CloudER: A Framework for Automatic Software
Vulnerability Location and Patching in the Cloud

Ping Chenti Dongyan Xut Bing Maoz
1State Key Laboratory for Novel Software Technology, Nanjing University
Department of Computer Science and Technology, Nanjing University
tDepartment of Computer Science, Purdue University

ABSTRACT

In avirtualization-based cloud infrastructure, custosrithe cloud
deploy virtual machines (VMs) with their own applicationsda
customized runtime environments. The cloud provider stipibe

execution of these VMs without detailed knowledge of thesgue

applications and operating systems in the VMs. In additioelés-
tic resource provisioning for the VMs, a desirable “valusled”
service the cloud provider can provide is the emergencyoresp
to runtime incidences of software bugs and vulnerabilitidhe
challenge is to facilitate the automatic runtime detegtlonation,
and patching of the software vulnerability — outside the Vsl

without the source code. In this paper, we present CloudER, a

cloud “emergency room” architecture that automaticalliedg lo-
cate, and patch software vulnerabilities in cloud appiicabina-
ries at runtime. CloudER leverages an existing taint-baystem
(Demand Emulation) for runtime anomaly detection, emplogs
algorithms for software vulnerability location and patcingra-
tion, and adapts a virtual machine introspection systerm{¢e
cess) for dynamic patching. Our preliminary evaluationesikp

ments with a number of real-world server applications shioat t

CloudER achieves timely response to runtime softwaredaulat-
tacks from outside the VMs.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: [Distribution and Maintenance];
D.4.6 [Operating Systems]: [Security and Protection]

General Terms
Security, Management

Keywords

Buffer Overflow, Automated Patch Generation, Software 8gcu
Cloud Computing

1. INTRODUCTION

Virtualization-based cloud computing platforms, such asaA
zon EC2 [1] and Eucalyptus [11], support the hosting of cnstis’

Permission to make digital or hard copies of all or part o§ twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ASACCS’12, May 2—-4, 2012, Seoul, Korea.

Copyright 2012 ACM 978-1-4503-0564-8/11/03 ...$10.00.

virtual machines (VMs) in the cloud infrastructure. Thetonsers
create the images of their VMs with their own applicationsl an
guest operating systems (OSs) and the cloud provider eifl Host
the execution of the VMs witlvalue-added functionalities such
as autonomic resource provisioning, cloning, migratiard aus-
pend/resume all without the customer’s involvement.

In this paper, we propose another desirable self-manageraen
pability in the cloud: automatic response to runtime soferfaults
and attacks, which arise from bugs and vulnerabilities andb-
plication binaries. More specifically, we envision that ttieud
should be able to detect a software fault or attack at runtime
cate the culprit code, generate a patch and apply it to therpin
all automatically without the customer’s attention. Suefpabil-
ity is highly desirable considering the wide existence dfvgare
bugs and vulnerabilities in cloud applications, such agddver-
flow [2] and format string [18]. Automatic detection, loaati and
patching of software vulnerabilities is challenging in theud be-
cause the cloud provider does not have the source code atappl
tions running in the customers’ VMs. Moreover, as a cloud man
agement function, the detection, location, and patchireyatmons
have to be performed fromutside the production VMs.

In this paper, we propose CloudER, a clogemergency room
architecture, for automatic runtime location and patctohgoft-
ware vulnerabilities in response to software faults orckdaMore
specifically, CloudER leverageBemand Emulation [6], an effi-
cient and effective taint-based system for detecting sofwun-
time anomalies from outside the VM being protected. Upon the
detection of a taint-based anomaly, CloudER will locate ithe
structions directly responsible for the anomaly and furtfenerate
a binary patch to bypass those instructions yet maintaittiade-
gitimate semantics of the application. The patch will beli@oto
the protected VM via enhanced virtual machine introspediéeh-
nique capable of VM binary write. Finally, the VM'’s state e
restored to the one right before the anomaly detection datltea
patched VM can resume execution properly. CloudER perfaiins
the above steps without human administrator involvemerareM
over, except for the binary patching, CloudER does not nyati¢
application and guest OS.

The main contributions of this paper are highlighted asfed:

e CloudER is an integrated architecture that improves the run
time reliability of cloud applications. It covers the fuifd
cycle of exploit detection, culprit instruction locatigoatch
generation and application, and execution state recoatidg
reset — all performed from outside the protected VM and
without the source code of the applications.

e While leveraging existing techniques for taint-based eitpl
detection, CloudER involves new methods for culprit instru
tion location and binary patch generation. The methodsrcove

Domain 0
QEMU
Protected VM
(Emulation)
® Patch the bug
@IDC[CCI the bug
Byte granularity Patch Checkpoint/ ‘ [©) Savcd
taint tracking Generation Recovery ‘ 1mage
® | Locate the bug T T@ T ‘ ®
\‘ Recqvdr protected VM
v
Xen Accesf}my Protected VM
(virtualization)
Blk Tap Arch XenStore Library XenControl Library
Dom0 Kernel
' @

Page granularity taint
tracking

Virtual Machine Monitor

Figure 1: CloudER Overview

some of the most common types of software vulnerabilities
and the patches generated are of small size (tens of bytes).

e CloudER incurs reasonable performance overhead to the ap-
plication in comparison with running the application in an
unprotected VM. The interruption to the production VM'’s
execution (for culprit instruction location and patch gene
tion) is less than half a minute in our experiments with real-
world applications.

2. OVERVIEW

An overview of CloudER is presented in Figure 1. It consists
of four components as indicated by the shaded boxes in the fig-
ure: page granularity taint tracking, byte granularityntairack-
ing, patch generation, and VM state recovery. The page ated by
granularity taint tracking components leverddamand Emulation
[6], which is a taint-based VM protection system via on-datha
emulation. UndeDemand Emulation, the page-granularity taint
tracking is performed for the production VM in Xen; wherehs t
byte-granularity taint tracking is performed for the samd Ygut
by the QEMU emulator in domain0. The byte granularity taint
tracking is necessary to detect specific exploits/attackislacate
specific culprit instructions. The patch generation congmbrthen
generates a binary patch for the corresponding vulnetabilihe
application of the patch and resumption of the production &
performed by the recovery component (which in turn callsdapéed
version of XenAccess library to apply the patch).

The work flow of CloudER’s operations is also shown in Figure
1. In step®, the protected VM on Xen in the virtualization mode
is monitored by the page level taint tracking component. kthe
component detects that the system registers (e.g., CS EHSRf
the protected VM are tainted, it switches the protected VMo
ulation mode executed on QEMU inside domain0. QEMU shares
the memory space of the protected VM and leverages the byé&s-I
taint analysis to monitor the protected VM (st@&p). Meanwhile
CloudER takes a live snapshot of the protected VM and sawes th
snapshot image. When QEMU detects that the applicationan th
protected VM accesses a tainted security-sensitive ofgegt, re-
turn address, function pointer), it will locate those instrons that
taint the security-sensitive object (sté)). Then QEMU triggers
the patch generation modul@)) which automatically generates a
binary patch to bypass those culprit instructions. Afteoy patch
is generated, the recovery module is triggered to recoeesahied

snapshot of the protected VM (sté&p) and CloudER will apply the
binary patch to the application’s memory space ($B83pvia virtual
machine introspection.

Next we use an example to demonstrate the usage of CloudER.
Figure 2(a) shows a sample source code that contains a buéfer
flow vulnerability. Figure 2(b) is the corresponding disasble
code of the program. Using a malicious input string, the duff
overflow vulnerability can be exploited (line 9 in Figure)(@he
root cause of the bug is that the write operation lacks baynda
check, and it may write to outside of the memorymnfl (e.g,
overwriting the return address). CloudER will be able toedet
the exploit when the program executes thet instruction (line
33 in Figure 2(b)) with the tainted return value at the epile@f
function main. Furthermore, CloudER locates the vulnerable in-
structions (line 24-25 in Figure 2(b)). Then CloudER getessa
the binary patch, which will check whether the write instioc
(line 25 in Figure 2(b)) writes to the safe area of the memaoey (
from bufl to return address) and then skip those write operations
that write to the security-sensitive area (object). FinallloudER
applies the patch and resumes the execution of the proteéted

0x8048364
0x8048355

push %ebp
mov %esp, %ebp
sub
and

1 int a;//global

2 int main() 0x8048367

0x804836d

$0x98, 5esp
SOxfEEFEFFO, %esp

1
2
3
4
3 { 5 0x8048370 mov $0x0, %eax
4 char bufl[10]; 6 0x8048375 add $0xf, %eax
7 0x8048378 add $O0xf, %eax
5 char buf2[100]; 8 0x804837b shr $0xd, %eax
N ” . 9 0x804837e shl $0xd, %eax
6 scanf (“$99s” ,buf2) ; 10 0x8048381 sub %eax, %esp
7 while (buf2[a]) 11 0x8048383 lea OxEEEEL£78(%ebp), teax
12 0x8048389 mov %eax, Oxd (%esp)
8 { 13 0x804838d movl $0x8048488, (%esp)
= . ||14 0x8048394 call 0x8048280
9 buflfa]=buf2[al; |5 o.pose3ss 1ea OxEEEEEETB (ebp) , eax
10 a++; 16 0x804839f add 0x804959c, %eax
17 0x80483a5 cmpb $0x0, (Yeax)
11 } 18 0x80483a8 je 0xB80483ce
=\0’ - 19 0x80483aa lea Oxffffffe8(%ebp), teax
12 bufl[a]="\0"; 20 0x80483ad mov %eax, %edx
13 return O; 21 0x80483af add 0x804959c, %edx
22 0x80483b5 lea OXEEEEf£78(%ebp), %eax
14 } 23 0x80483bb add 0x804959c, %eax

24 0x80483cl
25 0x80483c4
26 0x80483c6
27 0x80483cc
28 0x80483ce
29 0x80483d1
30 0x80483d7

movzbl (%eax), %eax

mov %al, (Sedx)

incl 0x804959¢

jmp 0x8048399

lea Oxffffffes(%ebp),
add 0x804959¢c, %eax
movb $0x0, (teax)

31 0%80483da mov $0x0, %eax

32 0%80483df leave

33 0%80483e0 ret

(b) disassembly code

seax

(a) source code

Figure2: An lllustrative Example

3. DETAILED DESIGN
3.1 Bug Location Approach

We leverage the on-demand taint-analysis system Demand Em-
ulation [6]. When Demand Emulation detects an exploit, kslo
not perform any specific remedial actions of its own. Instéag-
gered by the detection point, CloudER will proceed to lodhte
instructions to be patched.

CloudER records memory tainted information under the emula
tion mode. More precisely, CloudER records the memory mitt
instructions which propagate the taint flag as well as theteadi
memory in the form of (M, W). M is the memory which is tainted,
and W is the memory write instruction which taints M. With the
(M, W) records, CloudER locates the bug in the following step
First, CloudER detects the attack, it regards M'eaor_address.
Then, it uses M’ to find the write instruction W’ which taints'M
based on the (M, W) records. In order to replace the writeust
tion with our binary patch, we require that the size of thdaepd

instructions to be no less than 5 byle$iowever, the write instruc-
tion is often 2-3 bytes long (e.gmv %al , (%edx) is 2 bytes),
thus we put the previous instructions into thag instructions to
guarantee the bug instructions be no less than 5 bytes.

Consider the example in Figure 2, suppose the attackerténjec
100 bytes of data (the size buf 2). When QEMU executes the
write instructions (line 24-25 in Figure 2(b)), which repeat the
statement in line 9 of Figure 2(a), it records the 100 recbetmuse
this statement will be executed to write 100 bytes from thiside
input intobuf 1. In the 100 records, all W turns out to be the same
instruction (line 25 in Figure 2(b)), and M are the contigsiooem-
ory addresses (ranging fradx bf f f f 6e0 toOxbf f f f 744). Note
thatOxbf f f f 6e0 is the start address buf 1. When the program
executes the et instruction, CloudER detects the return address
(Oxbf f f f 6f c) is tainted, so the error addresisbf f f f 6f c.
Then CloudER sets M’ &xbf f f f 6f ¢, searches the 100 records
and finds the record&80483c4,0xbf f f f 6f c), and locates the
write instruction W’ atOx80483c4. As this instruction is less
than 5 bytes, CloudER puts the instruction (line 24 in Fig{g)
just before it into bug instruction set.

There are two problems we need to solve here. One is the lo-
cation of the vulnerable library function (e.g.,strcpingi). If the
W’ belongs to a dynamic linked library function, it is reasbie to
locate the function call point, and wrap the call instructwith our
binary patch. We use dynamic linked library function idéadtion
technique to solve it. It is well-known that the destinatamdress
of library function call instruction is in the PLT section ELF.
During the program execution, we check whether the destimat
of call instruction is in the range. If it is true, we replate write
instruction W in the function with the address of call instian.

Another problem is that the execution context of the bugrirst
tions may vary, and the write instruction can be leveragethén
benign scenario. To solve this problem, we need to additiona
record the start address of the destination object the bstguirt
tions writes to, and we named the start address of the d#stina
object asstart_address. Take the example in Figure 2 for instance,
the destination object of the maliciously written instiantin line
9 isbuf 1. And suppose that we get 100 (M,W) records dur-
ing the program execution, and they have the same W with the
different M ranging fromOxbf f f f 6e0(bufl) toOxbf f f f 744.
start_address is the smallest addre€xbf f f f 6e0. After bug lo-
cation analysis, we record tseart_address, error_address, and the
bug instructions.

3.2 Patch Generation and Application

When we have located the bug, we get the following infornmatio
start_address, error_address, and the bug instructions. In current
patch generation mechanism, we replace the bug instrisciith
jmp instruction, the destination address of jtig instruction is the
start address of our binary patch code, and we define thessldse
nmp_st art . Note thatj np instruction is often 5 bytes long, if
bug instructions are larger than 5 bytes, we inse instructions
behind thej np instruction to pad the rest code space. In order
to insert binary patch code into the process space, we mneap th
memory space for the patch in the process, and write theybinar
patch into it, and we define the start address of the binarghpat
asmmp_st art . More detailed, when we insert the binary patch,
we add themap system call by using the micro operations in the
QEMU and then QEMU translates the micro operations and exe-

1 int a;//global
2 int main()

3 {

4 char bufl[10];
5 char buf2[100] ;
6

7

8

while (buf2[a])
{

0x80483cl:
movzbl (%eax),
mov %al, (%edx)
0x80483c6 : ‘

%eax

scanf (“%99s” ,buf2) ;

0x80483cl :
jmp mmp_start

0x80483c6 : |

Y

9 bufl[a]=buf2[a]; mmp_start:
10 a++; cmp start_address, %edx
11 } jl Labell

—\ar . cmp error_address, %edx
12 buflfa]="\0"; jge Labell
13 return 0; movzbl (%eax) ,%eax
14 } mov %al, (%edx)

Labell:
jmp 0x80483c6

Figure3: An Example of Binary Patching

As a simple illustration, we again use the example showngnr Fi
ure 2. Figure 3 shows our binary patch for this program. When
we locate the bug instructions frodx80483c 1 to 0x80483c5.
Then we replace them wifmp mp_st ar t . Inthe binary patch,
we compare the destination memory address witlstidré _address
(Oxbf f f f 6e0)anderror_address(Oxbf f f f 6f c). If the address
is between them, we execute the instructions. Otherwiseskipe
the instructions. In the end of binary patch, there japinstruc-
tion to jump back to the next instruction of the bug instrons.

There is another problem when we design our patch generation
mechanism. As the same bug instructions may occur at seateral
tack scenario, we may generate several patches for the sagne b
instructions. It is a problem that how we update the binatghpa
To solve this problem, we first check whether gert_address ex-
ists. If so, we compare theror_address to the one in the existing
patch, and replace the older oneifor_address is smaller. If the
start_address is not existing, we need to generate a new patch for
it. And then we chain the patch togetherjoyp instruction.

When the binary patch is generated, we leveragerttep sys-
tem call to allocate the memory space for the binary patoth get
the base address of therap area. We write a tool which can re-
place the bug instructions with the binary patch. The togdtages
the virtual machine introspection system XenAccess-03, [the
library is modified by us to be compatible with Xen-3.0.0. The
work flow of the tools is as following. First, our tool maps the
memory frame of the bug instructions according taditsri d and
process i d. Then it reads the bug instructions according to the
virtual address of the bug using XenAccess, and then it éges
thej np instruction to replace the bug instructions, and the dastin
tion address of thgnp instruction is the binary patch.

4. EVALUATION

We have created a proof-of-concept prototype of CloudER. To
verify the effectiveness and performance of our system, s h
deployed it in our lab and conducted a number of experiméies.
used a buffer overflow benchmark test-suite developed barwil
der et al. [19], as well as the additional real-world ex@aithich
contain the format string attack and buffer overflow attadlhe
evaluation is performed on the following configuration. X&0.0
preforms on the Intel Pentium Dual T5600 1.83GHz machiné wit

cutes them to mmap a memory space into the process. The binary1,0G memory. And the Domain0 is equipped with the Linux 26.1

patch is used to skip the maliciously write instruction.

In order to insert a jump to the patch.

kernel. Protected VM is allocated with 128M memory with the
Linux 2.6.12 kernel. Tested programs are in the protectedaviil
compiled by gcc 4.1.1 and linked with glibc 2.1.2. Note that i

protected VM, we close the address randomization functjothe
command “echo 0 > /proc/sys/kernel/randomize_va_spacple-
vent the stack randomization, as address randomizationabay
fuscate theer r or _addr ess our patch depends on(maybe slight
changes to the OS loader help us overcome).

4.1 Effectiveness

4,11 Wlander's Benchmark Test-Suite

There exists different buffer overflow attacks in the pulavail-
able Wilander’s Benchmark Test-Suite, and we select buffer-
flow bugs aim at stack and bss objects. However, Wilanderisibe
mark writes the shellcode in the program, in order to emutate
network application, we modify it to let the user input thesih
code from the network. Interested readers can referendefdfi9
more details.

4.1.2 Real-World Attacks

We further evaluate the effectiveness of our system witlh rea
world attacks, including buffer overflow and format stringfe se-
lect three applications to test CloudER, and the bugs irethef-
ware are described in Table 1. In order to trigger the Demaned E
ulation to detect them, we do the following modification torso
applications. For ncompress, we input the long file name fitwen
network to trigger the buffer overflow attack. We note thatithod-
ifications to the applications are simply for the sake ofdaihg
Demand Emulation’s network input tainting and tracking.r &ib
these applications, CloudER is able to correctly deteceimoits
and patch the vulnerabilities.

In Table 1, we show the bug and patch size in our experiment.
Wilander’s benchmark is an example of malicious instructio
multiple memory space. ncompress is an instance that btrgiéas
tions contain string copy functioat r cpy [9]. ATPhttpd is an
example of maliciously written instruction to single memd4].
wu-ftpd is an example of format string bug{pr i nt f) [3].

4.2 Performance Over head

We evaluate the performance overhead of patch generatfen. T
patch generation overhead contains automatically detettie bug,
locating the bug and generating the patch, saving and reogve
the protected VM as well as inserting the binary patch. T&ble
shows the performance overhead including Eretector, Locator
& Generator, Save & Recovery , Patch Inserter and Total Time.

Det ect or is the time span from CloudER pausing the protected
VM to detecting the bug.Locator & Generator is the time span
CloudER locates the bug and generates patch for the Sage

& Recover is the time span CloudER saves the protected VM and
recovers it.Patch Inserter is the time CloudER wraps the bug in-
structions with the jmp instruction and inserts the binaagch into

the mmaped memory spac@tal Time is the time span CloudER
pauses the domain during detecting, locating, patching-acal-
ery. Results show that CloudER can generate the patch vegtn
onds.

5. DISCUSSION

The current CloudER system has a number of non-trivial limi-
tations that warrant further research. First, due to thelbcation
capability, our patch may not remedy the root cause. Seamnd,
patching function can only generate the binary patch forgméng
the attack re-launched, and if the attacker leverages the bag to
write other object, our system will generate a new patcts thare
may be several patches for one bug. What's more, our bindchpa

is not intelligent enough that it can prevent the malicigustit-
ing to the same object. For example, when the attacker wiotas
buffer, the first time he writes to the return address, andéoend
time to the function pointer(suppose the function poistaddress
is lower than the return address). In current implemematie just
update the patch and shorten the range betwéamt _addr ess
anderror_address. However, we believe, after a long time
patching, the binary patch will be better than before. Thiat-
rently our automatical patching generation algorithm caly ap-
ply for the buffer overflow which aims at stack and bss obj&uir
patch mechanism can not prevent attack which aims at heaptpbj
and also not be effective for stack object with ASLR. For otheys
such as heap overflow, integer overflow and double free, weatan
automatically generate binary patch. Fourth, since wehssadve
& restore mechanism to recover the VM states, it's worth imgth
that when we save the VM, its resources on the host machire wil
be de-allocated, especially the network connections tailithe
lost.

6. RELATED WORK

Program patching is important to guarantee the availgthilit
the application. Researchers are searching the efficieatratic
tools which can patch the bugs in the programs. These agpesac
can be divided into source code level patch and binary lexep
For example, AutoPaG [7], Exterminator [10], PASAN [16] and
ShieldGen [17] provide the patch for the source code. Anéroth
works, such as CleanView[14], Livepatch [8], Pannus [12d an
Katana [15], generate theot patch for the binary code. Since
the commodity software has no source code available, andethe
ployed applications in the cloud can not stop for recomgilineir
source code. Binary level patch meets the requirementseaful-
tomers. However, current binary patch methods focus onuhe-f
tion level patch, which is coarse-grained. In practice, wd that
the bug often contains two or three instructions at binargllehus
CloudER replaces the bug instruction sequence with finegga
binary patch (several bytes long), which can be quickly ogd
online. Recently, there are two new binary patch methods pro
posed: First-Aid [5] generates the binary patch by changivy
environment based on the feature of the known bugs. Firdt-Ai
only exposes the known attack next time, but it does not miae t
program immune from the attack. Nuwa [20] is a patch tool Wwhic
provides the patch offline for the VM images. Compared with th
two new methods, CloudER applies the temporary patch otdine
protect the VM from being attacked, and guarantees the aoétw
can provide the services without termination. Further,uGER
can also help the cloud providers or the software vendorty ipp
permanent offline patch for the program by using the bug tietec
and location information from CloudER.

7. CONCLUSIONS

In this paper, we present the design, implementation, aalliev
ation of a framework for automatic software vulnerabilibgétion
and patching in the cloud. Given a working maliciously venitiex-
ploit (e.g., a buffer overflow attack) which may be previgush-
known, our system is able to catch the attack, and autonfigttica
analyze the binary code and identify the malicious instomst
Furthermore, within seconds, our system can recoverd, itzed
automatically generates the binary patch and apply it inéoprro-
gram’s execution space. The evaluation using the Wilaadberfer
overflow benchmark as well as a number of real-world exphits
cessfully demonstrates its effectiveness.

Table 1: The Effectiveness of CloudER with Programsand Their Vulnerabilities

. Locator Patch Generator
Program Size(Byte)| Attack Type Detector Bug Size | Patch Size| (Prevented?
Wilander’'s Benchmark 13,208 Buffer Overflow v 5B 41B v
ncompress-4.2.4 50,047 | Buffer Overflow v 5B 82B v
ATPhttpd 0.4b 41,085 | Buffer Overflow v 7B 23B v
Wu-ftpd 2.6.0 379,658 Format String v 5B 57B v
Table 2: Automatic Patch Generation Time
Benchmark/Program| Attack Type Detector| Locator & Generatorl Save & Recovery] Patch Insertef Total
Wilander’s Benchmarld Buffer Overflow [0.419s 1.789s 3.956s 1.127s 7.291s
ncompress 4.2.4 | Buffer Overflow | 0.967s 3.573s 4.028s 3.458s 12.026s
ATPhttpd 0.4b Buffer Overflow | 1.056s 2.134s 4.834s 2.124s 10.148s
Wuftpd 2.6.0 Format String | 3.871s 4.280s 5.376s 2.464s 15.991s
8. ACKNOWLEDGMENTS 2009.
We would like to thank the anonymous reviewers for their help [12] Pannus. http:/pannus.sourceforge.net/.

ful comments. This work was supported in part by grants froen t
Chinese National Natural Science Foundation (610730277 8071,
90818022, and 61021062), the Chinese 973 Major State Besic P
gram (2009CB320705), and US National Science Foundate46073,

[13]

B. Payne, M. de Carbone, and W. Lee. Secure and flexible
monitoring of virtual machines. IRroceedings of the 23rd
Annual Computer Security Applications Conference(ACSAC
2007), pages 385 —397, 2007.

0855141). Any opinions, findings, and conclusions or recemm
dations in this paper are those of the authors and do not seilgs
reflect the views of the funding agencies.

0.
(1]

(2]
(3]
[4]
5]

(6]

[7]

(8]
[9]

[10]

[11]

REFERENCES

Amazon elastic compute cloud (amazon ec2).
http://aws.amazon.com/ec2/.

Smashing the stack for fun and profit. Rinrack 7, 49, 1996.
CVE-2000-0573. Format string in wu-ftpd 2.6.0.
CVE-2002-1816. Buffer overflow in atphttpd 0.4b.

Q. Gao, W. Zhang, Y. Tang, and F. Qin. First-aid: surviyin

and preventing memory management bugs during production

runs. InProceedings of the 4th ACM European conference

on Computer systems(EuroSys'09), pages 159-172, 2009.
A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand.
Practical taint-based protection using demand emulakion.
Proceedings of the 1st ACM European conference on

Computer systems(EuroSys 06), 2006.
http://people.cs.ubc.ca/ andy/taint-xen.

Z.Lin, X. Jiang, D. Xu, B. Mao, and L. Xie. Autopag:
Towards automated software patch generation with source
code root cause identification and repairPhoceedings of
ACM Symposium on InformAtion, Computer and
Communications Security(AS ACCS 07), Singapore, March
2007.

Livepatch. http://sourcehoge.net/software/liveat

S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou. Bugbench:
Benchmarks for evaluating bug detection tools\Warkshop
on the Evaluation of Software Defect Detection Tools, 2005.
G. Novark, E. D. Berger, and B. G. Zorn. Exterminator:
Automatically correcting memory errors with high
probability. Commun. ACM, 51(12):87-95, Dec. 2008.

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli,

S. Soman, L. Youseff, and D. Zagorodnov. The eucalyptus
open-source cloud-computing systemPioceedings of the
9th IEEE/ACM International Symposium on Cluster
Computing and the Grid(CCGRID ' 09), pages 124-131,

[14]

[15]

[16]

[17]

[18]

[19]

[20]

J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe,

J. Bachrach, M. Carbin, C. Pacheco, F. Sherwood,

S. Sidiroglou, G. Sullivan, W.-F. Wong, Y. Zibin, M. D.
Ernst, and M. Rinard. Automatically patching errors in
deployed software. IRroceedings of the ACM S GOPS
22nd symposium on Operating systems principles(SOSP
'09), pages 87-102, 2009.

A. Ramaswamy, S. Bratus, S. Smith, and M. Locasto.
Katana: A hot patching framework for elf executables. In
Proceedings of the 4th International Workshop on Secure
Software Engineering (SecSE 2010). Co-published in the
International Conference on Availability, Reliability and
Security, pages 507 -512, 2010.

A. Smirnov and T. cker Chiueh. Automatic patch generati
for buffer overflow attacks. IfProceedings of the Third
International Symposium on Information Assurance and
Security(1AS 07), 2007.

C. Weidong, P. Marcus, and W. H. J. nad Locato Michael E.
Shieldgen:automatic data patch generation for unknown
vulnerabilities with informed probing. IRroceedings of the
2007 |EEE Symposium on Security and Privacy (SP'07),
pages 252-266, 2007.

Wikipedia. Format string attack.
http://en.wikipedia.org/wiki/Format_string_attack.

J. Wilander and M. Kamkar. A comparison of publicly
available tools for dynamic buffer overflow prevention. In
Proceedings of the 10th Annual Network and Distributed
System Security Symposium (NDSS 03), pages 273-286,
2003.

W. Zhou, P. Ning, X. Zhang, G. Ammons, R. Wang, and
V. Bala. Always up-to-date: scalable offline patching of vm
images in a compute cloud. FProceedings of the 26th
Annual Computer Security Applications Conference(ACSAC
'10), pages 377—-386, 2010.

