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ABSTRACT
Audit logging is an important approach to cyber attack in-
vestigation. However, traditional audit logging either lacks
accuracy or requires expensive and complex binary instru-
mentation. In this paper, we propose a Windows based audit
logging technique that features accuracy and low cost. More
importantly, it does not require instrumenting the applica-
tions, which is critical for commercial software with IP pro-
tection. The technique is build on Event Tracing for Win-
dows (ETW). By analyzing ETW log and critical parts of
application executables, a model can be constructed to parse
ETW log to units representing independent sub-executions
in a process. Causality inferred at the unit level renders
much higher accuracy, allowing us to perform accurate at-
tack investigation and highly effective log reduction.

1. INTRODUCTION
Cyber attacks are increasingly targeting enterprise envi-

ronments, including corporate, financial, government, and
educational institutions. These attacks range from tradi-
tional single-vector, “blanket” attacks to advanced targeted
attacks (also called advanced persistent threats or APTs).
Cyber attacks against enterprises are launched by sophisti-
cated attackers, often backed by adversarial groups or or-
ganizations, for financial gain, intelligence collection, or so-
cial/political disruption. They tend to be stealthy, low-and-
slow, and sometimes disguised via psychosocial campaigns.
The traditional signature based scanning for individual ap-
plications may become suboptimal for APT attack detection
and investigation.

Audit logging is hence an important approach. With au-
dit logs, one can trace back the “entry point” (i.e., prove-
nance) of an attack and understand how it leads to the de-
tected anomaly. Audit logging also reveals ramifications of
the attack, i.e., what damages have been inflicted and which
data assets are being targeted. In state-of-the-art audit log-
ging techniques [11, 16, 8, 14, 21], processes are defined as
subjects; whereas files, sockets, and other passive entities
are defined as objects. A system/library call event creates

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’15, December 07-11, 2015, Los Angeles, CA, USA
c© 2015 ACM. ISBN 978-1-4503-3682-6/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2818000.2818039

a causal relation (edge) between a subject and an object
(e.g., a process reading a file), or between two subjects (e.g.,
a process spawning a child process). Based on log entries
recording such events, a causal graph can be constructed –
triggered by an anomalous event – to reveal the provenance
and ramifications of an attack.

However, existing techniques have the following limita-
tions: (1)Dependency explosion. More specifically, the coarse
granularity of processes and objects leads to the following
problem: When a long-running process reads from many in-
put objects and creates/modifies many output objects, each
output object will be conservatively considered causally de-
pendent on all preceding input objects. Meanwhile, with
many processes reading/writing-to an object (e.g., a file),
each reading process will be considered causally influenced
by all the preceding writing processes. Dependency explo-
sion makes causal analysis inaccurate or, in practice, unhelp-
ful. (2) Requiring application instrumentation and tedious
training. Some recent techniques such as BEEP [21] is able
to mitigate the dependence explosion problem. However it
requires analyzing a few training executions and instrument-
ing the executables. While the former requires substantial
human efforts, the latter may not even be applicable on the
Windows platform1. Moreover, it requires training and in-
strumentation after every software updates or patches which
is a heavy burden to an administrator, and if the training
does not cover some code section, it might produce inac-
curate results. (3) Most of these techniques are based on
Linux audit system that has substantial space and runtime
overhead [21, 20].

In this paper, we develop a novel audit logging technique
based on Event Tracing for Windows (ETW) [1], which is
a event tracing mechanism provided by Windows. It does
not require instrumenting applications. Our technique an-
alyzes the ETW logs and critical parts of the application
executables (e.g. the event handling loop) such that mod-
els for applications can be constructed. A model can be
used to parse the execution of an application to independent
units that are autonomous and process individual external
requests. Causality analysis becomes much more precise at
the unit level, which enables a number of critical applica-
tions.

Our contributions are summarized as follows.

• We propose a novel instrumentation-free audit logging
technique based on ETW. It can automatically recog-
nize event loops whose iterations denote autonomous

1See discussion in Section 2
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execution units.

• The accurate causal inference enabled by units allows
us to perform effective garbage reduction on ETW logs.

• We have built a prototype. Our experiments show that
the overhead of our technique is trivial. The space re-
duction by garbage reduction ranges from 12X to 95X.
The attack causal graphs are accurate and very con-
cise, orders of magnitude smaller than most existing
techniques.

2. MOTIVATING EXAMPLE
In this section, we present a concrete, realistic insider at-

tack scenario to motivate our work and show how our tech-
nique works. The attack we will demonstrate in this sec-
tion involves multiple applications such as Apache webserver
(httpd) and notepad++, and also human efforts.

Scenario Description: An employee in a company is work-
ing on a project to develop a new product. He was bought
by a competitor of his home company to steal some critical
data related to the product. During the final test of the
project, he was granted the access to the data and finally
had the chance to steal it. He opened the file containing the
secret, copied the confidential part and pasted it to a pub-
licly accessible HTML file that he downloaded before using
Chromium from y.y.y.y. As such, he releases the secret in-
formation without making or transporting a hard copy of
the secret file, which may be easily detectable. During the
procedure, the employer used two different editors, notepad
and notepad++, to go through multiple copy and paste op-
erations to cover his trail.

Traditional Investigation Process: Assume the com-
pany finds out that the information got stolen and wants
to start investigation of the incident. Traditional forensic
analysis techniques [15, 8, 14] collect and analyze system-
level events (e.g., syscalls) to locate the source of attack and
the damages caused in the system. Fig. 1(a) illustrates the
causal graph generated by previous forensics techniques, in
which ovals, diamonds, and boxes represent processes, sock-
ets, and files, and are annotated by process name, socket IP
address, file name, respectively. An edge denotes the direc-
tion of information flow, the causal relation, between two en-
tities. Note that the copy and paste operations (through the
clipboard) are the key events to detect the attack. However,
they cannot be detected by current syscall-based techniques
because the confidential information is transferred through
memory operations rather than syscalls. We use dotted lines
to represent copy and paste operations that cause depen-
dence between notepad and notepad++. In this graph, we
use gray boxes to represent the real attack path. The se-
cret was originally stored in file sec.txt, which is edited by
notepad. Then the employee copies the sensitive informa-
tion to the clipboard buffer, and then pastes it to the file
htdocs/index.html, which is opened by notepad++. When
the attacker downloads this file from outside the company,
the httpd server reads it and sends to the attacker, whose IP
is x.x.x.x.

Assume now the administrator wants to identify how the
secret file was leaked. She first analyzes causal dependences
originating from the secret file, sec.txt. From the causal
graph in Fig 1(a), she finds that the file is only read by pro-
cess notepad. However, the attacker carefully designed the
attack to avoid being detected by system-level audit logging.

Particularly, he used copy and past operations which are not
implemented by syscalls but rather memory operations.

Another approach the administrator can take is backward
analysis, in which she first identifies the suspicious IP ad-
dress through which the sensitive information is leaked. She
then wants to figure out the provenance of the file (i.e., which
processes updated the file and what operations have been
performed on the file). Assume in this case, the admin-
istrator is able to recognize that IP x.x.x.x belongs to the
competitor and the file htdoc/index.html was downloaded
by the IP. She was able to further track down that the
file was updated by both Chromium and notepad from the
causal graph. However, it becomes very difficult to fur-
ther traverse backward for the following two reasons. (1)
Chromium is a long running process. During its lifetime,
it accessed many IPs. It is very difficult to figure out the
IP from which htdoc/index.html was downloaded. The root
cause is that in a long running process, an output syscall has
to be considered dependent on the large number of preced-
ing input syscalls. This is called the dependence explosion
problem [21]. (2) Since the copy-paste operations between
notepad and notepad++ cannot be captured. The path back
to sec.txt is broken. As a result, the backward analysis does
not help to identify the attack either.

Existing Approach: Recently, researchers have proposed
various approaches [15, 8, 16, 21, 25] to mitigate the depen-
dence explosion problem. Many of them use simple heuris-
tics such as using timestamps to approximate causality, us-
ing a white list to preclude unnecessary dependences, trying
to distinguish processes that operate on different segments of
a file, and separating an execution to segments bounded by
two consecutive sockets reads to reduce false dependences.

BEEP [21] showed simple heuristics based approaches are
ineffective in practice, mainly due to the asynchronous de-
sign of many long-running programs. This work [21] ad-
dressed the dependence explosion problem by partitioning
a long execution into execution units, which are essentially
iterations of an event processing loop.

However, BEEP has some fundamental limitations, espe-
cially on the Windows platform. First, BEEP requires to
insert additional logging commands at a small number of
critical places such as event handling loop boundaries to fa-
cilitate execution partitioning. Instrumenting COTS Win-
dows executables is not legitimate in many cases and hence
prohibitive in the enterprise environment. Secondly, BEEP
requires an extensive training phase, in which applications
have to run in a runtime profiler which incurs slowdown of
two orders of magnitude. Moreover, the same training has to
be repeated every time the application is updated, which is
a heavy burden for the system administrator. Third, BEEP
is built on the default Linux audit logging system, which
incurs high runtime and space overhead. Lastly, BEEP can-
not detects causal dependences between processes through
memory operations (e.g., copy and paste via clipboard).

3. OVERVIEW
Our technique aims to address most of the aforementioned

limitations. The technique does not require any binary in-
strumentation nor runtime training. Instead, it leverages
Event Tracing for Windows (ETW), which is a build-in log-
ging facility for any Windows system, which allows user to
configure and log system level events with negligible over-
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(a) A simplified graph generated by traditional methods. The original graph contains 165 files, 9982
sockets and 75 processes.
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(b) Insider Attack graph generated by our technique.

Figure 1: Insider Attack: diamond, box, and oval represent communication channel, file and process, respectively.

head. Given an application binary, our technique analyzes
the binary statically, with the help of one (or a few) ETW
log(s) for the application, to construct a log parsing model.
The model allows us to partition any ETW log of the same
application to units, each unit containing the system events
belong to an autonomous sub-execution (e.g., the handling
of an independent external request). Causal graphs are con-
structed from the partitioned ETW logs, allowing forensic
analysis. Inter-process memory based communications are
handled by wrapping the correspondingWindows APIs. The
wrappers emit special system events that are captured and
handled by the underlying ETW system.

Fig. 2 presents the overview of our approach:
Step 1. Log Collection: The user simply uses ETW to
collect an execution log for normal system execution that
includes all the commonly used applications. ETW allows
us to collect system-level events such as system calls. We
extend ETW to additionally record important non-system
events such as copy and paste through clipboard and their
corresponding stack frames.
Step 2. Prefix Analysis: In this step, for each appli-
cation, we take its executable binary and extract the log
entries belonging to its execution from the ETW log(s) we
collected. Then the application logs are analyzed to identify
the target function, which is a function that contains the
event processing loop, an autonomous execution unit that
handles independent external event/request. This analysis
is based on the observation that the event handling loop of
an application is usually present in some top level function,
which means that it must appear as the common prefix of
the stack frames of all the events occurring inside the event
handling loop, which corresponds to the dominant phase of
execution. This technique is named prefix analysis.
Step 3. Program Analysis: Third, we analyze the appli-
cation binary to build a model. In particular, we disassemble
the program binary and analyze the target function. Some
Windows binaries are difficult to disassemble or analyze [6]
due to their characteristics, such as packing, runtime self-
modification, and extensive use of function pointers. For
those programs, the models are directly constructed from

the ETW logs of the applications. Note that ETW logs
are oblivious to the aforementioned obfuscation due to their
dynamic nature. Intuitively, the reader can consider the
models constructed in this phase are automata that allow
parsing ETW logs to units.
Step 4. Unit Recognition: Fourth, we use the models
from the previous step to partition any runtime ETW logs
to units. At the top level, the models allow us to parti-
tion the log entries belonging to individual applications to
three phases: the starting phase, closing phase, and event
handling phase. The starting phase initializes program re-
sources and configuration, and the closing phases releases
resources before the program termination. The models fur-
ther parse the log entries in the event handling phase to log
units, each denoting an iteration of the event handling loop.
The aforementioned steps 2, 3, and 4 are tightly connected.
We will discuss detail of these steps in Section 4.2.
Step 5. Causality Analysis: In this step, the unit-based
log from the previous step is analyzed to generate an accu-
rate causal graph. In the graph, a process is decomposed into
many autonomous units with the corresponding partitions
of the objects (e.g., files, sockets) accessed by each unit. An
output event is considered dependent on the preceding input
events in the same unit instead of the preceding input events
in the whole execution. As such, dependence explosion can
be avoided. Fig. 1(b) presents the graph generated in this
step for the insider attack example. Now our graph has a
much smaller number of nodes and edges than the graph gen-
erated by other approaches that are not unit based. Still it
precisely and concisely captures the attack path. Note that
although theoretically BEEP can produce casual graphs of
similar quality, its requirement of binary instrumentation
and extensive training, and the entailed overhead make it
unsuitable for deployed Windows systems.
Step 6. Applications: Our technique is general and can
be used in different applications that require accurate log-
ging. In this paper, we discuss two of these applications: (1)
generating attack analysis reports as shown in this section,
and (2) removing unnecessary log entries (Section 4.4) for
better space efficiency.
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Figure 2: Approach Overview.

1 Timestamp : 0 x20462 fbd1 fb (1 )
2 EventType : WinsockTcpIpRece ive
3 −Event De t a i l e s−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 T r a n s f e r S i z e : 8000 (2 )
5 −Process−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 Proce s s : 3112 ht tpd . exe (3 )
7 Thread : 3948 msvcr t . d l l ! end th r eadex+0x29
8 −Stack Trace−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 . . . ( L i b r a r y and k e r n e l f u n c t i o n s ) (4 )

10 l i b a p r −1. d l l ! a p r s o c k e t r e c v+0x42
11 . . . ( A p p l i c a t i o n f u n c t i o n s )
12 l i b h t t p d . d l l ! worker ma in+0x9c
13 . . . ( Ke rne l f u n c t i o n s )

Figure 3: An example log entry of our enhanced
ETW logging system. StackTrace entry is either
in the format of <image>+<offset to image> or
<image>!<symbol>+<offset to symbol> depending
on the availability of the symbolic information.

4. SYSTEM DESIGN
In this section, we present the details of each component

of our system.

4.1 Log Collection
We leverages the Event Tracing for Windows(ETW) [1]

system that is a build-in event tracing mechanism on all
deployed Windows systems. We choose ETW because of
its availability (supported by all Windows systems since
Windows XP), its capabilities (e.g. supporting thread level
tracking, all operations on files/sockets, and stack tracing)
and its low overhead (demonstrated by our experimental re-
sults in Section 5).

However, ETW events alone cannot support the discovery
of all important causal relations. For example, the depen-
dency of copy-and-paste operations are not captured. With
such missing dependency, the whole attack path for the in-
sider attack as demonstrated in Section 2 cannot be ana-
lyzed. We will shortly present how we solve this problem
via the enhancement of monitoring.
Log Format: Fig. 3 shows an example log entry of our
logging system. The first block, (1), includes the basic
information of the event, such as the timestamp of the event
(Timestamp), the event type (EventType) and so on. The
second block, (2), lists the details of the event. The content
of this block is specific to the type of the event, so it varies for
different event types. For example, for a FileCreate event, we
will have the name of the file created in the block. The third
block, (3), shows what process and thread were running
when the event occurred. Lastly, the last block, (4), has
the stack trace that ETW collected at the time of the event.
Each entry of the stack trace represents a callee function
with its upper entry being its caller function.

ETW collects kernel events and the corresponding stack
walk events separately. Specifically, when a kernel event

occurs, ETW initiates a stack walk request, resulting in a
separate stack walk event which contains the stack trace
and some basic information such as timestamp and process
ID. Our system preprocesses the raw ETW logs, associating
a kernel event with the corresponding stack walk event by
correlating their process IDs and timestamps. The resulting
log is stored in the aforementioned format.
Enhancement: ETW does not cover all OS events. For
example in Section 2, we show that ETW cannot trace clip-
board operations. We, therefore, enhance ETW by adding
the monitoring of non-kernel IPC operations; to monitor
clipboard operations, we treat the clipboard buffer as a spe-
cial file shared by all processes. In particular, we lever-
age two important observations. First, all read operations
on the clipboard file only depend on the most recent write
operation. Second, a write operation has no dependency
with other clipboard operations. Therefore, we intercept
the Windows APIs that access the clipboard to emit special
kernel level events that can be trapped and logged by ETW.
We note that the overhead of the clipboard monitoring is low
since the frequency of copy and paste operations is small in
most cases. We envision that if new IPCs are added to Win-
dows in the future, the system can be extended to support
them with the same idea.

4.2 Log Analysis
As we have mentioned earlier, a unit is an iteration of the

event handling loop. Our ultimate goal is to be able to parse
a log file to units such that an output event is only causally
related to the preceding input events in the same unit, not
the same process. A possible approach is to instrument bi-
naries like in [21] such that special events are emitted and
logged at unit boundaries. However, this is impractical for
Windows binaries due to the possible legal concerns and the
involved complexity in Windows binary instrumentation [6].
Hence, we propose an algorithm that combines log analy-
sis and binary program analysis to derive models that can
be used to parse logs to units. First, for an application in
the system, we analyze the logs to find the function which
contains the event handling loop of the application. Then
based on the disassembled function information we construct
an automata model used to parse log files to units.

4.2.1 Prefix Analysis
The prior task to build an automata model is to find the

function that contains the event handling loop. We call this
function a target function in this paper. Recall that the
execution of a long running process can be divided into three
phases:

1. Phase 1 (Prologue): the starting phase that initializes
the execution including reading configuration files, al-
locating memory etc.
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2. Phase 2 (Unit): the event handling phase that pro-
cesses a long sequence of events.

3. Phase 3 (Epilogue): the closing phase that releases all
resources and ends the execution.

Units are typically generated only in the second phase. Phase
1 and 3 do not handle external events, although they also
generate ETW events in the log file. Hence, we need to
filter the log to preclude the events of phase 1 and 3. We
observe that phase 1 and 3 are usually the same for different
runs of the same program, whereas phase 2 depends on the
inputs, and usually generates different ETW events. Thus
we just take two different traces of the same program. By
comparing the two event sequences, we identify the common
event subsequences at the beginning and the end of the log
files. However, this may mis-classify some log entries that
belong to the second phase to phase 1 or 3. It happens
when the first or last a few external events in phase 2 share
the same event handler with similar parameters. Also, such
small errors do not affect the precision of the models that we
generate because the models are eventually generated based
on program analysis. When the log file is parsed with the
precise models, the misclassification can be corrected, as to
be shown shortly. In this step, as long as the majority of
the log is formed by log entries from phase 2, we are able to
identify the target function. After pruning the prologue and
epilogue phases, the remaining events are supposed to be
spawned from the event handling loop. There are two main
observations about the event handling loop: (1) an event
handling loop is most likely a top level loop, meaning that
it is not nested in any other loop; (2) event handling loop
body will receive inputs and/or produce outputs such that
it will generate ETW events like socket reads and writes.
These two observations help us locate the target function.
In particular, the target function will always be present in
the first a few stack frame entries of the phase 2 events. As
such, we first compute the common prefix of all the phase 2
event stack frames and consider the user function closest to
the end of the prefix as the target function. Due to the nosies
from phases 1 and 3, we rank the candidates according to
their frequency of appearance, and analyze the caller-callee
relationship to find the correct target function.

1 vo id main ( ) {
2 i n i t ( ) ;
3 wh i l e ( True ) {
4 F1 : read cmd ( ) ;
5 i f (cmd==Fi l eDownload ) {
6 i f ( f i l e ok to download ) {
7 F2 : fd = o p e n f i l e ( f i l e n ame ) ;
8 i f ( open f a i l s )
9 F3 : e r rmsg con t i n u e (MSG2) ;

10 buf = memory a l l o c a t i on ( s i z e ) ;
11 wh i l e ( t r a n s f e r not done ) {
12 F4 : r e a d f i l e ( fd , buf ) ;
13 F5 : w r i t e d a t a ( socket , buf ) ;
14 }
15 memory f ree ( buf ) ;
16 F6 : c l o s e f i l e ( fd ) ;
17 } e l s e
18 F7 : e r rmsg cont inuemsg ( socke t , MSG3) ;
19 } e l s e i f (cmd==. . . ) { . . . }
20 } // end wh i l e
21 s e r v e r e x i t ( ) ;
22 }

Figure 4: An example of event handling loop: the main
function of AdvancedFTP. F1-F7 are the labels for syscalls.

1 SocketRead : windows runt ime−>main−>read cmd −>...
2 Fi l eOpen : windows runt ime−>main−>o p e n f i l e −>...
3 F i l eRead : windows runt ime−>main−>r e a d f i l e −>...
4 SocketWr i t e : windows runt ime−>main−>wr i t e d a t a −>...
5 F i l e C l o s e : windows runt ime−>main−>c l o s e f i l e −>...

Figure 5: Illustration of common prefix
(windows runtime→main) and the target function (main)
in stack frames of AdvancedFTP events.

Fig. 4 present an example of these observations, regarding
the target function of a FTP server, AdvancedFTP, using
a simplified code snippet. The event handling loop starts
from line 3. First it reads the command (line 4). If it gets
the download command, it first checks if the request is valid
(line 6). If so, the FTP server opens the file (line 7), allocates
buffer (line 10), and then transfers the file to client (line 11 to
14). After the file is transferred, the server frees the buffer
(line 15) and closes the file (line 16). If the user cannot
download the file, for example, due to access control, the
server returns an error message (line 18). Fig. 5 shows the
stack frames of sample events. Observe that the common
prefix is windows runtime → main and the target function
main is correctly identified. Windows runtime denotes the
sequence of functions invoked when the process started to
setup the runtime environment.

4.2.2 Model Construction
Once we determine the target function via prefix analy-

sis, we construct a model for the program’s behavior. This
model is based on automata and hence can be represented
as a regular expression. It describes the possible system be-
havior for an iteration of the event handling loop. It is later
used to parse a log file to units.

Regular Expression Model. The vocabulary of the reg-
ular expression is a set of function invocation relations from
the target function to a callee. For example, (target→ foo)
means that the function target calls the function foo. We
use ε to represent an empty expression. The other nota-
tions such as kleene closure are following the standard rules.
For example, the expression (target → foo)(target → gee)
means that target first calls function foo, and then calls gee.
The expression (target→ foo|ε) means that function target
may call foo or may not, guarded by some predicate. The
expression ((target→ foo)(target→ gee))∗ means that the
pattern (target → foo)(target → gee) may appear 0, 1, or
multiple times, denoting a loop.

Identifying Event Handling Loop. Given the target
function, we need to find the event handling loop. There
could be multiple loops within the target function. Fig. 6(left
subgraph) shows an example that the target function, main,
contains multiple loops, which are used to parse input pa-
rameters, request and release resources (e.g. memory) and
handle events. All of them generate events, but some events
will be part of phases 1 or 3. The phase 2 events must be-
long to the event handling loop. To recover the loop from
the phase 2 events, we identify the program counters (PCs)
of the invocations to all callees of the target function inside
the phase 2 event stack frames. The enclosing loop body of
these PCs is the event handling loop.
Model Construction. Once the event handling loop is
identified, we construct a model for the loop body via pro-
gram analysis. In particular, we analyze the intra-procedural
program paths inside the loop and identify all the possible
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Figure 6: Examples of Top Level Loops.

sequences of function calls that may lead to syscalls and
represent them as a regular expression. Our approach relies
on existing program analysis techniques. Binary analysis is
known hard problem. There are cases that our approach are
not able to handle. In this case we treat the whole program
execution as one unit so that we do not lose any informa-
tion during the investigation. Thus the system is not worse
than traditional approaches in the worst case. Algorithm 1

Algorithm 1 Model Construction: function model

Input: I - instruction sequence
Output: the model for I

// termination condition
1: if I == {} then
2: return ε
3: end if

// call instruction
4: if I.head is a call instruction then

// I.head.callee is the callee
5: return ((F → I.head.callee)∗|ε) · model(I.tail)
6: end if

// conditional jump
7: if I.head is a conditional jump then

// CD(n) returns the sequence of instructions directly or tran-
sitively control dependent on n

8: tmodel ← model(CD(I.headt))

9: fmodel ← model(CD(I.headf ))
10: if I.headt denotes a loop predicate then
11: m ← (tmodel)∗

12: else
13: if I.headf denotes a loop predicate then
14: m ← (fmodel)∗

15: else
16: m ← (tmodel | fmodel)
17: end if
18: end if
19: return m · model(I.tail − CD(I.headt) − CD(Iheadf ))
20: end if

// other instructions
21: return model(I.tail)

describes this procedure. It takes the binary instruction se-
quence representing the loop body as an input and produces
the regular expression. It relies on precomputed control de-
pendence information. Note that we only need to disassem-
ble the target function and compute its control dependences.
The computation is recursive.

In the algorithm, I denotes the instruction sequence with
I.head the first instruction and I.tail the remaining sequence.
The method returns ε when I becomes empty (lines 1-2).
When the first instruction is a function cathe epsilon means
that the function invocation may or may not lead to any
syscall such that it may or may not be present in the stack
frame of an ETW event. The kleene closure means that
there may be loops inside the callee function such that the
invocation appears in stack frames of a consecutive sequence
of ETW events. If I.head is a conditional jump, the algo-
rithm recursively computes the true branch model and the
false branch model, leveraging the precomputed control de-
pendence (CD) information (lines 8-9). Note that if one of
the branches is empty, the corresponding CD set is empty
and hence the model is simply ε. It is possible that the con-
ditional jump denotes a loop predicate. Hence, depending

Figure 7: Model construction for the example in Fig. 4. An
arrow shows that themodel() invocation at the source (of the
arrow) is divided into the computation at the destination.
We use F1 to denote main→ F1 to save space.

on if the true or false branch leads to the loop body, the true
branch model or the false branch model is put into a kleene
closure, respectively (lines 11 and 14). Otherwise, the model
is the disjunction of the two branch-models (line 16). The
model for the predicate and the branches guarded by the
predicate is concatenated with the model for the continua-
tion (line 19). If I.head is any other instruction, the model
is simply that of I.tail.

Fig. 7 shows the model construction procedure for the
FTP example in Fig. 4. The event loop body is in lines 4-
20. So the model() function is invoked with 4-20, as shown
on the top. Since line 4 denotes a function call that may lead
to syscall, the model is hence main→ F1, or F1 for short,
concatenated with the model of lines 5-20. Since line 5 is
a predicate (or, conditional jump at the binary level), the
model of 5-20 is the disjunction of the model of 6-18 and the
model of 19. The division continues. Note that the model
of 11-16 is the model for the loop (line 11-14), which is (F4 ·
F5)∗, concatenated with the model for lines 16, which is F6.
Eventually, the entire regular expression is computed in the
box, which describes the possible ETW event stack frame
sequences. Note that we know memory library functions
such as memory free() is of no interest to our analysis so
that they are not part of the regular expression vocabulary.

There may be cases that the body of the event handle
loop is extremely simple, in which the program calls an-
other complex function to handle the different I/O opera-
tions. As such, the model of the event handling loop alone
may not be sufficient. We may need to further analyze
callee functions inside the loop to construct more informa-
tive model. A typical example is graphical user interface
(GUI) applicaitons built on top of specific GUI libraries.
A typical case is shown in Fig. 6. Within the event han-
dling loop, the library first checks if the user application
defines a dispatcher (line 2). If so, it will use the applica-
tion dispatcher. Otherwise, it uses the default dispatcher
that does some basic event processing. Assume we only
construct the model from the event handling loop, which is
(main→ user dispatcher) | (main→ default dispatcher).
Further assume the user application does provide its own dis-
patcher so that the handling of various external events actu-
ally happens inside the user dispatcher. Note that handling
an external event may lead to multiple ETW events. Assume
two external events are sent and processed by the applica-
tion, the ETW events belong to two units but their ETW
event stack frames are not distinguishable based on the sim-
ple model. Therefore, our algorithm will recursively disas-
semble and analyze callee functions when the constructed
model is not sufficiently informative. We use the size of
the regular expression as an indicator, and we will continue
doing that if the current generated model is not sufficient.
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4.3 Log Partitioning
Each model is a regular expression describing the possible

syscall sequences within the event handling loop of an ap-
plication. Given an ETW log that contains system events
from all the active applications in the system, our technique
parses the log to units, each representing a legitimate se-
quence from the regular expression of the corresponding ap-
plication. In particular, for each ETW event entry, we iden-
tify the application from the process ID. The corresponding
model is used to parse the entry. When the end of a legiti-
mate sequence is reached (according to the model), the end
of a unit is reached and a new unit starts, indicating the end
of an event loop iteration and the start of a new iteration.

For example, consider the model shown in Fig. 7. For a se-
quence F1·F2·F4·F5·F6·F1..., we follow the model from F1
to F6 which indicates the end of the loop. Then we know
that one unit ends, and a new unit starts from F1 again.
There is a possible challenge that some functions in the loop
may not generate events. For many library functions with
well-known semantics, like lines 11 and 16 in Fig. 4, we can
remove them from our model. However for many other func-
tions, we are not sure if they will lead to syscalls. Thus we
conservatively include those functions in our model. In the
mean time, we also place an empty symbol ε as part of the
regular expression describing the function behavior (line 5
in Algorithm 1), indicating that the function may not lead
to any syscall. The possibility that a function may not gen-
erate a syscall event poses another challenge: the generated
automata is non-deterministic, meaning that it may parse
the log differently, yielding different unit partitions. To ad-
dress the problem, we use a simple heuristic that is very
effective in practice. We always parse the longest possible
subsequence of events as a unit.

4.4 Dependency Analysis and Log Reduction
After units are recognized, we can construct a graph to

denote the causality between events. In particular, a node
is introduced to denote a unit or a system object like a net-
work session or a file object. If a unit receives input from
some system object, an edge from the object to the unit is
introduced. If a unit writes/updates an object, an edge from
the unit to the output object is also introduced. As such,
an output event is only connected (and hence dependent)
on the preceding input events within the same unit. Note
that the event timestamps are also annotated on the edges
to determine the temporal order.

One of the key challenges when applying log-based attack
analysis in practice is to store the large volume of log. Ac-
cording to existing work [20, 15, 8], audit logs grow at the
rate of 0.8 GB ∼ 3.2 GB per day with moderate workload.
The key contribution of our technique is the identification
of precise causal dependences between events. These pre-
cise causal dependences allow us to accurately determine the
events that are unnecessary or redundant for forensics anal-
ysis. Intuitively, if an event is not causally related to any live
object in the system (e.g., a file) or any destructive behav-
ior that has global effect such as deleting a non-temporary
file, it is not useful in any (future) forensics analysis and
hence can be removed from the log file to save space. We
first leverage algorithms from existing work [20] to remove
dependency-free objects, which are created and deleted by
the same execution unit and never accessed by other units.
For example, when a FTP client tries to download files from
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Figure 8: Event Tracing Overhead.

a FTP server, the server creates a number of temporary files
during file downloading. However those temporary files are
deleted shortly in the same execution unit and never affect
future system behavior. Web browsers also intensively use
temporary files to store remote resources, but they never
affect the system. Thus we can safely delete events related
to them without degrading forensic analysis effectiveness.
We also observe that ETW generates a sequence of events
of the same type that contains redundancy. For example,
when we open a large file in NotePad++, the editor con-
tinuously reads a small portion of the file into its memory
buffer. Those FileRead events can be merged into one
ETW event without causing any degradation. We evaluate
the effectiveness of our log reduction technique using various
applications. The result is presented in Section 5.3.

5. EVALUATION
We will present our evaluation results in this section. All

experiments were conducted on Intel i7-3880 CPU with 12GB
of RAM running Windows Server 2008 R2 64-bit. We use
different types of Windows applications for the evaluation,
including default applications shipped with Windows such
as Paint and Notepad, third party user interactive (UI) ap-
plications such as DrawTool, notepad++, and Chromium,
and also server applications such as Apache web server.

5.1 Event Tracing Overhead
Benchmark: In the first experiment, we measure the run-
time overhead of the event tracing system ETW. The run-
time overhead of ETW hinges on the number of events gen-
erated in a unit of time, which depends on the ETW config-
uration and the workload. Since our configuration is fixed,
we measure overhead with different workloads. We use the
Apache web server and multiple ApacheBench (ab) clients to
send HTTP requests simultaneously. We generate various
numbers of requests per second. Fig. 8 shows the ETW run-
time overhead with the different numbers of requests from
the ApacheBench clients. The X-axis in this graph repre-
sents the number of ETW events per second, and the Y-axis
shows the runtime overhead. We observe that runtime over-
head is smaller than 10% when we have under 10,000 events
per second. It goes up to 18% under a heavy workload (over
15,000 events per second).

Regular systems: The previous experiment shows that the
runtime overhead is directly related to the number of events
in a time interval. In this experiment, we collect workloads
from different machines to observe typical event generation
patterns. We collect ETW logs from three different end-user
machines and two different server systems. Each system
has been used for different purposes. For example, user 1
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Instance # of Event Time(s) # Event per sec

User 1 1,391,555 10,460 133.04

User 2 1,412,453 10,959 128.89

User 3 173,425 941 184.30

Server 1 842,879 2,566 328.48

Server 2 1,897,303 3,352 566.02

Table 1: Event generation in regular systems

is a software developer who heavily uses a text editor, the
Chromium web browser and a complier to develop software
and write document. User 2 is another software developer
that uses different software and shows different use patterns.
User 3 is a regular user who mainly uses Chromium for web
surfing. Server 1 and 2 run the Apache web server to host
different sets of web pages.

Table 1 presents the number of ETW events generated by
each system. The second column shows the total number
of event entries and the third column presents the period
of time in which the events were generated, and the fourth
column shows the number of ETW events per second. In
this experiments, we observe that the regular user and the
server systems generate 130 ∼ 600 ETW events per second,
which only incurs less than 1% of runtime overhead. In most
cases, the systems generate 100 ∼ 5,000 events per second,
causing about 0.4% ∼ 2.5% runtime overhead. This is in
accordance with previously reported results [13].

5.2 Model Construction
Table 2 shows the result of model construction. The sec-

ond column shows the depth of the event handling loop. A
depth of one means that the loop is on the top level, and we
can build the event model by analyzing only the top-level
loops. A depth of two means that the event-handling loop
is nested within another loop, and we need to analyze the
second level of loops to find the target function. The third
column shows the number of functions we analyzed while
constructing the model. The number of functions analyzed
include the target function and sometimes the callees of the
target function. The latter occurs when the target function
is very simple and the event processing logic mainly resides
in the callees of the target function. For those cases, our
technique automatically analyzes the callees of the target
function. The forth column shows the function invocations
in the model (i.e., terminals in the regular expressions). The
fifth column shows the number of transitions in the model
(e.g., concatenations and kleene closures). They essentially
denote the complexity of control flow. Observe that the gen-
erated models are quite complex, representing the possible
sequences of system events.

From this experiment, we also observe the number of
events per unit varies a lot for different types of programs.
For example, the FTP client program, NetFTP, shows typi-
cal characteristics of a network application. In this program,
each execution unit handles a separate request. If the re-
quest from the user is file download, the unit receives data
from the server and writes it into a local file. The number of
file write events could be different, depending on the file size.
Another popular type of programs is UI applications. The
image editing program, DrawTool, shows a representative
pattern. It frequently accesses temporary files to support
undo/redo and recover operations. In this program, the last
event in an execution unit is a save file operation. In a unit
(delimited by two save file operations), multiple FileWrite

Application Depth Function Model

analyzed Function Transition

TextTransfer 1 1 48 72

Chromium 1 4 124 167

DrawTool 1 1 78 104

NetFTP 1 2 64 92

AdvancedFTP 1 2 56 88

Apache httpd 1 2 36 54

IE 2 3 94 144

Paint 2 3 82 132

Notepad 2 3 64 92

Notepad++ 1 1 144 208

SimpleHTTP 1 2 22 34

Sublime Text 1 1 132 178

Table 2: Model Construction.

events on temporary files are generated.

5.3 Log Reduction
We evaluate performance of the log reduction technique

that we have discussed in the Section 4.4. Table 3 shows
the results. The second column presents a number of ETW
events. The third column shows the number of removable
events related to dependency-free objects and their percent-
age. The fourth column presents the number of removable
events classified as redundant and their percentage. The
fifth column shows that our log reduction algorithm reduces
96.85% of the original logs on average. The sixth and sev-
enth columns show the number of recognized units in the
logs described in column 2 and column 5 respectively, us-
ing the generated models. The eighth and ninth columns
represent the average number of events for each unit.

5.4 Attack Forensics
In this experiment, we study the effectiveness of our tech-

nique in attack forensics. We emulate popular attack sce-
narios and collect attack logs. We then construct the attack
causal graphs, using both the original logs and the reduced
logs. In the first scenario, mis-configured server, an admin-
istrator misconfigured the httpd server such that some con-
fidential files were made publically accessible. The investi-
gator wanted to identify what confidential information were
accessed, and by whom. Thus, the investigator performs
a forward reachability query on the causal graph, starting
from the confidential files.

The second scenario is a phishing attack. The victim re-
ceived a phishing email and he clicked a malicious link in it.
The web browser in the victim’s system opens the phishing
web site. Then the victim downloaded a program from the
web page, which turns out to be a malware. Assume this
malware is later discovered by an anti-virus tool. The inves-
tigator wants to trace to the source the attack and under-
stand the behavior of the malware. Thus the investigator
performs both forward and backward reachability queries
from the malware process.

The third scenario is information leak, which was already
discussed in Section 2. To understand behavior of the inside
attacker, a forward reachability query is performed from the
secret file, and a backward query is performed from the IP
address to which the secret file was downloaded.

In the fourth scenario spyware, a spyware is triggered. The
spyware detects if the system has Firefox or Chrome. If one
of them exists, the spyware tries to steal files in which the
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Application # of Events / Ratio # of Units # of Events per unit

Original Dependency-free Redundant Final Original Final Original Final

TextTransfer 316 310 / 98.10% 0 / 0.00% 6 / 1.90% 2 2 158.00 3

Chromium 102,206 61,193 / 59.87% 36,834 / 36.04% 4,179 / 4.09% 255 248 400.81 16.85

DrawTool 15,438 13,382 / 86.68% 1,982 / 12.84% 74 / 0.48% 11 11 1,403.45 6.73

NetFTP 10,621 8,909 / 83.88% 1,132 / 10.66% 580 / 5.46% 8 8 1,327.63 72.5

AdvancedFTP 1,615 1,161 / 71.89% 411 / 25.45% 43 / 2.66% 3 3 538.33 14.3

Apache httpd 37,171 27,035 / 72.73% 8,084 / 21.75% 2,052 / 5.52% 46 46 808.07 44.61

IE 29,969 12,983 / 43.32% 14,711 / 49.09% 2,275 / 7.59% 10 10 2,996.90 227.5

Paint 7,085 6,772 / 95.58% 235 / 3.32% 78 / 1.10% 28 28 253.04 2.78

Notepad 11,704 8,506 / 72.68% 3,168 / 27.07% 30 / 0.26% 6 6 1,950.67 5.00

Notepad++ 5,516 4,976 / 90.21% 404 / 7.32% 136 / 2.47% 9 9 612.89 15.11

SimpleHTTP 779 559 / 71.76% 180 / 23.11% 40 / 5.13% 13 13 59.92 3.08

Sublime Text 30,372 24,419 / 80.40% 5,637 / 18.56% 316 / 1.04% 11 11 2,761.09 28.73

Table 3: Effectiveness of Log Reduction.

Scenario # of events # of nodes # of edges Correctness

Before After Ratio Original Unit GC Original Unit GC Backward Forward

Mis-configured server 986,563 85,042 8.62% 173 10 10 204 10 10 - Match

Phishing attack 523,385 44,593 8.52% 573 21 21 693 32 32 Match Match

Information leak 1,947,485 260,857 13.39% 10,222 11 11 20,532 10 10 Match Match

Spyware 1,284,748 102,523 7.98% 9,282 9 9 11,244 8 8 Match Match

Table 4: Attack scenarios summary with original log and reduced log.

browser stores user passwords. If both Firefox and Chrome
are installed in the system, it would randomly choose one to
steal the user passwords. Assume the user detects the pres-
ence of the spyware and the investigator performs a forward
analysis starting from the spyware process to understand its
behavior, and a backward analysis to find its source.

The query results are presented in Table 4. The second
column shows the number of ETW events in the logs, and
the third column presents the number of ETW events af-
ter we reduce unnecessary and redundant events. The forth
columns shows the reduction rate we achieved in each sce-
nario. The next three columns show the number of the
nodes in the generated graph after applying existing non-
unit based approaches, our unit based approach, and the
log reduction approach, respectively. Then in the next three
columns, we show the number of edges shown in the gener-
ated graph using these three methods. The graphs we use
are the combinations of the forward and backward query re-
sults. The results show that the unit based approach can
significantly reduce the size of the graph, and make it easier
to investigate. And our log reduction method does not affect
the effectiveness. The last two columns show the correctness
of the graphs generated (after log reduction). We manually
compare the results with our prior knowledge of the attacks.
The evaluation shows that we can correctly uncover all the
attack behavior.

6. RELATED WORK
There exists a line of work in tracking system dependence

using system-level audit logs for attack analysis [9, 15, 11, 2,
7, 8, 16, 14, 29, 24, 5]. These approaches use backward and
forward tracking to locate the entry point of an attack and
to identify the damage happened to a victim system. How-
ever, these techniques may suffer from imprecision caused
by dependence explosion, where an event is unnecessarily
dependent on too many other events and the corresponding
causal graph is excessively large for human inspection. Our
technique complements these techniques by partitioning a

process execution to fine-grain units to avoid a dependence
explosion problem.

BEEP [21] divides a long-running process into fine-grain
execution units to mitigate the dependence explosion prob-
lem. BEEP pro-actively analyzes and instruments applica-
tion binaries, that requires a number of test runs conducted
by a user. In this paper, we propose log and binary analysis
techniques that provide fine-grain units without any instru-
mentation or beforehand analysis.

There are also different efforts try to mitigate the depen-
dence explosion problem with additional system level infor-
mation. Sitaraman et al. [25] proposes a technique that ad-
ditionally logs file offsets for file read/write system calls to
provide more accurate file dependences. In [19], besides sys-
tem call, they also record accessed memory page for each
process. Although it provides better accuracy, the draw-
back to this approach is the runtime overhead. Detecting
and logging page-level memory access incurs high run-time
overhead. Moreover, it introduces false dependences due to
the limitation of the page level granularity.

Dynamic information flow tracking and taint analysis tech-
niques [12, 10, 24, 28, 26, 22] have been proposed to track
information propagation in the runtime to prevent informa-
tion leak or zero-day attacks. Our system is designed for
forensics, and comparing with these systems, we have less
runtime overhead.

In recent years, significant progress has been made on log-
based attack detection techniques [17, 18, 3]. Other than
the ones we discussed in Section 2, there are still some in-
teresting works. These approaches use system level logs to
detect malicious behaviors in the system. There are also ma-
chine learning based approaches [4, 23, 27] to detect anoma-
lies from system execution events. LogGC [20] proposed
garbage-collectable audit logging system by removing un-
necessary or duplicated events from system logs without af-
fecting accuracy. Our technique complements these tech-
niques by providing accurate causalities without affecting
compatibility or practicality.
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7. CONCLUSION
We develop a low cost Windows audit logging system,

which collects system level events and the corresponding
stack frames with very low runtime overhead. The sys-
tem does not require any application instrumentation. The
events and stack frames are analyzed and partitioned into
units to support accurate causual analysis. The generated
attack causal graphs are precise and concise. The high-
quality causal graphs also enable highly effective garbage
collection, which reduces the space consumption of audit
logs by orders of magnitude.
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