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ABSTRACT

Characterizing malware behavior using its control flow faces
several challenges, such as obfuscations in static analysis and
the behavior variations in dynamic analysis. This paper in-
troduces a new approach to characterizing kernel malware’s
behavior by using kernel data access patterns unique to the
malware. The approach neither uses malware’s control flow
consisting of temporal ordering of malware code execution,
nor the code-specific information about the malware. Thus,
the malware signature based on such data access patterns is
resilient in matching malware variants.

To evaluate the effectiveness of this approach, we first
generated the signatures of three classic rootkits using their
data access patterns, and then matched them with a group
of kernel execution instances which are benign or compro-
mised by 16 kernel rootkits. The malware signatures did not
trigger any false positives in benign kernel runs; however,
kernel runs compromised by 16 rootkits were detected due
to the data access patterns shared with the compared sig-
nature(s). We further observed similar data access patterns
in the signatures of the tested rootkits and exposed popular
rootkit attack operations by ranking common data behavior
across rootkits. Our experiments show that our approach
is effective not only to detect the malware whose signature
is available, but also to determine its variants which share
kernel data access patterns.
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1. INTRODUCTION
Characterizing malware behavior is a non-trivial research

problem and there have been many approaches to address
its challenges. A large body of work uses malware’s control
flow patterns, such as instruction sequences or system-call
sequences, to detect or analyze malware [2, 3, 9, 14, 15]. In
response to such approaches, malware often employs various
obfuscation techniques to confuse malware analyzers [8, 10,
25, 26]. Meanwhile, these approaches face challenges arising
from execution dynamics, such as dynamic code paths and
the impact of other system components (e.g., network la-
tency and signals), which can cause variations in the charac-
terized malware patterns. The situation is more complicated
in the kernel space because operating system (OS) kernels
have a highly dynamic workload, including interrupts, the
coordination of user processes, and the management of low
level resources (e.g., page tables).

For detection and prevention of kernel malware, there is
another collection of work called the code integrity-based ap-
proach [23, 24]. This approach allows only authorized code
for execution and considers any code outside the white list
as malicious. Therefore, this approach is effective for ker-
nel rootkits that introduce new code to kernel space. How-
ever, other advanced rootkits perform the attacks by exploit-
ing only legitimate kernel code (e.g., the usage of memory
devices [20], kernel bugs, and return-oriented programming
[13]); and such attacks are not properly handled by this ap-
proach. In addition, this approach authorizes kernel driver
code based on policies trusting OS developers or venders
without systematic examination of the code. For example,
existing code integrity-based approaches [24, 23] allow the
kernel text and a list of benign kernel modules included in
the OS distributions. These policies do not provide safety
from hidden malicious code inside the authorized code. Thus
the capability of examining kernel drivers for potentially ma-
licious behavior regardless of such policies is desirable.

In this paper, we introduce an alternative approach that
characterizes kernel malware behavior by using its data ac-
cess patterns. The idea is that when kernel malware tampers
with core kernel data, there exist unique kernel data access
patterns. As such, we could take a subset of data access pat-
terns that consistently appears in multiple kernel execution
instances only when the malware is active and generate the
malware signature using the subset.1 These patterns un-
der constraints neither include malware’s temporal control

1We use the terms “a kernel execution instance” and “a ker-
nel run”, to represent an instance of the OS kernel execution,
which starts from its booting and ends at its shutdown.



Figure 1: Overview of DataGene.

flow information, nor the code-specific information about
the malware. Therefore, this approach is less susceptible to
obfuscations and more effective for matching malware vari-
ants.

To evaluate the effectiveness of our approach, we gener-
ated the signatures of three classic rootkits and matched
them with benign kernel runs and malicious kernel runs
where the rootkits are active. This experiment did not trig-
ger any false positives in benign runs, but it did detect the
presences of the 16 kernel rootkits which have a variety of
attack goals and mechanisms. We further analyzed the data
behavior of such rootkits and found that a majority of them
exhibit shared behaviors to one another. We argue that such
common behavior can be used to effectively detect malware
variants (e.g., polymorphic rootkits, different versions, and
similar rootkits). Also, if an unknown malware shares a
data operation with any data behavior of existing rootkits,
its presence can be determined.

The contributions of this paper are as follows:

• We present a complementary approach that charac-
terizes kernel malware behavior by using its unique
data access patterns. This approach can be applied to
detect kernel rootkits that do not violate kernel code
integrity.

• This approach can automatically construct malware
signatures by using a binary-only malware program.
Malware behavior is extracted by capturing a subset of
kernel behavior that consistently appears across kernel
execution instances only when the malware is active.

• This signature uses data behavior with generalized code
information and does not involve control flow of mal-
ware code execution. Hence it can detect the variants
of kernel malware by exposing similar data behavior
across kernel malware.

We have implemented a prototype called DataGene based
on our approach. DataGene is mainly designed for non-
production systems such as a honeypot for kernel malware
and a malware analysis system. For instance, when a new
proprietary driver is deployed, DataGene can inspect it for
potential hidden malicious behavior similar to the behav-
ior observed in existing kernel malware. Also for a newly
distributed kernel malware sample, if it shares any data be-
havior with existing kernel malware, DataGene can detect it
and extract its data behavior, which can be used to detect
this malware and its variants. In addition, DataGene can
detect challenging kernel rootkits that do not violate ker-
nel code integrity. Therefore, this data-oriented approach
can complement the code integrity-based approach in the
defense against kernel malware.

2. DESIGN OF DATAGENE
In this section, we present the design of DataGene that

characterizes the behavior of kernel malware and determines
its presence based on data access patterns. As DataGene
uses information regarding memory accesses, for convenience
our design employs virtual machine techniques to capture
the accesses. The overview of DataGene is presented in Fig-
ure 1, and the components of this system are as follows.

As a basic unit to represent the kernel’s data behavior,
DataGene generates a summary of the access patterns for
all kernel objects accessed in a kernel execution instance. To
identify dynamic kernel memory objects, this process takes
advantage of a kernel memory mapping process (shown as
The Kernel Memory Mapper in Figure 1). For each access on
kernel memory in the guest OS, the virtual machine monitor
(VMM) intercedes and records the information of the ker-
nel memory access, such as the accessing code, the accessed
memory type, and the accessed offset (The Data Behavior
Aggregator).

To determine the malware behavior, the memory access
patterns for two kinds of kernel execution instances are gen-
erated: benign kernel runs and malicious kernel runs where
kernel malware is active. By taking the difference between
the two sets of memory access patterns, we estimate the
unique data behavior incurred from the kernel malware and
generate its signature (Data Behavior Signature). In or-
der to detect a kernel malware, the generated signature is
compared to the memory access patterns of a tested kernel
execution instance (Checking Kernel Execution).

2.1 Data Behavior Profile Approach
In this section, we present basic terminologies that repre-

sent the memory access patterns of kernel execution. A data

behavior profile (Dr) is a set of memory access patterns for
kernel data structures accessed in a kernel execution instance
r. An element of this set is called a data behavior element

or simply an element (e), and it is defined as a quintuple (5-
tuple): the address of the code that accesses memory (c), the
kind (read or write) of memory access (o), the kind (static
or dynamic) of the accessed memory (m), the class of the
accessed memory (i), and the accessed offset(s) (f) inside
the memory of the class i.

e = (c, o, m, i, f) , Dr = {e|e for static and dynamic kernel objects}
c is the address of the kernel code that reads or writes ker-

nel memory. o represents the kind of memory access which
is 0 for a memory read and 1 for a memory write.

The kind of the accessed memory, m, is 0 for a dynamic
object and 1 for a static object. The class i is defined differ-
ently, depending on the memory kind. Static objects are
known at compile time; therefore, we are able to assign
unique numbers as their identifiers. A class of a static object
can represent either a static data object or a kernel function
in the kernel text. In the case of dynamic kernel objects,
there are multiple memory instances for the same data type
at runtime. Dynamic kernel objects allocated by the same
code correspond to the data instances of the specific data
type used in the allocation code. Thus, we aggregate the
access patterns of dynamic kernel objects that share the al-
location code. The address of this code (called an allocation
code site) is used as a unique class for such objects.

f is an offset, or a range of offsets, accessed by the code
at c. We allow a range of offsets because if this object is an



Figure 2: An example of kernel code in benign and
malicious kernel runs.

array, the accessed offsets can vary for the same accessing
code. Handling them as separate data behavior elements
can cause a high number of elements with slightly different
offsets for the same accessing code. To avoid this problem,
we use a threshold to convert a list of elements whose off-
sets are different (but with the same accessing code) to an
element with an offset range.

Figure 2 presents kernel code showing the examples of
data behavior elements. The rounded box in the middle of
Figure 2 shows a dynamic kernel object allocated by the
code at the address c1. This figure shows how this object
is accessed by several code sites in kernel execution. Two
fields, next_task (offset 80) and prev_task (offset 84), are
written by the code at c2. The code at c3 reads the pid field
(offset 120). Therefore, the data behavior elements for this
code example are as follows.

(c2, 1, 0, c1, 80) , (c2, 1, 0, c1, 84) , (c3, 0, 0, c1, 120)

These elements are the access patterns in a benign kernel
run. If kernel malware is active in this kernel, the access
patterns can be extended due to the malware behavior. For
instance, if kernel rootkits hp and fuuld are active as shown
in the right-hand section of Figure 2, there would be ad-
ditional accesses to the next_task and the prev_task fields
by the code at c4 and c5. Consequently, the data behavior
profile is extended with the additional elements as follows.

(c4, 1, 0, c1, 80) , (c4, 1, 0, c1, 84) , (c5, 1, 0, c1, 80) , (c5, 1, 0, c1, 84)

Here c4 represents the code of the hp rootkit, which is
in the form of a kernel driver. The code integrity-based
rootkit defense approach [23, 24] can determine this access
as malicious based on the fact that this driver code is not
in the authorized code list. In contrast, the code at c5 is
part of legitimate kernel code which is indirectly exploited
to overwrite this data structure. This rootkit case does not
violate kernel code integrity; therefore, the approach based
on code integrity cannot detect this attack behavior.

In both cases, malware behavior uniquely appears only
when the malware runs. Our approach aims to capture such
unique behavior to determine the presence of malware.

2.2 Generating a Data Behavior Profile
In this section, we present the process for generating a

data behavior profile, which summarizes the access patterns
for all kernel objects accessed in a kernel run. Based on
this information, we generate the signature of malware and
inspect a kernel run for malicious data access patterns. A

Figure 3: Aggregating memory accesses on dynamic
kernel objects regarding their classes (allocation
sites) c1 and c2.

data behavior profile is generated based on two underlying
functions. First, kernel objects should be identified with
their unique classes. Second, the access patterns on numer-
ous (e.g., tens of thousands in modern OSes) dynamic data
instances should be summarized regarding their classes. We
present two system components to provide these functions.

The Kernel Memory Mapper. DataGene uses the
patterns of memory accesses on kernel objects and requires
a kernel memory mapping mechanism [1, 7, 19, 21, 22, 27]
to identify the targets of kernel memory accesses. Among
such approaches, LiveDM [21] provides runtime kernel mem-
ory mapping which enables the identification of a memory
access’ target. LiveDM identifies kernel objects by trans-
parently capturing the allocation and deallocation events of
kernel memory. The generated map maintains the alloca-
tion code for each dynamic object as its runtime identifier.
In offline static analysis, this identifier can be automatically
translated into a data type by traversing kernel source code.
We implemented the kernel memory mapper by employing
LiveDM’s approach.

The Data Behavior Aggregator. In a kernel ex-
ecution instance, there exist a varying number of dynamic
kernel data instances. To compare the access patterns of dy-
namic kernel objects in different kernel runs, it is necessary
to aggregate the memory accesses on such objects regarding
their classes. The allocation code represents the instantia-
tion of a data type at a specific code position. By using a
memory allocation code site as the classifier of dynamic ker-
nel objects, we can aggregate the access patterns of dynamic
instances of the same type and of a similar usage.

Figure 3 illustrates this aggregation process. When a dy-
namic kernel object is allocated in a guest OS kernel, the
kernel memory mapper stores its address range and the al-
location code site as the class information in the kernel mem-
ory map. We have a memory mapping layer to aggregate the
memory accesses on dynamic kernel objects regarding their
data classes. Whenever kernel code reads or writes any dy-
namic kernel object, the VMM intercedes and identifies the
targeted object by using its class information from the ker-
nel memory map. If this memory access pattern is new, it
is recorded in the aggregated memory profile.

2.3 Characterizing Malware Data Behavior
In this section we demonstrate how we characterize the

behavior of kernel malware based on data behavior profiles.
We first present the challenges and describe how we address
them. Then, we describe the generalization process in the
malware behavior to match similar behavior across different
kernel malware. Next, we present an algorithm to match a
malware signature with the data behavior profile of a kernel
execution instance.



Challenges and Our Solutions. DataGene character-
izes malware behavior by using the memory access patterns
uniquely observed in malware execution. To estimate such
information without requiring specific knowledge of mal-
ware, DataGene compares two kinds of kernel execution in-
stances: benign kernel runs and malicious kernel runs with
malware. This approach faces several challenges:

• Variations in the Runtime Kernel Behavior.
Generally, the difficulty in obtaining a complete set of
kernel execution paths is a well-known challenge for an
approach based on dynamic execution. If we focus on
the data behavior in benign execution, it is in fact a
problem because the runtime kernel behavior is highly
dynamic across different runs. However, we focus on
the data behavior of kernel malware that consistently
appears only when the malware is active. This be-
havior is a closed set of malware activity, and we use
multiple instances of malicious kernel execution to cap-
ture the subset of malicious behavior that meets such
constraints.

• Irregular Access Patterns on Kernel Stacks.
Kernel stacks are kernel objects that have irregular ac-
cess patterns. Whenever a kernel function is called or
returns, the stack is accessed for various purposes such
as return values, function arguments, and local vari-
ables. Since the kernel control flow is highly dynamic,
the set of code sites that access the stack and the ac-
cessed offsets within the stack vary significantly. Also,
the contents of kernel stacks are irregular at different
runs. As such, a simple way to handle this problem is
to exclude stacks from our analysis. The kernel mem-
ory mapper provides the identifier for kernel stacks and
we solve this problem by removing the information for
such dynamic objects from the analysis.

• Varying Offsets in Arrays. Some data structures
(e.g., arrays and buffers) have a range of space, a part
of which can be used at runtime. For example, the
accessed offsets of a buffer can be different depending
on the data contained in it. This problem is handled
by using multiple instances of kernel execution. If the
accessed offset of memory is different in each execution,
it is not used for a malware signature because it may
not be used in another run. Only the data behavior
that occurs in a consistent pattern when malware is
active becomes the candidate for the signature.

Characterizing Malicious Data Behavior. In order
to reliably characterize the data behavior of kernel malware
in dynamic execution, we use multiple kernel runs. DM,j

is a data behavior profile for a malicious kernel run j with
malware M . DB,k represents a data behavior profile for a
benign kernel execution k. We apply the set operations on
n malicious kernel runs and m benign runs as follows. The
generated signature is called a data behavior signature for
the malware M and shown as SM .

SM =
\

j∈[1,n]

DM,j −
[

k∈[1,m]

DB,k

This formula represents that SM is the set of data behavior
that consistently appears in n malware runs. However, this
is also a set of unique behavior that never appears in m

benign runs. The underlying observation from this formula
is that kernel malware will consistently perform malicious
operations during attacks so we estimate malware behavior
by taking the intersection of malicious runs. Such behavior
should not occur in benign runs. Therefore, we subtract the
union of benign runs from the derived malware behavior.

False positives may occur if a part of a signature is ob-
served in a new tested benign run. The cause of this prob-
lem is not unknown kernel behavior, but rather a part of
a signature not being properly pruned out in the signature
generation. By exercising a variety of workloads in multi-
ple kernel execution instances, we expect that such potential
behavior for this error can be significantly reduced due to
such constraints.

Generalizing Malware Code Identity. DataGene
aims at a solution that can handle rootkits regardless of their
attack vectors and can match the variants of rootkits whose
signatures are available. For example, DataGene can be used
to inspect suspicious data activity in the execution of new
signed drivers (which may include hidden malicious code),
the execution of an unknown driver (which may be malware
or its variant), or kernel execution (where legitimate kernel
code can be exploited indirectly for attacks).

In order to cover variants of malicious code, DataGene
does not use specific identification of kernel drivers. When
we generate or test signatures, we generalize the informa-
tion specific to kernel drivers, thus allowing signatures to
be tested against any driver from new signed drivers to new
driver-based rootkits. Specifically, when the signature for a
driver-based rootkit is generated, all code sites in this ma-
licious driver are substituted by a single anonymous code
site, ε. Some rootkits allocate memory and place their code
on it, and any code site in such memory is also generalized
as ε. In this process, we also generalize all benign kernel
modules in the same way and subtract their memory access
patterns from the candidates for the signature to collect only
the behavior unique to the malware.

We preserve the code sites in the kernel text. The mal-
ware exploiting the legitimate kernel code (e.g., the rootkits
using memory devices or return-oriented rootkits) is han-
dled by unique access patterns of legitimate code that are
not observed in benign runs. In addition, when we match a
malware signature with the data behavior profile of a kernel
run, we generalize the driver code in the tested run similarly
for comparison.

Matching a Malware Signature with a Kernel Run.
The likelihood that a malware program M is present in a
tested run r is determined by deriving a set of data behavior
elements in SM which belong to the data behavior profile,
Dr. This set I corresponds to the intersection of SM and
Dr

2 (i.e., I = {i|i ∈ SM ∧ i ∈ Dr}); however, this set
may not be symmetric for SM and Dr because we allow two
representations (i.e., an offset and a range of offsets) for the
f field of a data behavior element. Algorithm 1 presents
how this set I is generated.

Specifically, a data behavior signature SM and a data be-
havior profile Dr consist of data behavior elements for all
of the static and dynamic data structures. The CheckSig-
nature function in Algorithm 1 compares each element of

2The data behavior signature (SM ) is a data behavior profile
(i.e., a set of data behavior elements) because it is derived
by the intersection and union of data behavior profiles.



Algorithm 1 Algorithm to derive a set of data behavior
elements in SM that belong to Dr.

1: function CheckSignature(SM , Dr)
2: I ← ∅
3: for each e in SM do
4: for each e′ in Dr do
5: if CompareElements(e, e′)= 1 then
6: I ← I ∪ {e}
7: end if
8: end for
9: end for

10: return I

11: end function
12: function CompareElements(e, e′)
13: if e.c 6= e′.c ∨ e.o 6= e′.o ∨ e.m 6= e′.m ∨ e.i 6= e′i then
14: return 0
15: end if
16: if e.f is an offset then
17: if e′.f is an offset then
18: if e.f = e′.f then
19: return 1
20: end if
21: else ⊲ e′.f is a range of offsets.
22: if e.f ∈ e′.f then
23: return 1
24: end if
25: end if
26: else ⊲ e.f is a range of offsets.
27: if e′.f is a range of offsets then
28: if e.f ⊂ e′.f then
29: return 1
30: end if
31: end if
32: end if
33: return 0
34: end function

SM and Dr, and returns the set of common elements, I.
Two for-loops at lines 3 and 4 generate a pair of elements
each from SM and Dr, and those elements are compared by
calling the CompareElements function at line 5.

To consider the two compared elements e and e′ as iden-
tical, their c, o, m, and i fields first should be equal. Next,
their offset fields (e.f and e′.f) are compared. Because the
offset field can be either of an offset or a range of offsets,
there are several cases shown in lines 16-33. If e.f is an off-
set, it can match either an offset or a range of offsets. If both
e.f and e′.f are an offset, their values should be identical.
If e.f is an offset and e′.f is a range, they can match if e.f

belongs to e′.f ’s range. If e.f is a range of offsets, it can
only match a range of offsets that includes e.f .

3. IMPLEMENTATION
DataGene generates the patterns of kernel memory ac-

cesses transparently without making changes in the source
code of the OS. To implement this feature, we employ vir-
tualization techniques. We used the QEMU [4] virtualizer
with the KQEMU optimizer for our implementation. The
host machine has 3.2Ghz Pentium D CPU and 2GB RAM.
The guest machine is configured with 256MB RAM and the
Redhat 8 operating system. This experimental platform is
chosen for the convenience of implementation. However, our
mechanism is generic and applicable to other operating sys-
tems and virtual machine platforms.

We implement the kernel memory mapper and the data
aggregator in the VMM. The kernel memory mapper tracks
kernel memory allocation and deallocation calls and cap-
tures dynamic kernel objects at runtime similar to [21]. When
there is a request to the VMM, a data behavior profile can
be dumped into a file anytime during the execution of the

guest OS. For the purpose of generating a signature, dump-
ing the profile once the OS is completely shutdown is pre-
ferred to capture most data behavior. However, to detect
kernel malware, the data behavior profile can be generated
and periodically compared with the signature while the OS
is running.

In our experiments, we measured the quality of signatures
whether they trigger false positives as we increased the num-
ber of benign runs and malicious runs used for generating
malware signatures. We found with five or more sets of
benign runs and malicious runs, we could generate the sig-
natures that do not cause false positives in our testings with
newly generated benign runs. Therefore, we present the data
of these five sets of runs. However, we believe that a more
number of runs will certainly improve the quality of signa-
tures and it also depends on dynamic workload performed
in each run. In the benign runs, we performed various work-
load from daily commands to non-trivial application bench-
marks. The tested workload includes kernel compilation,
ssh, scp, lsmod, ps, top, find, and ls. Some workloads were
executed for several hours to allow any background admin-
istrative operation to be performed. We also used the work-
load of benign module loading and simple operations of the
/dev/kmem device (e.g., open and close without overwriting
kernel memory).

Among the memory accesses for kernel modules, we ex-
clude the accesses to a kernel module by the same module
which correspond to the accesses to a module’s local vari-
ables. This information is not used to generalize the internal
module activity. However, the accesses across modules are
used after generalizing the accessing code information. In
addition, the kernel data structure module having the admin-
istrative information regarding a kernel module is mapped
to the head of each module’s memory. We treat this part
of memory as a separate data structure from the remaining
module code or data.

4. EVALUATION
In this section we evaluate the effectiveness of our data be-

havior signatures. First, we extract the signatures of three
classic rootkits and match them with benign and malicious
kernel runs. Second, we compare the signatures of all of the
tested kernel rootkits to determine common data behavior
across different rootkits and how such common behavior can
be effective in detecting the variants of rootkits. Third, we
list specific data elements that are shared by rootkit signa-
tures, which provide an in-depth understanding of the attack
operations that are common across kernel rootkits.

4.1 Detecting Kernel Rootkits using Data Be-
havior Signatures

When a data behavior signature is generated, the infor-
mation specific to the malicious code is generalized in large.
Therefore, we hypothesize that data behavior signatures may
be used not only to detect the malware whose signature is
available, but also to determine the presence of related mal-
ware. In order to validate this hypothesis, we generated the
signatures of three representative rootkits, and tested benign
kernel runs and malicious kernel runs with 16 rootkits.

To generate malware signatures, we chose three rootkits:
adore 0.38, SucKIT, and modhide. The adore rootkit has been
studied in several rootkit defense approaches [17, 18, 23,
22]. This rootkit has several versions with differences in



Table 1: Properties of benign runs for generating rootkit signatures and testing false positives of signatures.

Properties of a data behavior profile
Kernel run for generating signatures Kernel run for testing false positives

1 2 3 4 5 1 2 3 4 5
# of classes for the dynamic objects 206 204 223 207 223 223 223 223 223 223
# of read code sites for the dynamic objects 10976 10857 12576 11365 12934 12610 12636 12635 13087 13118
# of write code sites for the dynamic objects 4342 4301 4885 4503 5176 4890 4911 4925 5285 5281
# of classes for the static objects 15800 15800 15800 15800 15800 15800 15800 15800 15800 15800
# of read code sites for the static objects 29609 29556 30151 29749 31353 30151 30172 30156 31053 33776
# of write code sites for the static objects 4605 4617 4707 4632 6837 4707 4714 4710 6968 8025
# of false positives - - - - - 0 0 0 0 0

Table 2: The number of matched data behavior elements between three rootkit signatures and the kernel
runs with 16 kernel rootkits (average of 5 runs, Ad1: adore 0.38, Ad2: adore 0.53, Ad3: adore-ng 1.56, SK:
SucKIT).

Signature (SM ) The number of matched data behavior elements between SM and the kernel runs with the rootkits shown below (|I|).
M |SM | Ad1 Ad2 Ad3 fuuld hide lkm SK superkit hp kbdv3 knark linuxfu Rial cleaner kis modhide modhide1

Ad1 45 45 37 16 0 0 10 10 3 5 20 5 7 0 17 0 0
SK 14797 3 2 1 16 13 14797 14767 0 1 2 1 1 0 18 0 1

modhide 3 0 0 0 0 0 0 0 0 0 0 0 0 2 1 3 2
Detected

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

features and we chose an old version, 0.38, for the signature
to evaluate its effectiveness toward newer rootkit versions
(0.53 and 1.56). SucKIT is known for its attack vector, the
/dev/kmem device, that avoids the conventional driver-based
mechanism [20]. Several other rootkits followed this trend,
using this device while having different goals. modhide is a
rootkit packaged with the adore rootkits to hide them from
the list of kernel modules.

We used five kernel runs with rootkits and five benign runs
to generate the signatures of such rootkits. Three data be-
havior signatures of the adore, SucKIT, and modhide rootkits
have 45, 14797, and 3 data behavior elements, respectively.
SucKIT has a significantly high number of elements because
it scans kernel memory to collect information about the at-
tack targets (e.g., the system-call table), and this behavior
is observed as reading numerous static objects with a variety
of offsets. Since we allow an offset or a range of offsets for
the offset field (f), the number of data behavior elements
can vary depending on the threshold to aggregate the ele-
ments. This number is the trade-off between the details of
malware behavior and efficiency in the size of malware be-
havior. We used 15 for this threshold after trying several
different numbers. The modhide rootkit simply manipulates
the kernel module list; thus, it has a few elements.

Using the generated three signatures, we inspected a to-
tal of 85 kernel runs: five benign runs, and 80 malicious
kernel runs with 16 kernel rootkits (each rootkit was used
to generate five malicious runs). These 16 rootkits included
the three rootkits used for generating signatures, two newer
versions of adore rootkits, and the other 11 rootkits. The
number of matched elements between the compared signa-
tures and the tested runs are presented in Table 1 (benign
runs) and Table 2 (malicious runs), which will be explained
below in detail.

Reliability in Benign Runs. Table 1 shows the infor-
mation about two sets of benign kernel execution instances:
five benign runs used for signatures (columns 2-6) and an-
other five benign runs for testing potential false positives
(columns 7-11). The top three rows (below the column head-
ing) show information about the dynamic objects, such as
the number of classes for the dynamic kernel objects, the
number of code sites that read the dynamic kernel objects,
and the number of code sites overwriting the dynamic kernel
objects. The next three rows have the similar information

for the static kernel objects. Since static objects (kernel
functions and static data structures) are known at compile
time, the “# of classes for the static objects” has the same
value in different runs.

The far right-hand five columns show the statistics for the
benign runs used for testing false positives of the signatures.
In these kernel runs, we generated an additional variety in
the workload (e.g., more applications and a heavier load with
multiple applications) so that such kernel runs contain more
code paths and data operations beyond the kernel runs used
for generating signatures. This additional runtime variation
results in more code sites for memory accesses (i.e., higher
numbers in # of read code sites and # of write code sites).

In this experiment, no false positive cases were found,
which confirms that our signature generation procedure cap-
tures a reasonably close set of unique data behavior of kernel
rootkits and that the tested runs did not contain any data
behavior that appears in the signatures.

Detecting Rootkits using Data Behavior Signatures.
Malicious kernel runs were next tested by using three signa-
tures to determine any running malware based on the sim-
ilarity of the data access patterns between the compared
signature and the kernel run. We tested a total of 80 ker-
nel runs of 16 rootkits having a variety of targets and at-
tack vectors. For instance, seven rootkits (fuuld, hide_lkm,
hp, linuxfu, cleaner, modhide, and modhide1) directly ma-
nipulate kernel objects (DKOM [6]). Four rootkits (fuuld,
hide_lkm, SucKIT, and superkit) manipulate kernel memory
by using the /dev/kmem memory device, among which two
rootkits (fuuld and hide_lkm) directly manipulate only ker-
nel data and do not violate kernel code integrity. Therefore,
they are not detected by code integrity-based defense sys-
tems [23, 24].

Table 2 presents the number of matched data behavior
elements between signatures and kernel runs with rootkits
(I). Two left-hand columns show the information about
signatures: the name (M) of the rootkit used for the sig-
nature and the size of the signature (|SM |). The remaining
16 columns present the number of data behavior elements
common in the compared signature (based on the rootkit in
the row heading) and the kernel run (where the rootkit in
the column heading is active). The presented numbers are
the averages of five kernel runs. However, the numbers are
consistent in the runs with the same rootkit.



Table 3: The number of common data behavior elements in the combination of rootkit signatures (Ad1:
adore 0.38, Ad2: adore 0.53, Ad3: adore-ng 1.56, SK: SucKIT).

M |SM | Ad1 Ad2 Ad3 fuuld hide lkm SK superkit hp kbdv3 knark linuxfu Rial cleaner kis modhide modhide1
Ad1 45 45 37 16 0 0 10 10 3 5 20 5 7 0 17 0 0
Ad2 53 37 53 26 0 0 10 10 3 5 19 4 7 0 19 0 0
Ad3 106 16 26 106 0 0 1 1 2 4 9 8 0 3 6 0 0
fuuld 37 0 0 0 37 13 16 16 0 0 0 0 0 0 0 0 0

hide lkm 4827 0 0 0 13 4827 13 13 0 0 0 0 0 0 0 0 0
SK 14797 3 2 1 16 13 14797 14766 0 1 2 1 1 0 18 0 1

superkit 14783 3 2 1 16 13 14769 14783 0 1 2 0 1 0 3 0 2
hp 27 3 3 2 0 0 0 0 27 0 1 5 0 0 1 0 0

kbdv3 16 5 5 4 0 0 2 2 0 16 4 0 6 0 3 0 0
knark 73 20 19 9 0 0 10 10 1 4 73 1 4 0 19 0 0
linuxfu 46 5 4 8 0 0 1 0 14 0 1 46 0 0 1 0 0
Rial 57 6 6 0 0 0 5 5 0 2 4 0 57 0 10 0 2

cleaner 5 0 0 3 0 0 0 0 0 0 0 0 0 5 1 2 2
kis 32097 3 3 4 0 0 17 2 1 1 3 1 2 1 32097 1 5

modhide 3 0 0 0 0 0 0 0 0 0 0 0 0 2 1 3 2
modhide1 8 0 0 0 0 0 1 2 0 0 0 0 2 2 5 2 8

# of effective SM 10 10 10 3 3 12 11 6 8 10 7 8 4 13 3 6
Max |effective SM | 37 37 26 16 13 14769 14766 14 5 20 8 7 3 19 2 5

If the rootkit used for the signature and the rootkit in the
tested run are identical, the entire signature was matched
giving |I| = |SM |. For example, the signatures of adore

0.38, SucKIT, and modhide rootkits fully match the kernel
runs with those rootkits (shown in italics). We consider
that a tested run includes a potential malware running if
one or more signatures have a matched element with the
kernel run. In our experiments, all kernel runs with rootkits
shared elements with one or more signatures, leading to the
detection of 16 kernel rootkits.

4.2 Similarities among Data Behavior Signa-
tures

In the previous section we demonstrated that a variety of
rootkits can be detected by using the signatures of a few clas-
sic rootkits because they have common data access patterns.
In this section we quantitatively measure the similarities in
data behavior across rootkits by generating and comparing
the signatures of the tested rootkits.

We first generated the signatures of 16 kernel rootkits by
applying the set operations (Section 2.3) on five kernel runs
with rootkits and five benign kernel runs. Then we calcu-
lated the similarities among signatures by applying Algo-
rithm 1 on the combinations of 16 rootkit signatures. Table
3 lists the number of common data behavior elements in
such combinations. For a pair of rootkits M1 in the row
heading and M2 in the column heading, the cross section of
the corresponding row and column shows the number of data
behavior elements common in two signatures of M1 and M2.
This number may not be symmetric for M1 and M2 because
a data behavior element can have two representations for its
f field (an offset or a range of offsets). If M1 and M2 are
the same rootkit, the number of elements is shown in italics.

For the rootkit M2 in the column heading, if positive num-
bers are listed in the column, the signatures of the rootkits
(in the row headings) can be used to determine M2. The
number of such signatures (except SM2

itself) is presented
at the second bottom row (# of effective SM ). The max-
imum size of such signatures is shown in the bottom row
(Max |effective SM |). In our experiments, a rootkit shares
its data behavior with 3∼13 of other rootkits (more than
seven rootkits in average). The rootkits show similar data
behavior not only among close variants (e.g., different ver-
sions of adore rootkits) but also across the rootkits having
different attack mechanisms (e.g., SucKIT shows similarities

with driver-based rootkits such as knark or kis).
The similarities of data behavior across rootkits are visu-

alized in Figure 4. A node represents a rootkit signature and
an arrow shows the similarity between two signatures using
three different arrow types. An arrow from a node M1 to a
node M2 means that the signature M1 can be used to deter-
mine the rootkit of the signature M2. This figure illustrates
that several groups of rootkits have strong similarities. The
family of adore rootkits (i.e., adore 0.38, adore 0.53, and
adore-ng 1.56) are strongly related in general. The adore-ng

1.56 is connected to other versions with less strong connec-
tions, thick dashed arrows, because in newer adore versions
(bigger than 1.0 whose name is changed to adore-ng), the
internal attack vector is substantially changed to use dy-
namic objects instead of static objects. A group of rootkits
using the /dev/kmem memory device (i.e., SucKIT, hide_lkm,
fuuld, and superkit) have a strong relationship to one an-
other. The SucKIT and the superkit are especially connected
by using thick solid arrows because they share a majority
of data behavior. Some rootkits have relationships with dif-
ferent kinds of rootkits. For example, the kis rootkit is
connected to driver-based rootkits such as the adore rootk-
its and the knark rootkit; but, it is also closely related to
/dev/kmem based rootkits such as the SucKIT.

As seen in Figure 4, the data behavior is not only common
in the family of rootkits or similar kinds, but also is available
across different kinds of rootkits. The signatures of these
related rootkits can be interchangeably used to detect one
another.

4.3 Extracting Common Data Behavior Ele-
ments

In this section we demonstrate the details of common
rootkit attacks which are systematically extracted based on
the similarities in rootkits’ data behaviors. The data behav-
ior elements from the signatures of all experimented rootkits
are ranked with the order of the appearance in rootkits’ sig-
natures (N). The top elements are presented in Table 4 after
being classified into several categories.

The first five columns present the contents of data behav-
ior elements (quintuple): the accessing code (c); the kind
of memory access (o) such as a read (R: o = 0) or a write
(W: o = 1); the kind of accessed memory (m) such as a dy-
namic object (D: m = 0) or a static object (S: m = 1); the
accessed memory’s class (i), which is converted to a data
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Figure 4: Similarities among the data behavior of rootkits. Types of arrows (|I|: # of the matched elements):
thin solid (0 < |I| <= 10), thick dashed (10 < |I| <= 30), and thick solid (|I| > 30).

Table 4: Top common data behavior elements among the signatures of 16 rootkits (Ad1: adore 0.38, Ad2:
adore 0.53, Ad3: adore-ng 1.56, SK: SucKIT).

Accessing code (c) o m Accessed data (i) Field,Offset (f) N Rootkits with this behavior Malware behavior
ε R D task struct pid 7 Ad1, Ad2, Ad3, hp, knark, linuxfu, kis Reading a process’s ID
ε R D task struct flags 6 Ad1, Ad2, Ad3, SK, superkit, knark Reading a process’s flag
ε W D task struct uid, euid, gid, egid 5 Ad1, Ad2, Ad3, kbdv3, knark Privilege escalation
ε R D task struct next task 5 Ad1, Ad2, Ad3, hp, linuxfu Listing processes
ε W D task struct addr limit 4 Ad1, SK, superkit, kis Setting an address space information
ε W D task struct suid, fsuid, fsgid 4 Ad1, Ad2, Ad3, knark Privilege escalation
ε W D task struct cap effective 3 Ad1, Ad2, Ad3 Privilege escalation
ε W D task struct cap inheritable 3 Ad1, Ad2, Ad3 Privilege escalation
ε W D task struct cap permitted 3 Ad1, Ad2, Ad3 Privilege escalation
ε R D task struct uid 3 Ad1, Ad2, kbdv3 Reading a user’s ID
ε R D task struct comm 3 Ad1, Ad3, linuxfu Reading a process’ name
ε W D task struct next task, prev task 2 hp, linuxfu Hiding a process
read kmem, write kmem R,W D file f pos 4 fuuld, hide lkm, SK, superkit Manipulation via /dev/kmem
memory lseek W D file f pos 4 fuuld, hide lkm, SK, superkit Manipulation via /dev/kmem
do write mem R,W D file f pos 3 fuuld, SK, superkit Manipulation via /dev/kmem
ε R D module next 4 kis, cleaner, modhide, modhide1 Scanning the kernel module list
ε W D module next 3 cleaner, modhide, modhide1 Hiding a kernel module
ε W S sys call table # 141 4 Ad1, Ad2, knark, Rial Hijacking a system-call
ε W S sys call table # 2,37,120,220 3 Ad1, Ad2, knark Hijacking a system-call
ε W S sys call table # 6 3 Ad1, Ad2, Rial Hijacking a system-call
ε W S sys call table # 5 2 Rial, modhide1 Hijacking a system-call
ε W S sys call table # 3 2 knark, Rial Hijacking a system-call
ε W S sys call table # 59 2 SK, superkit Hijacking a system-call

generic copy from user W S sys call table # 59 2 SK, superkit Hijacking a system-call
ε W S sys call table # 39 2 Ad1, Ad2 Hijacking a system-call
ε W S proc root inode operations lookup 2 Ad1, Ad2, Ad3 Hijacking a hook on static memory

type for dynamic data or a variable name for static data;
and the accessed offset(s) (f). The offset is converted to a
field name if it corresponds to a specific field. If the accessed
object is the system-call table, a system-call number (#) is
designated by dividing the offset by the size of a pointer.
The number N and the names of rootkits whose signatures
have this element are listed in the next columns. A short
description of the element is provided in the far right-hand
column by considering the accessed data, offset, and access-
ing code.

Attacks on Process Control Blocks (PCBs). The
first category at the top of Table 4 lists the data behavior
that targets the PCBs (type: task_struct in Linux). This
is a core data structure that maintains administrative infor-
mation about processes. Therefore it is a major target of
rootkits, which aim to manipulate such information.

Table 4 shows that seven rootkits read the process ID
numbers in PCBs during attacks. The flags of the processes
are accessed by six rootkits. Several rootkits, such as the
family of adore rootkits, the kbdv3 rootkit, and the knark

rootkit, provide a back-door that permits the root privi-
lege to an ordinary user. The hp and linuxfu rootkits show
an attack pattern that manipulates the pointers connecting
PCBs. This behavior can hide PCBs from the view inside
the operating system.

Attacks using /dev/kmem. The second category
shows the rootkit behavior that manipulates kernel mem-
ory by using a memory device (e.g., /dev/kmem). This de-
vice allows a user program to read and write kernel memory
like a file putting the kernel integrity at risk. The kernel
runs compromised by fuuld, hide_lkm, SucKIT, and superkit

rootkits commonly show unique data behavior that the ker-
nel functions related to memory devices access file kernel
objects.

Attacks on the Kernel Module List. The next cate-
gory lists rootkit attacks on the kernel module list. The next

pointer field of module objects are read or written by the kis,
cleaner, modhide, and modhide1 rootkits. The module objects
constitute the list of kernel modules and they are connected



by this pointer field. The rootkit attacks that hide a module
appear as the direct manipulation of this field.

Attacks on Static Kernel Objects. The last category
is the manipulation of static kernel objects. Several rootkits
hijack the system-calls by replacing the system-call table en-
tries with the addresses of malicious functions. This behav-
ior is captured by the manipulation of the system-call table
by several code sites, depending on the attack vector. In the
case of driver-based rootkits, such behavior is captured as
access by the generalized rootkit code, ε. The rootkits based
on memory devices (e.g., /dev/kmem) use legitimate kernel
code for manipulation (e.g., __generic_copy_from_user).

5. DISCUSSION
DataGene is a signature-based approach that detects known

and unknown rootkits based on kernel data access patterns
similar to the signatures of previously analyzed rootkits. If
a rootkit’s attack behavior is not similar to any behavior
in existing signatures or it does not involve kernel data ac-
cesses, such malware is out of coverage of DataGene since
such behavior does not match the DataGene’s signature.

Many existing rootkits that share the attack goals often
exhibit similar data access patterns because essentially these
malicious programs generate a false view by manipulating le-
gitimate kernel data structures relevant to the goals. Our
approach can detect rootkits by focusing on the common at-
tack targets described in the malware signatures even though
such rootkits have different functionalities.

Obfuscating data access patterns involves comparatively
more sophistication than code obfuscation because malware
requires to use alternate legal code to access kernel data
beyond the diversification of malware’s own code patterns.
Such attack attempts can be detected by employing the de-
fense approaches against control flow anomaly.

DataGene is mainly designed for kernel malware analy-
sis where a potential attack sample is analyzed to determine
whether it is malware based on its data behavior. In such an
analysis/classification environment with controlled configu-
rations, it is possible to produce no false alarms as presented
in our experiments. However, if this technique is further
aimed towards a production environment where a diversity
of workload could be generated, false alarms may occur due
to the foundation of our technique on dynamic execution.

6. RELATEDWORK
DataGene introduces a new approach that generates the

signature of kernel malware by using their unique data access
patterns. There are several approaches related to DataGene
in the area of kernel malware analysis and detection.

Malware Defense based on Code Behavior. There
has been a variety of approaches which characterizes mal-
ware’s behavior by using its control flow (e.g., instruction
sequences and system-call sequences) [2, 3, 9, 14, 15], and
such approaches face the following challenges.

First, malware can obfuscate its execution to elude the
code behavior-based malware analyzers. Several papers de-
scribe obfuscating techniques such as dead code insertion,
code transformation, and instruction substitution [8, 10, 25,
26]. Second, malware’s control flow can vary at runtime
and the detection mechanism using malware’s code behav-
ior should be able to handle such variations.

Complementing these approaches, DataGene uses the pat-
tern of kernel memory accesses, to characterize malware be-
havior. Because this approach avoids using the control flow
of malware, it can be less susceptible to code obfuscation
techniques or variations in the malware’s control flow.

Kernel Malware Defense based on Code Integrity.
The approach based on code integrity [23, 24] allows only au-
thorized kernel code: the kernel text and the kernel modules
on a white list. This approach is effective to prevent kernel
rootkits that introduce their own code. However, advanced
rootkits operate without explicitly injecting malicious code
by using techniques such as kernel memory devices, kernel
bugs, or return-oriented programming; and this approach
cannot handle such cases. DataGene presents a new angle
and detects rootkits based on their unique data behavior.
Thus it could be applied to such challenging rootkits.

Kernel Rootkit Profilers. Kernel rootkit profilers
[22, 27] provide a variety of aspects of rootkit behavior by
analyzing rootkit activities and examining user space im-
pact. The profiling result of these approaches is specific to
the analyzed malware. In contrast, DataGene uses the mal-
ware’s memory access patterns whose code information is
generalized. Therefore, it has the potential to detect rootkit
variants that are similar in data behavior. Also DataGene
explores common characteristics across multiple rootkits.

Signatures based on Data Structures. Laika [11]
can determine data structures and classify their unique pat-
terns for malware. This approach is effective for user space
malware (e.g., botnet programs), which has its own mem-
ory space. However, kernel malware’s code and data reside
in kernel memory together with legitimate kernel code and
data. Also kernel malware targets legitimate kernel data
and hijacks kernel hooks in addition to using its own data.
Therefore, the data behavior in the kernel space is the mix-
ture of the kernel and the kernel malware.

Several approaches [7, 12, 16] can detect kernel data struc-
tures based on data properties such as data values and pointer
connections. Based on the discovery of data structures,
these approaches can also detect kernel rootkits that hide
kernel data structures. While the signatures of such ap-
proaches are the properties of the data structures, the sig-
natures of DataGene is the properties of malware. Those are
generated by using unique data access patterns of malware.

Inter-relationship between Code and Data. SegSlice
[5] is a trapping framework that measures and enforces the
relationships between the program’s code and data units
(called slices) using the x86 segmentation system. These
relationships are defined by the programmer using SegSlice
API. Kernel data access patterns captured by DataGene
reflect the relationships between code and data represent-
ing which code is expected to access what types of data.
These access patterns are systematically captured from the
dynamic execution of an operating system kernel by using
virtualization technique.

7. CONCLUSION
We have presented a new approach to characterize the

behavior of kernel malware by using the patterns of kernel
data accesses unique to the malware. The data behavior
signature is constructed after generalizing the malware code
information. This abstracted data behavior does not use



temporal control flow information; therefore, it can match
similar data behavior across rootkits and their variants.

Our experiments show that the signatures of three classic
rootkits can effectively detect the kernel runs compromised
by 16 kernel rootkits and does not trigger any false positives
in benign runs. We observe common data behavior across
the kernel rootkits in the comparison of their signatures. In
addition, we present the details of common data behavior,
which provide an in-depth understanding of popular attack
behavior of kernel rootkits.
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