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ABSTRACT
With the proliferation of multimedia data sources on the Internet,
we envision an increasing demand for value-added and function-
rich multimedia services that transport, process, and analyze mul-
timedia data on behalf of end users. More importantly, multimedia
services are expected to be easily accessible and composable by
users. In this paper, we propose MSODA, a service-oriented plat-
form that hosts a wide spectrum of media services provided by dif-
ferent parties. From the user’s point of view, MSODA is a shared
“market” for media service access and composition. For a media
service provider, MSODA creates a virtual dedicated environment
for service deployment and management. Finally, the underlying
MSODA middleware performs the key functions of service com-
position, configuration, and mapping for users. We discuss key
challenges in the design of MSODA and present preliminary re-
sults towards its full realization.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]: Local and Wide-
Area Networks—Internet; C.2.4 [Computer-Communication Net-
works]: Distributed Systems—Distributed Applications

General Terms
Design, Management, Performance

Keywords
Media Service, Hosting, Composition, Virtualization

1. INTRODUCTION
Digital multimedia is permeating and enriching every aspect of

our life. Rapid advances in multimedia hardware and software
have brought about two trends: First, it becomes easier for end
users to consume as well as to generate multimedia data. Web-
cams, surveillance cameras, on-line radio/TV portals, and media-
enabled personal communication devices are being widely adopted.
Meanwhile, modern computing platforms, ranging from desktops,
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PDAs, to digital appliances, are ready to process and display multi-
media data of varying format and quality. Second, multimedia data
become more manipulatable and the semantics, both within and
between media streams, are increasingly being exploited. In addi-
tion to traditional format-driven media processing operations (e.g.,
transcoding), intelligent semantics-driven operations, such as scene
change detection, pattern recognition, object tracking, and image
synthesis can be performed on media streams in real-time. Fol-
lowing these trends, we envision the proliferation of value-added
and function-rich media services that transport, process, and ana-
lyze multimedia data in an integrated fashion. More importantly,
multiple media services may be composed into a new and cus-
tomized service. As a motivating example, in disaster recovery,
audio, video, and sensor data streams are aggregated, filtered, and
analyzed (e.g., event correlation, victim/rescuer tracking) to assist
in recovery operations. As another example, an outdoor event is
captured and transmitted live to remote viewers, with background
music added and camera jitter eliminated.

The potential of the above vision has not been fully realized by
today’s distributed multimedia applications. Real-time interactions
between clients and servers or between peers are often in the sim-
ple form of streaming, while value-added media processing is not
common. One reason is that, for both end users and media con-
tent providers, it is impractical to develop a full spectrum of media
processing functions. Moreover, media processing can be highly
computation intensive and requires high performance platforms.
However, such platforms can not be uniformly deployed in every
domain or organization.

To support the next-generation distributed multimedia applica-
tions, we propose MSODA, a service-oriented platform that hosts
multimedia services for on-demand user access and composition.
In MSODA, media processing and transport functions are pack-
aged as media services. MSODA provides infrastructural resources
- physical hosts called MSODA nodes - in the wide-area Internet,
while individual media services are provided and maintained by
various media service providers (MSPs). As such, MSODA feder-
ates a large variety of media services and forms a rich collaborative
service hosting overlay network. With MSODA, users will be able
to request, without having to develop or install by themselves, any
media service MSODA offers. More importantly, users will be able
to dynamically compose new customized media services, based on
the basic services hosted by MSODA.

The design of MSODA includes three key aspects: (1) A virtual-
ization approach is taken to decouple the provisioning of MSODA
functions from individual media services. MSODA functions pro-
vide generic system support for the specification, configuration,
and mapping of media service sessions. (2) MSODA enables flex-
ible delivery of media services by suggesting alternative service



configurations suitable for different resource conditions. By select-
ing from multiple service configurations, MSODA achieves high
service admission rate. (3) MSODA performs cost-effective mon-
itoring of end-to-end network conditions between MSODA nodes
on behalf of all media services hosted. This approach leads to both
low monitoring overhead and high service mapping success rate.

The rest of this paper is organized as follows. Section 2 describes
the architecture of MSODA. Section 3 presents the service compo-
sition and configuration functions of MSODA. Section 4 presents
MSODA’s method of cost-effective overlay monitoring. Section 5
compares MSODA with related work. Finally, Section 6 concludes
this paper.

2. MSODA: AN OVERVIEW
From the user’s point of view, MSODA is a shared integrated

“market place” for media service access and composition. Basic
media services are provided by individual service providers and
hosted in MSODA nodes. A media service can be as simple as a
video transcoder or as complex as a multi-video stream correlator.
MSODA creates a wide-area collaborative service hosting overlay,
with the goal of high resource utilization, service quality, and ser-
vice composability. Figure 1 shows the architecture of MSODA.

2.1 Virtualization-Based Service Hosting
Each MSODA node hosts a number of media services. More-

over, the same media service can be dynamically replicated or mi-
grated within the MSODA overlay network, driven by service de-
mand and resource availability. In an MSODA node, each media
service instance runs inside a virtual machine. The virtual machine
has its own IP address, customized operating system, and network-
ing capability [17]. Such a virtualization-based approach brings the
following advantages to MSODA:

• Decoupling of multimedia service management and MSODA
platform management: It is desirable that an MSP has full ad-
ministrator privilege of the virtual machine where its service
is running. The MSP will thus be able to perform service-
specific management and maintenance, without interfering
with the management of the underlying MSODA platform
and other services hosted on the same platform.

• Service installation isolation: Different media services may
require the same software library, but different versions. They
may also require the same port binding. The virtualization-
based approach naturally resolves these conflicts among mul-
tiple services.

• Easy service relocation and replication: Virtual machines
have highly efficient priming, resource scaling, and migra-
tion capabilities. As a result, media services can be easily
replicated or re-located in the wide-area MSODA overlay.

• Isolation of fault and attack impact: Without virtualization,
any fault or attack associated with one service will affect the
MSODA platform and consequently other services. With vir-
tualization, the negative impact will be contained within the
virtual machine where the fault or attack takes place.

2.2 Three-Layer MSODA Middleware
The virtual machines for media service hosting are on the data

plane of MSODA. On the control plane, MSODA adopts a lay-
ered approach to multimedia service composition, configuration,
and mapping. These functions are performed by a three-layer mid-
dleware running in each MSODA node, as shown in Figure 1. Note

that the MSODA middleware performs these functions for all me-
dia services hosted, so that the functions do not have to be imple-
mented by individual MSPs, reflecting the advantage of decoupling
MSODA management and the management of individual services.
The three layers are as follows:

• The service composition layer facilitates the specification of
new composite media services. Through a high-level API,
the user will be able to specify temporal and data dependen-
cies among the basic services involved in the requested com-
posite service. A service specification may be independent
of media format, service interface, and location of service
instances.

• The service configuration layer accepts a service specifica-
tion, resolves the basic services involved, and customizes
the composite service according to client capability and user
preferences/needs. More importantly, the service configura-
tion layer is able to generate multiple candidate service con-
figurations for one service specification. Each candidate has
a different set up of basic services - with respect to their
quantity and topology. If a candidate service configuration
cannot be successfully mapped to the MSODA overlay (by
the service mapping layer), the service configuration layer
will suggest another candidate.

• The service mapping layer is responsible for mapping ser-
vice configurations to the MSODA overlay. For each con-
figuration, a service delivery overlay will be created. The
service delivery overlay consists of virtual machines that pro-
vide the basic service instances in the configuration. To per-
form mapping of a service configuration to a service deliv-
ery overlay, the service mapping layer monitors (1) MSODA
node capacity and (2) network performance between MSODA
nodes. However, the monitoring of (2) for each pair of
MSODA nodes will incur significant network probing over-
head and is therefore undesirable. Instead, the service map-
ping layer dynamically selects a subset of end-to-end con-
nections to monitor, which form a mesh - rather than a com-
plete graph - to connect all MSODA nodes. A highly cost-
effective method is designed for the maintenance of the mesh
(to be presented in Section 4).

3. SERVICE COMPOSITION AND CONFIG-
URATION

3.1 Service Composition
The service composition layer of MSODA middleware defines

an API for users to specify the basic services involved in a new
composite service, as well as the temporal and data dependencies
among the basic services. The temporal relation between two basic
services can be sequential, concurrent, or alternative. Moreover,
it is desirable that the user does not need to know specific service
interfaces and media formats when specifying a composite service.
To support the service composition API, the service composition
layer middleware performs validity check on service specifications
and provides feedbacks to users.

To check service specification validity, a service profile database
is created, to be accessed by service composition and configuration
layers. The database stores profiles of basic services provided by
their respective MSPs. A service profile includes interface defini-
tion, media format, and resource requirements. Based on the ser-
vice profile database, the service composition layer is able to check
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Figure 1: Architecture of MSODA

if any combination of the hosted services in MSODA is able to ful-
fill the composite service request. For example, if a user requests a
“video transcoding + face recognition” service, the service compo-
sition layer will check if there exist instances of video transcoding
and face recognition services, such that the output media format
of the former can be accepted by the latter. However, if all face
recognition services can only accept the input media format of the
transcoding service, the service composition layer may suggest the
user to switch the order between the two services.

3.2 Service Configuration
The service configuration layer accepts a valid service specifica-

tion, and generates one or more candidate service configurations to
be mapped to the MSODA platform. Given a service specification,
the service configuration layer will resolve the abstract service in-
stances and determine the interfaces, input/output media formats,
and resource requirements of these service instances. The service
configuration layer is expected to be intelligent: It may further re-
fine and customize a service configuration according to user needs
and client capability. If a service configuration cannot be mapped
to the MSODA platform due to poor resource conditions, the ser-
vice configuration layer will suggest an alternative service config-
uration, based on feedbacks from the service mapping layer about
current MSODA resource availability. The service configuration
layer middleware interacts with both service composition and map-
ping layers:

• Based on a service specification, the service configuration
layer will generate a customized service configuration, which
takes into consideration user preferences, client capability,
and special assistance requirements. For example, if a hear-
ing impaired user requests a service that involves a live-event
video stream, the corresponding service configuration can
be customized to add a “picture-in-picture” service, which
merges a separate video stream showing the sign language in-
terpreter into the original video stream. Such customization
is highly service and user specific. The customization rules
may be provided by users, MSPs, and the MSODA provider.
The rules will be expressed in a uniform format and stored in
the service profile database.

• Due to the dynamic node capacity and inter-node network
performance in the MSODA overlay, the underlying service
mapping layer may not be able to map a service configura-
tion to the MSODA overlay. If so, the service configuration
layer will suggest an alternative service configuration that
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Figure 2: Original and alternative service configurations

leads to a different service delivery overlay. For example,
in the original service configuration (Figure 2(a)), the band-
width requirement between services S1 and S2 is 512Kbps.
However, the service mapping layer reports that between any
service instances of S1 and S2 in MSODA, the feasible data
rate is no higher than 300Kbps. In response, the service con-
figuration layer will suggest an alternative configuration as
shown in Figure 2(b): Two instances of S2 will split the out-
put load of S1, with each instance accepting a sub-stream of
256Kbps. The new configuration is more likely to be mapped
successfully.

One major challenge is to decide how to rank and select from
the multiple candidate service configurations, in order to achieve
high mapping success rate and low re-try overhead. A key property
of the service configuration layer is resource-awareness: service
configurations should always help to conserve resources. In the
earlier example involving the hearing impaired user, suppose the
service specification also includes a transcoding service. It is easy
to see that the service configuration shown in Figure 3(b) is more
likely to conserve bandwidth than the configuration in Figure 3(a).

To suggest resource-conserving service configurations, the ser-
vice configuration layer is expected to have “knowledge” about
many resource-saving techniques. In the example of Figure 2, the
technique applied is load partitioning between two service instances.
However, load partitioning is only applicable to services where the
media data can be partitioned and re-assembled. Another resource-
saving technique is request aggregation. If multiple service re-
quests ask for the same media data, the requests can be aggregated
into one shared service configuration, possibly with adaptation ser-
vices for individual users [4].
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4. OVERLAY MONITORING FOR SERVICE
MAPPING

The service mapping layer maps service configurations, as ser-
vice delivery overlays, to the MSODA service hosting overlay. As
a result, multiple service delivery overlays will operate on top of
the MSODA overlay. Service mapping involves two interrelated
tasks: (1) to map the basic media services to MSODA virtual ma-
chines and (2) to route the media streams in the MSODA overlay
network. A service delivery overlay is expected to satisfy both lo-
cal and network resource requirements specified in the service con-
figuration. A main challenge in finding service delivery overlays
in MSODA is the monitoring of dynamic capacity of network and
MSODA nodes. Our goal is to find a resource-sufficient service de-
livery overlay for each service configuration, in an effort to avoid
service session failure due to insufficient resources.

In this paper, we propose a mesh maintenance and augmenta-
tion method for highly cost-effective MSODA overlay monitoring.
Compared with a basic monitoring method in our earlier work [28],
this method results in higher service mapping success rate without
increasing the network probing overhead. For completeness of pre-
sentation, we briefly describe our approach in [28]: An algorithm
is designed to find service paths, a special case of service delivery
overlay with linear topology. The algorithm follows the “link-state”
scheme. Each node in the MSODA overlay periodically probes (1)
node capacity and (2) end-to-end bandwidth from this node to a se-
lected subset of other nodes. The probing results are periodically
propagated to other MSODA nodes. Therefore, each MSODA node
is able to form a global view of the MSODA overlay, represented as
a mesh consisting of all MSODA nodes and a subset of connections
between them. The service path finding algorithm will be executed
on the mesh to set up service delivery paths for service requests.

4.1 MSODA Mesh Maintenance and Augmen-
tation

The service mapping layer of each MSODA node maintains the
mesh. Let C(P ) denote the processing capacity of an MSODA
node P . An edge (P, P ′) in the mesh corresponds to the overlay
connection from P to another node P ′. Let B(P, P ′) denote the
end-to-end bandwidth from P to P ′. The mesh’s effectiveness de-
pends on (1) the number of MSODA overlay connections in the
mesh and (2) the timeliness of monitoring results associated with

the mesh. MSODA node capacity is monitored by querying the host
OS of the MSODA node. MSODA overlay connection bandwidth
can be monitored by probing at pre-determined data rates. Similar
to [7], we use a set of discrete rates to estimate feasible bandwidth
between MSODA nodes.

Overlay connection probing incurs non-trivial traffic and over-
head. Therefore, it is critical to control the number of connec-
tions monitored by each MSODA node. However, the number of
MSODA overlay connections in the mesh largely determines the
success of service mapping. In Section 4.1.1, we first present the
basic mesh maintenance method used in [28]. The new method
of mesh augmentation via cold-connection jumpstart will be pre-
sented in Section 4.1.2.

4.1.1 Basic Mesh Maintenance
For each MSODA node P , we impose an upper bound on the

number of actively monitored overlay connections, denoted as
dmax(P ). We also denote the corresponding set of neighbor nodes
as Nbr(P ). The elements in Nbr(P ) are initially set by the MSODA
administrator. At runtime, P dynamically adjusts Nbr(P ) accord-
ing to network probing results. To maintain the mesh, P periodi-
cally performs the following operations:

(1) Probing and propagation During every neighbor-probing
period Tp, P probes the connection from P to each MSODA node
∈ Nbr(P ). Tp is a configurable system parameter. At the end
of each neighbor-probing period, P propagates both local and net-
work resource monitoring results to other MSODA nodes.

(2) Mesh adjustment During every non-neighbor-probing pe-
riod Tq (Tq > Tp), P probes the connections from P to MSODA
nodes not in Nbr(P ). To keep the probing overhead low, the non-
neighbor-probing period is much longer than the neighbor-probing
period. For each Px not in Nbr(P ), P decides if Px can be added
to Nbr(P ) after the probing:

• Let B(P, Px) be the bandwidth from P to Px via probing;
and let B(P −→ Px) be the bandwidth on the path from P
to Px in the current mesh. If B(P, Px) ≤ B(P −→ Px),
Px will not be added to Nbr(P ).

• Otherwise, if the number of P ’s neighbors is smaller than
dmax(P ), Px will be added to Nbr(P ).

• Otherwise, P examines every MSODA node in Nbr(P ) ∪
{Px}, and identifies such a Pv: In the mesh plus the edge
from P to Px, if edge (P, Pv) is removed, the end-to-end
bandwidth from P to Pv will drop by the least percentage,
compared with the current B(P, Pv). Pv will be excluded
from Nbr(P ). Note that the exclusion of Pv will not affect
any on-going service sessions that involve edge (P, Pv).

4.1.2 Mesh Augmentation via Cold Connection Jump-
start

The basic mesh maintenance method in Section 4.1.1 is similar
to methods proposed for application-level multicast [6, 7, 8]. How-
ever, we argue that the basic method is not sufficient for service
mapping in MSODA because of the following problems:

(1) In an overlay for application-level multicast, the mesh is
maintained for the construction of only one (or just a few) mul-
ticast tree. Therefore, even with a small value of dmax(P ) (i.e.
each P only probes a small number of neighbors), the mesh will
provide sufficient number of candidate edges to construct the mul-
ticast tree(s). However, in an MSODA overlay, a large number of
service delivery overlays are running simultaneously. If the mesh
is constructed using the basic method, it may not contain enough



MSODA connections to accommodate many service delivery over-
lays by satisfying their network resource requirements.

(2) In application-level multicast, between the source and each
receiver, there may be a number of other receivers. In MSODA,
however, if the mesh has a low dmax(P ) (and therefore limited
connectivity), service delivery overlays computed based on the mesh
may involve too many intermediate MSODA nodes (nodes that re-
lay rather than process data), causing undesirable latency.

We propose our solution: mesh augmentation via cold-connection
jumpstart that improves the basic mesh maintenance method. The
new method is simple but highly cost-effective. It results in a highly
connected mesh, without increasing bandwidth probing overhead.
The key idea is to exploit the bandwidth probing results related to
the “cold” connections, i.e. connections not currently in the mesh.
The method involves the following operations:

(1) Cold-connection jumpstart Recall that in the “mesh adjust-
ment” operation of the basic method (Section 4.1.1), if a “cold”
connection (P, Px) (Px is not in Nbr(P )) is not added to the
mesh, the bandwidth probing result will be discarded. We now
give this cold connection a jumpstart by adding it to the mesh for
one neighbor-probing period Tp.

(2) Passive connection monitoring If (P, Px) is chosen to be-
come part of a service delivery overlay before its expiration time,
it is successfully jumpstarted and becomes a “warm” connection.
P will keep track of the media data rate on (P, Px) - as a passive
bandwidth estimate in P ’s mesh, which will also be propagated to
other MSODA nodes. The connection stays warm, until there is
no media stream going through (P, Px), or until a service delivery
overlay fails to maintain its required data rate on (P, Px).

By cold-connection jumpstart, the mesh of each MSODA node
is augmented with warm connections that are passively monitored
using the media streams going through them. Mesh augmentation
complements the basic method in maintaining a highly connected
mesh. Note that the mesh augmentation method does not incur
active probing traffic. The effectiveness of mesh augmentation de-
pends on system parameters including dmax(P ), the arrival rate of
service mapping requests, and the duration of service delivery ses-
sions. Intuitively, the lower the dmax(P ), the easier it is to jump-
start a cold connection. The greater the service mapping request
rate and session duration, the easier it is to jumpstart a connection
and keep it warm.

4.2 Performance Evaluation
In this section, we evaluate the effectiveness of the mesh main-

tenance method through both simulation and stochastic analysis.

4.2.1 Simulation Setup
The simulations are conducted in a virtual machine-based emula-

tion testbed called vBET [18]. The simulated MSODA overlay and
underlying IP network are shown in Figure 4. The connections be-
tween MSODA nodes in Figure 4 correspond to the initial mesh set
by the MSODA provider. In each simulation run, we set dmax (the
maximum number of neighbors for each node) to a different value.
The total capacity of each node is randomly selected between 2500
units and 10000 units, while the total bandwidth of each underly-
ing network link is randomly chosen between 400 units and 1600
units. At the IP level, routing between MSODA nodes follows the
shortest path (with respect to hop-count) policy.

During each 3-hour run of the simulation, service mapping re-
quests are generated according to a Poisson process. We use a dif-
ferent average request arrival rate λreq in each run. For easy com-
parison with the basic mesh maintenance method used in [28], all
service mapping requests are for linear service delivery paths: The

Underlying network

MSODA node

MSODA overlay

Figure 4: The simulated MSODA overlay and underlying net-
work

source node Ps and destination node Pd of each request (Ps 6= Pd)
are randomly selected from all MSODA nodes. The service ses-
sion duration is exponentially distributed, with an average duration
of 20 minutes. Each service configuration includes three basic me-
dia services. The MSODA node capacity required by each basic
service is randomly chosen between 4 and 8 units, while the media
data rate between services is randomly chosen from 1, 2, 4, and 8
units. The neighbor-probing period Tp is 5 minutes, while the non-
neighbor probing period Tq is 30 minutes. In the simulation results,
we will use the following notation for algorithms and their param-
eters: <algorithm name>(<with or without mesh augmentation>,
dmax, Tp, Tq). For example, “SPF(w/, 3, 5, 30)” means “using
the service path finding algorithm [28] with mesh augmentation
method; dmax = 3; Tp = 5 minutes; and Tq = 30 minutes”.

4.2.2 Simulation Results
(1) Success rate of service path mapping A service path map-

ping is successful, if its resource requirements are satisfied through-
out the service session. The following algorithms are compared:

• CG(-): The service path finding algorithm with a complete
graph mesh, i.e. dmax = 15 for the MSODA overlay with
16 nodes.

• SPF(w/): The service path finding algorithm with the mesh
augmentation method.

• SPF(w/o): The service path finding algorithm with the basic
method only and without mesh augmentation.

• SW(w/o): The shortest-widest-path algorithm. The algo-
rithm computes the shortest widest path from Ps to Pd, and
determines the service-to-virtual machine mapping.

Figure 5 shows the service path mapping success rate achieved
by the algorithms above, under request arrival rates ranging from
20 to 200 requests per minute. Each sub-figure shows the results
under a different dmax. Algorithm SPF(w/) constantly achieves
almost the same success rate as CG, and higher success rate than
SPF(w/o), thanks to the highly connected mesh created by mesh
augmentation. The lower the dmax, the larger the difference in
success rate between SPF(w/) and SPF(w/o) and thus the greater
the effect of mesh augmentation. Without mesh augmentation,
SPF(w/o) constantly achieves higher success rate than SW(w/o),
and the difference does not get smaller with the increase of dmax.
This demonstrates the fundamental advantage of SPF over SW as
have been shown in [28].
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Figure 5: Service path mapping success rate under different request arrival rates

More importantly, we observe that SPF(w/) achieves the same
high success rate as CG when dmax is only 3, indicating that SPF(w/)
is highly cost-effective. In fact, this is due to a nice property of
mesh augmentation: the lower the dmax, the more the cold con-
nections to be jumpstarted and added to the mesh. This property is
also confirmed by our stochastic analysis.

(2) Cost-effectiveness of mesh maintenance We evaluate the
cost-effectiveness of a mesh maintenance method by the ratio be-
tween the total number of service path mapping successes and the
number of active network probes (to both neighbors and non-
neighbors) performed by each MSODA node. In other words, the
cost-effectiveness is indicated by the number of successes “yielded”
by each probe.

Figure 6 compares the cost-effectiveness of mesh maintenance -
with and without mesh augmentation. For a fixed dmax, the cost-
effectiveness is higher with mesh augmentation than without mesh
augmentation (comparing the two sub-figures), because they incur
the same number of probes, but the former leads to more service
mapping successes. Furthermore, with mesh augmentation (Figure
6(a)), the lower the dmax, the higher the cost-effectiveness. This is
because a lower dmax means fewer probes; but the number of suc-
cesses are almost the same for different dmax, as previously shown
in Figure 5. As a comparison, we also show the cost-effectiveness
of a complete-graph mesh, which with no surprise is the lowest.

In summary, the simulation results show that our mesh augmen-
tation method significantly improves the performance of the service

path finding algorithm. For the general service delivery overlays,
we expect that the rich mesh connectivity will also lead to improved
service mapping success rate.

4.2.3 Analysis of Mesh Augmentation Method
Let N be the total number of MSODA nodes. For a given dmax,

the number of non-neighbors of each node is n = N − dmax − 1.
We assume that during each period Tq , the MSODA node probes
a non-neighbor every fixed interval of tq = Tq/n, and each non-
neighbor is probed exactly once during each period Tq . The arrival
of service path mapping requests follows Poisson distribution, with
an average arrival rate λreq . We assume that the Ps and Pd (Ps 6=
Pd) of each service path request are both randomly selected from
the MSODA overlay. The duration of each service session is an
exponentially distributed random variable with a mean of 1/µ.

For each MSODA node, let n(t) be the number of warm connec-
tions at time t. n(t) may be any integer in interval [0, n]. Therefore,
we have a state transition diagram for n(t), as shown in Figure 7.

We first determine the transition rate µi in the diagram. For
a warm connection, when the service delivery session that goes
through it terminates, it becomes cold and the node loses a warm
connection. In state i + 1, there are i + 1 warm connections, each
with mean duration 1/µ. Therefore, the transition rate µi from state
i + 1 to i is:

µi = (i + 1) ∗ µ, (i = 0, 1, 2...n − 1) (1)
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Figure 6: Mesh maintenance cost-effectiveness measured by number of service mapping successes per network probe
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Figure 7: State transition diagram for the number of warm
connections out of each MSODA node

We then determine the transition rate λi in the diagram. For the
MSODA node in state i, in order to have one more warm connec-
tion, the following events should all happen: (1) A service path
request arrives; (2) There is a non-neighbor probing result that has
not yet expired - recall that a non-neighbor probing result expires
after Tp (Section 4.1.2); (3) The connection from the MSODA
node to the non-neighbor is currently cold; and (4) The connection
is selected by the service mapping layer for this request, among
dmax + i+1 connections, including dmax actively probed connec-
tions, i currently warm connections, and the cold connection itself.
Therefore, the transition rate λi from state i to i + 1 is:

λi =
λreq

N
∗min(

Tp

tq

, 1.0)∗
n − i

n
∗

1

dmax + i + 1
, (i = 0, 1...n−1)

(2)
The first factor in (2) is the request arrival rate at the MSODA

node (recall that λreq is the overall request arrival rate). The second
factor is the probability that there is a not-yet-expired non-neighbor
probing result. The third factor is the probability that the connec-
tion to this non-neighbor is not among the i warm connections. The
last factor is the probability that the connection is selected by the
algorithm for the request. For simplicity, we assume that the selec-
tion is random among the dmax + i + 1 connections.

Let pi (0 ≤ i ≤ n) be the steady state probability of state i. We
will have the following balance equations for the state transition
diagram:

λi ∗ pi = µi ∗ pi+1, (i = 0, 1, 2...n − 1) (3)

Since
Pn

i=0
pi = 1.0, we can solve pi as:

p0 = (1 +
λ0

µ0

+
λ0λ1

µ0µ1

+ ... +
λ0λ1...λn−1

µ0µ1...µn−1

)−1 (4)

pi = p0 ∗
λ0...λi−1

µ0...µi−1

, (i = 1, 2...n) (5)

Finally, the average number of warm connections out of each
MSODA node can be computed as:

E(n(t)) =

n
X

i=0

i∗pi =
1 ∗ λ0

µ0
+ 2 ∗ λ0λ1

µ0µ1
+ ... + n ∗

λ0λ1...λ
n−1

µ0µ1...µ
n−1

1 + λ0

µ0

+ λ0λ1

µ0µ1

+ ... +
λ0λ1...λ

n−1

µ0µ1...µ
n−1

(6)
Numerical results based on (6) match our simulation results rea-

sonably well, although the analysis is more conservative estimating
fewer warm connections per node. The reason is that we only con-
sider the jumpstart of a cold connection by the MSODA node at the
starting end of the cold connection. In a real-world MSODA over-
lay, since the probing results are also propagated to other nodes,
the connection can be jumpstarted by any node that receives the re-
sults, leading to more warm connections in the mesh than what the
analysis estimates.

5. RELATED WORK
Distributed software is evolving from monolithic applications to

collections of open and flexible service components [15]. Based
on service components provided by different parties across the In-
ternet, new applications and services can be assembled rather than
implemented from scratch. With the wide deployment of web ser-
vices and the proposal of universal service description and discov-
ery standards such as UDDI [2], application service composition
and management is receiving increasing attention [14, 21].

A number of integrated frameworks for service composition have
been proposed, such as Ninja [12], SAHARA [1], CANS [11],
SPY-Net [28], and SpiderNet [13]. MSODA differs from these
frameworks by introducing a virtualization-based service hosting
platform that decouples service management and hosting platform
management. As part of the Ninja project, the Automatic Path
Creation (APC) service [23] supports automatic composition of
application-level services. Each composed service is delivered by
a service-level path along individual service providers. As part of
the SAHARA project, service load balancing and stability issues in
service path composition are studied in [24]. Recently, the concept
of service multicast has also been proposed [4, 20], which involves
the construction of a service delivery tree from the same media data
source to multiple heterogeneous clients. MSODA aims at sup-



porting a more generic service delivery overlay, with its topology
dynamically determined by the service configuration function.

Service overlay networks have recently attracted tremendous in-
terests [10, 26, 27]. Overlay nodes are end systems instead of
network routers, while overlay links are end-to-end transport-level
connections between the overlay nodes. The function of overlays
varies. For example, Narada [7, 8], Scattercast [6], and Overcast
[16] are for application-level multicast and content distribution,
while CFS [9], PAST [25], and OceanStore [22] are for wide-area
networked storage. The overlay has also been proposed as a general
infrastructure to support distributed applications running on top of
it. Examples are the Resilient Overlay Network (RON) [3] and the
Overlay Peer Utility Service (Opus) [5]. In Opus, distributed ap-
plications can be hosted in a subset of Opus nodes as application
overlays. While sharing the same idea of “overlays on overlay”,
the MSODA architecture is virtualization-based and provides sys-
tem support for service composition.

6. CONCLUSIONS
We have proposed the design of MSODA, an integrated multi-

media service hosting overlay. Three key techniques in the devel-
opment of MSODA are discussed: virtualization of media services,
middleware support for service composition and configuration, and
cost-effective monitoring of MSODA overlay for resource-aware
service mapping. Our on-going work includes (1) the application
of virtual networking techniques [19] to achieve isolation between
service delivery overlays, (2) adaptive resource provisioning to ser-
vice delivery overlays with dynamic load and topology, and (3)
fully distributed service mapping without global system informa-
tion.
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