PART 9

Clock And Timer
M anagement

CS503 - PART 9 1 2010

L ocation Of Clock M anagement
In The Hierarchy

CS503 - PART 9 2 2010

Types Of Clocks

e CPU clock
e Time-of-day clock
e Rea-time clock

e |nterva timer

CS503 - PART 9 3 2010

CPU Clock

e Controls processor rate
e Often cited as processor speed

e Usually not visible to the OS

CS503 - PART 9 4 2010

Time-Of-Day Clock

e Autonomous chronometer
e Can be set or read by CPU

e Usually operates independently from processing

CS503 - PART 9 5 2010

Real-Time Clock

e Pulses regularly
e Rate may not be controllable by CPU
e [nterrupts CPU on each pulse
e Does not count pulses
— Interrupt lost if missed

e Consequence: CPU cannot run more than one clock tick
with interrupts disabled or real-time clock is inaccurate

e Note: some rea-time clock hardware has counter that
records ticks, so OS can learn about missed ticks

CS503 - PART 9 6 2010

|nterval Timer

e Hardware device that operates asynchronously
e Timeout value set by CPU (e.g., time T)
e Device
— Interrupts T time units later
— Remains disabled after interrupt until reset
e Advanced features available on some hardware
— CPU can poll to find time remaining

— Timer value can be reset while timer is running

CS503 - PART 9 7 2010

Use Of Real-Time Clock

e |ntheory
— OS may need arbitrary event types

— Events should occur at exact times (hard real-time
constraints)

e |n practice
— Only two basic event types

— Events occur near specified time (soft real-time
constraints)

CS503 - PART 9 8 2010

Two Principle Event Types

e Preemption event
— Implements timeslicing
— Guarantees process does not run forever
— Next preemption event scheduled during context switch
— Cancellation important
e Jeep event
— Scheduled by a process

— Delays the process a specified time

CS503 - PART 9 9 2010

Time-Slicing Trade-Off

e How large should a timeslice be?
e Small granularity
— More rescheduling overhead

— Guarantees fairness because processes proceed at
approximately equal rate

e [arge granularity
— Less rescheduling overhead

— Unfair because one process may be far ahead of another

CS503 - PART 9 10 2010

Timeslicing And Conventional Applications

Most applications are I/O bound, which means the
application is likely to perform an operation that takes
the process out of the current state before its timeslice
expires.

CS503 - PART 9 11 2010

Hardwar e Pulses And Clock Ticks

e Real-time clock hardware
— Has fixed pulse rate
— May run off processor clock

— Rate may not divide a second by power of ten

o Software
— Written to use abstract tick rate
— May differ from pulse rate

e Clock interrupt handler matches the two rates

CS503 - PART 9 12 2010

Managing Real-Time Clock Events

e Must be efficient
— Events examined on each clock interrupt
— Clock interrupts continuously
— Should avoid searching a list
e Mechanism
— Keep events on linked list

— Oneitem on list for each outstanding event

— Called event queue

CS503 - PART 9 13 2010

Delta List

e List of timed events
e Ordered by time of occurrence
e For efficiency, store relative times

e Key in item stores difference (delta) between the time for
event and time for previous event

e Key In first event stores time from “now”

CS503 - PART 9 14 2010

Delta List Example

e Assume events will occur 17, 27, 28, and 32 ticks from now

e Deltakeysare 17,10, 1, and 4

CS503 - PART 9 15 2010

Real-Time Clock Processing In Xinu

e Clock interrupt handler
— Decrements preemption counter
— Reschedules if timeslice has expired
— Processes event list
e Clock queue
— Deltalist of delayed processes
— Each item corresponds to one process

— Global variable clockq specifies head

CS503 - PART 9 16 2010

Keys On The Xinu Clock Queue

e Processes on clockg are ordered by time at which they will
awaken

e Each key tells the number of clock ticks that the process
must delay beyond the preceding one on the list

e Relationship must be maintained when items are inserted or
deleted

CS503 - PART 9 17 2010

Real-Time Delay And Clock Resolution

e Process calls sleep to delay for a specified time

e Origina Xinu hardware used 60 Hz real-time clock
— Slegp times were measured in seconds
— Smallest resolution was tenths of seconds

e Modern Xinu system uses high-resolution timer hardware
— Processes can specify delay in milliseconds

e (Question: what resolution should be used for slegp?

CS503 - PART 9 18 2010

Xinu Sleep Primitives
e Set of primitives accommodates range of possible
resolutions
e Sleep specifies delay in seconds
e SleeplO specifies delay in tenths of seconds
e Sleepl00 specifies delay in hundredths of seconds
e Sleepl000 specifies delay in milliseconds

e Given system may not support all primitives

CS503 - PART 9 19 2010

Process State For Delayed Processes

CS503 - PART 9

wakeup /\ sleep
(® \
send /////——§\\\\L. receive
(@‘ |
signal ////’——\\\\L wait
WAITING

, (Lwamne) :

resched

CURRENT

suspend

resume suspend

create

20

2010

Xinu Sleep Function (part 1)

/* sleep.c - sleep sleepns */

ncl ude <xi nu. h>

#def i ne MAXSEQONDS 4294967 /* max seconds per 32-bit nsec */
| e e e e e
* sleep - Delay the calling process n seconds
*/
syscal | sl eep(
ui nt 32 del ay [* tine to del ay i n seconds */

{)

if (delay > MAXSEQONDS)

return(SYSEHRR) ;

}

sl eepns(1000* del ay) ;

return CK
}

CS503 - PART 9 21 2010

Xinu Sleep Function (part 2)

/* sleep.c - sleep sleepns */

ncl ude <xi nu. h>

#def i ne MAXSEQONDS 4294967 /* max seconds per 32-bit nsec */
| e e e e e
* sleep - Delay the calling process n seconds
*/
syscal | sl eep(
ui nt 32 del ay [* tine to del ay i n seconds */

{)

if (delay > MAXSEQONDS)

return(SYSEHRR) ;

}

sl eepns(1000* del ay) ;

return CK
}

CS503 - PART 9 22 2010

Inserting An Item On Clockq

e Current process
— Specifies delay in seconds
e Sleep function
— Computes delay in milliseconds
— Inserts current process on clockq
— Callsresched to allow other processes to execute
e Method
— Walk through clockqg (assumes interrupts disabled)
— Find place to insert the process
— Adjust remaining keys as necessary

CS503 - PART 9 23 2010

[* Insertd.c - i

Xinu Insertd (part 1)

nsertd */

ncl ude <xi nu. h>

* insertd -
*/
status insertd(
pi d32
gi d16
| nt 32
)
{ .
I nt
I nt

I f (isbadgid(qg) || isbadpid(pid)) {

}

CS503 - PART 9

pi d,
o
key
next ;
prev;

return SYSHRR

/*
/*
/*
/*

/*
/*

24

assunes interrupts disabled */
| D of process to insert */
| D of queue to use */
delay from"now (in ns.) */

runs through the delta list */
follows next through the list*/

2010

Xinu Insertd (part 2)

prev = queuehead(q);

next = queuet ab] queuehead(q)] . gnext;
while ((next != queuetail (g)) &% (queuetablnext].gkey <= key)) {
gueuet ab[next] . gkey;

key -
prev
next

}

/* insert new node between prev and next nodes */

next ;

gueuet ab[next | . gnext ;

gueuet ab[pi d] . gnext =
queuet ab[pi d] . gprev =
queuet ab[pi d] . gkey = key;

queuet ab[prev] . gnext = pi d;
gueuet ab[next] . gprev = pi d;

if (next !'= queuetail (q)) {
gueuet ab[next] . gkey -= key;

}

return K

CS503 - PART 9

next ;
prev;

25

2010

Invariant During Clockq Insertion

At any time during the search, both key and
gueuetab[next].gkey specify a delay relative to
the time at which the predecessor of the “next”
process awakens.

CS503 - PART 9 26 2010

Clock Initialization

e Clock hardware can be optional
e |f optional, OS must test for presence of a clock
— Initialize clock interrupt vector
— Enable interrupts
— Loop long enough
— If Interrupt occurs, declare clock present

— Otherwise, declare no clock present and disable slegp

CS503 - PART 9 27 2010

Clock Interrupt Handler

e Highly optimized (assembly code)
e Decrements preemption counter
— Callsresched if counter reaches zero
e Decrements count of the first element on clock queue
— Calls wakeup If counter reaches zero
e |mportant notes
— More than one process may awaken at the same time

— Wakeup must awaken all processes that have zero time
remaining before allowing any of them to run

CS503 - PART 9 28 2010

Xinu Wakeup

/* wakeup. c - wakeup */

ncl ude <xi nu. h>

/e
* wakeup - Glled by clock interrupt handl er to awaken processes
*/

voi d wakeup(voi d)

{

/* awaken all processes that have no nore tine to sleep */
whi | e (nonenpt y(sl eepq) && (firstkey(sleepg) <= 0)) {
r eady(dequeue(sl eepq), RESCHED NO ;
}
resched() ;
return;
}

e Rescheduling is deferred until all processes are awakened

CS503 - PART 9 29 2010

Operation Timeout

e Many operating systems facilities need “timeout” feature
e Egspecialy useful in building communication protocols
e Possible approaches

— Add timeout feature to each system call (difficult)

— Provide asingle facility for timeout

e Xinu uses latter approach with timed message reception

CS503 - PART 9 30 2010

Timed M essage Reception

e |mplemented with recvtime()
e Argument specifies maximum delay
e A call to recvtime() returns
— If amessage arrives before the specified timeout
— After the specified timeout if no message has arrived
e Vaue TIMEOUT returned Iif time expires

e Note: timer is cancelled if message arrives

CS503 - PART 9 31 2010

Xinu Recvtime (part 1)

[* recvtine.c - recvtine */
#i ncl ude <xi nu. h>

[X o L e e e e emeeean
* recvtine - wait specified tine to recei ve a nessage and return
K o e Y e e e Y e e e Y e e Y Y e Y Y Y e Y Y Y e Y e Y e e e
*/
unsg32 recvti ng(
i nt 32 naxwai t [* ticks to wait before tineout */
)
{ _ _
| nt nask nask; /* saved interrupt nask */
struct procent *prptr; /* table entry of current process*/
unsg32 nsg; /* nessage to return */
If (naxwait < 0) {
return SYSEHRR
nask = disabl e();
CS503 - PART 9 32

2010

Xinu Recvtime (part 2)

/* schedul e wakeup and pl ace process in tined-receive state */

prptr = &oroctab[currpid];
if (prptr->prhasnsg = FALSE) { /* if nessage waiting, no delay */
i f (insertd(currpid,sleepqg, naxwait) = SYSEHRR {
rest or e(nask) ;
return SYSERR
}

prptr->prstate = PR RECTITM
resched();

}

/[* Hther nessage arrived or tiner expired */

I f (prptr->prhasnsg) {

nNsg = prptr->prnsg; [* retrieve nessage */
prptr->prhasnsg = FALSE /* reset nessage i ndi cator */
} else {
nsg = T MEQT,
r est or e(nask) ;
return nsg;

CS503 - PART 9 33 2010

Summary

e Computer can contain several types of clocks
— CPU
— Time of day
— Interva timer
— Redl-time
e Real-time clock or interval timer used for
— Preemption
— Process delay

e OS may need to convert hardware pulse rate to appropriate
tick rate

CS503 - PART 9 34 2010

Summary
(continued)

e List of deeping processes stored in adelta list

e Only the key of the first item on the list needs to be updated
on each clock tick

e Multiple processes may awaken at the same time;
rescheduling is deferred until all have been made ready

e Recvtime allows a process to wait a specified time for a
message to arrive

CS503 - PART 9 35 2010

