes of data (the size ofbuf2). When QEMU executes the
write instructions (line 24-25 in Figure 2(b)), which represent the
statement in line 9 of Figure 2(a), it records the 100 recordsbecause
this statement will be executed to write 100 bytes from the outside
input intobuf1. In the 100 records, all W turns out to be the same
instruction (line 25 in Figure 2(b)), and M are the contiguous mem-
ory addresses (ranging from0xbffff6e0 to0xbffff744). Note
that0xbffff6e0 is the start address ofbuf1. When the program
executes theret instruction, CloudER detects the return address
(0xbffff6fc) is tainted, so the error address is0xbffff6fc.
Then CloudER sets M’ as0xbffff6fc, searches the 100 records
and finds the record (0x80483c4,0xbffff6fc), and locates the
write instruction W’ at0x80483c4. As this instruction is less
than 5 bytes, CloudER puts the instruction (line 24 in Figure2(b))
just before it into bug instruction set.

There are two problems we need to solve here. One is the lo-
cation of the vulnerable library function (e.g.,strcpy,printf). If the
W’ belongs to a dynamic linked library function, it is reasonable to
locate the function call point, and wrap the call instruction with our
binary patch. We use dynamic linked library function identification
technique to solve it. It is well-known that the destinationaddress
of library function call instruction is in the PLT section inELF.
During the program execution, we check whether the destination
of call instruction is in the range. If it is true, we replace the write
instruction W in the function with the address of call instruction.

Another problem is that the execution context of the bug instruc-
tions may vary, and the write instruction can be leveraged inthe
benign scenario. To solve this problem, we need to additionally
record the start address of the destination object the bug instruc-
tions writes to, and we named the start address of the destination
object asstart_address. Take the example in Figure 2 for instance,
the destination object of the maliciously written instruction in line
9 is buf1. And suppose that we get 100 (M,W) records dur-
ing the program execution, and they have the same W with the
different M ranging from0xbffff6e0(buf1) to0xbffff744.
start_address is the smallest address0xbffff6e0. After bug lo-
cation analysis, we record thestart_address, error_address, and the
bug instructions.

3.2 Patch Generation and Application
When we have located the bug, we get the following information:

start_address, error_address, and the bug instructions. In current
patch generation mechanism, we replace the bug instructions with
jmp instruction, the destination address of thejmp instruction is the
start address of our binary patch code, and we define the address as
mmp_start. Note thatjmp instruction is often 5 bytes long, if
bug instructions are larger than 5 bytes, we insertnop instructions
behind thejmp instruction to pad the rest code space. In order
to insert binary patch code into the process space, we mmap the
memory space for the patch in the process, and write the binary
patch into it, and we define the start address of the binary patch
asmmp_start. More detailed, when we insert the binary patch,
we add themmap system call by using the micro operations in the
QEMU and then QEMU translates the micro operations and exe-
cutes them to mmap a memory space into the process. The binary
patch is used to skip the maliciously write instruction.

1In order to insert a jump to the patch.
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Figure 3: An Example of Binary Patching

As a simple illustration, we again use the example shown in Fig-
ure 2. Figure 3 shows our binary patch for this program. When
we locate the bug instructions from0x80483c1 to 0x80483c5.
Then we replace them withjmp mmp_start. In the binary patch,
we compare the destination memory address with thestart_address
(0xbffff6e0)anderror_address(0xbffff6fc). If the address
is between them, we execute the instructions. Otherwise ,weskip
the instructions. In the end of binary patch, there is ajmp instruc-
tion to jump back to the next instruction of the bug instructions.

There is another problem when we design our patch generation
mechanism. As the same bug instructions may occur at severalat-
tack scenario, we may generate several patches for the same bug
instructions. It is a problem that how we update the binary patch.
To solve this problem, we first check whether thestart_address ex-
ists. If so, we compare theerror_address to the one in the existing
patch, and replace the older one iferror_address is smaller. If the
start_address is not existing, we need to generate a new patch for
it. And then we chain the patch together byjmp instruction.

When the binary patch is generated, we leverage themmap sys-
tem call to allocate the memory space for the binary patch, and get
the base address of themmap area. We write a tool which can re-
place the bug instructions with the binary patch. The tool leverages
the virtual machine introspection system XenAccess-0.5 [13], the
library is modified by us to be compatible with Xen-3.0.0. The
work flow of the tools is as following. First, our tool maps the
memory frame of the bug instructions according to itsdomid and
process id. Then it reads the bug instructions according to the
virtual address of the bug using XenAccess, and then it leverages
thejmp instruction to replace the bug instructions, and the destina-
tion address of thejmp instruction is the binary patch.

4. EVALUATION
We have created a proof-of-concept prototype of CloudER. To

verify the effectiveness and performance of our system, we have
deployed it in our lab and conducted a number of experiments.We
used a buffer overflow benchmark test-suite developed by Wilan-
der et al. [19], as well as the additional real-world exploits which
contain the format string attack and buffer overflow attack.The
evaluation is performed on the following configuration. Xen-3.0.0
preforms on the Intel Pentium Dual T5600 1.83GHz machine with
1.0G memory. And the Domain0 is equipped with the Linux 2.6.12
kernel. Protected VM is allocated with 128M memory with the
Linux 2.6.12 kernel. Tested programs are in the protected VMand
compiled by gcc 4.1.1 and linked with glibc 2.1.2. Note that in



protected VM, we close the address randomization function by the
command “echo 0 > /proc/sys/kernel/randomize_va_space" to pre-
vent the stack randomization, as address randomization mayob-
fuscate theerror_address our patch depends on(maybe slight
changes to the OS loader help us overcome).

4.1 Effectiveness

4.1.1 Wilander’s Benchmark Test-Suite
There exists different buffer overflow attacks in the publicly avail-

able Wilander’s Benchmark Test-Suite, and we select bufferover-
flow bugs aim at stack and bss objects. However, Wilander’s bench-
mark writes the shellcode in the program, in order to emulatethe
network application, we modify it to let the user input the shell-
code from the network. Interested readers can reference [19] for
more details.

4.1.2 Real-World Attacks
We further evaluate the effectiveness of our system with real-

world attacks, including buffer overflow and format string.We se-
lect three applications to test CloudER, and the bugs in these soft-
ware are described in Table 1. In order to trigger the Demand Em-
ulation to detect them, we do the following modification to some
applications. For ncompress, we input the long file name fromthe
network to trigger the buffer overflow attack. We note that the mod-
ifications to the applications are simply for the sake of following
Demand Emulation’s network input tainting and tracking. For all
these applications, CloudER is able to correctly detect theexploits
and patch the vulnerabilities.

In Table 1, we show the bug and patch size in our experiment.
Wilander’s benchmark is an example of malicious instruction to
multiple memory space. ncompress is an instance that bug instruc-
tions contain string copy functionstrcpy [9]. ATPhttpd is an
example of maliciously written instruction to single memory [4].
wu-ftpd is an example of format string bug(vsprintf) [3].

4.2 Performance Overhead
We evaluate the performance overhead of patch generation. The

patch generation overhead contains automatically detecting the bug,
locating the bug and generating the patch, saving and recovering
the protected VM as well as inserting the binary patch. Table2
shows the performance overhead including theDetector, Locator
& Generator, Save & Recovery , Patch Inserter and Total Time.
Detector is the time span from CloudER pausing the protected
VM to detecting the bug.Locator & Generator is the time span
CloudER locates the bug and generates patch for the bug.Save
& Recover is the time span CloudER saves the protected VM and
recovers it.Patch Inserter is the time CloudER wraps the bug in-
structions with the jmp instruction and inserts the binary patch into
the mmaped memory space.Total Time is the time span CloudER
pauses the domain during detecting, locating, patching andrecov-
ery. Results show that CloudER can generate the patch withinsec-
onds.

5. DISCUSSION
The current CloudER system has a number of non-trivial limi-

tations that warrant further research. First, due to the buglocation
capability, our patch may not remedy the root cause. Second,our
patching function can only generate the binary patch for preventing
the attack re-launched, and if the attacker leverages the same bug to
write other object, our system will generate a new patch, thus there
may be several patches for one bug. What’s more, our binary patch

is not intelligent enough that it can prevent the maliciously writ-
ing to the same object. For example, when the attacker writesto a
buffer, the first time he writes to the return address, and thesecond
time to the function pointer(suppose the function pointer’s address
is lower than the return address). In current implementation, we just
update the patch and shorten the range betweenstart_address
anderror_address. However, we believe, after a long time
patching, the binary patch will be better than before. Third, cur-
rently our automatical patching generation algorithm can only ap-
ply for the buffer overflow which aims at stack and bss object.Our
patch mechanism can not prevent attack which aims at heap object,
and also not be effective for stack object with ASLR. For other bugs
such as heap overflow, integer overflow and double free, we cannot
automatically generate binary patch. Fourth, since we use the save
& restore mechanism to recover the VM states, it’s worth nothing
that when we save the VM, its resources on the host machine will
be de-allocated, especially the network connections to it will be
lost.

6. RELATED WORK
Program patching is important to guarantee the availability of

the application. Researchers are searching the efficient automatic
tools which can patch the bugs in the programs. These approaches
can be divided into source code level patch and binary level patch.
For example, AutoPaG [7], Exterminator [10], PASAN [16] and
ShieldGen [17] provide the patch for the source code. And other
works, such as CleanView[14], Livepatch [8], Pannus [12] and
Katana [15], generate thehot patch for the binary code. Since
the commodity software has no source code available, and thede-
ployed applications in the cloud can not stop for recompiling their
source code. Binary level patch meets the requirements of the cus-
tomers. However, current binary patch methods focus on the func-
tion level patch, which is coarse-grained. In practice, we find that
the bug often contains two or three instructions at binary level, thus
CloudER replaces the bug instruction sequence with fine-grained
binary patch (several bytes long), which can be quickly deployed
online. Recently, there are two new binary patch methods pro-
posed: First-Aid [5] generates the binary patch by changingthe
environment based on the feature of the known bugs. First-Aid
only exposes the known attack next time, but it does not make the
program immune from the attack. Nuwa [20] is a patch tool which
provides the patch offline for the VM images. Compared with the
two new methods, CloudER applies the temporary patch onlineto
protect the VM from being attacked, and guarantees the software
can provide the services without termination. Further, CloudER
can also help the cloud providers or the software vendors apply the
permanent offline patch for the program by using the bug detection
and location information from CloudER.

7. CONCLUSIONS
In this paper, we present the design, implementation, and evalu-

ation of a framework for automatic software vulnerability location
and patching in the cloud. Given a working maliciously written ex-
ploit (e.g., a buffer overflow attack) which may be previously un-
known, our system is able to catch the attack, and automatically
analyze the binary code and identify the malicious instructions.
Furthermore, within seconds, our system can recovers itself, and
automatically generates the binary patch and apply it into the pro-
gram’s execution space. The evaluation using the Wilander’s buffer
overflow benchmark as well as a number of real-world exploitssuc-
cessfully demonstrates its effectiveness.



Table 1: The Effectiveness of CloudER with Programs and Their Vulnerabilities

Program Size(Byte) Attack Type Detector
Locator Patch Generator
Bug Size Patch Size (Prevented?)

Wilander’s Benchmark 13,208 Buffer Overflow X 5B 41B X

ncompress-4.2.4 50,047 Buffer Overflow X 5B 82B X

ATPhttpd 0.4b 41,085 Buffer Overflow X 7B 23B X

Wu-ftpd 2.6.0 379,658 Format String X 5B 57B X

Table 2: Automatic Patch Generation Time

Benchmark/Program Attack Type Detector Locator & Generator Save & Recovery Patch Inserter Total
Wilander’s Benchmark Buffer Overflow 0.419s 1.789s 3.956s 1.127s 7.291s

ncompress 4.2.4 Buffer Overflow 0.967s 3.573s 4.028s 3.458s 12.026s
ATPhttpd 0.4b Buffer Overflow 1.056s 2.134s 4.834s 2.124s 10.148s
Wuftpd 2.6.0 Format String 3.871s 4.280s 5.376s 2.464s 15.991s
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