
PART 9

Clock And Timer
Management

CS 503 - PART 9 1 2010

Location Of Clock Management
In The Hierarchy

CS 503 - PART 9 2 2010

Types Of Clocks

d CPU clock

d Time-of-day clock

d Real-time clock

d Interval timer

CS 503 - PART 9 3 2010

CPU Clock

d Controls processor rate

d Often cited as processor speed

d Usually not visible to the OS

CS 503 - PART 9 4 2010

Time-Of-Day Clock

d Autonomous chronometer

d Can be set or read by CPU

d Usually operates independently from processing

CS 503 - PART 9 5 2010

Real-Time Clock

d Pulses regularly

d Rate may not be controllable by CPU

d Interrupts CPU on each pulse

d Does not count pulses

– Interrupt lost if missed

d Consequence: CPU cannot run more than one clock tick
with interrupts disabled or real-time clock is inaccurate

d Note: some real-time clock hardware has counter that
records ticks, so OS can learn about missed ticks

CS 503 - PART 9 6 2010

Interval Timer

d Hardware device that operates asynchronously

d Timeout value set by CPU (e.g., time T)

d Device

– Interrupts T time units later

– Remains disabled after interrupt until reset

d Advanced features available on some hardware

– CPU can poll to find time remaining

– Timer value can be reset while timer is running

CS 503 - PART 9 7 2010

Use Of Real-Time Clock

d In theory

– OS may need arbitrary event types

– Events should occur at exact times (hard real-time
constraints)

d In practice

– Only two basic event types

– Events occur near specified time (soft real-time
constraints)

CS 503 - PART 9 8 2010

Two Principle Event Types

d Preemption event

– Implements timeslicing

– Guarantees process does not run forever

– Next preemption event scheduled during context switch

– Cancellation important

d Sleep event

– Scheduled by a process

– Delays the process a specified time

CS 503 - PART 9 9 2010

Time-Slicing Trade-Off

d How large should a timeslice be?

d Small granularity

– More rescheduling overhead

– Guarantees fairness because processes proceed at
approximately equal rate

d Large granularity

– Less rescheduling overhead

– Unfair because one process may be far ahead of another

CS 503 - PART 9 10 2010

Timeslicing And Conventional Applications

Most applications are I/O bound, which means the
application is likely to perform an operation that takes
the process out of the current state before its timeslice
expires.

CS 503 - PART 9 11 2010

Hardware Pulses And Clock Ticks

d Real-time clock hardware

– Has fixed pulse rate

– May run off processor clock

– Rate may not divide a second by power of ten

d Software

– Written to use abstract tick rate

– May differ from pulse rate

d Clock interrupt handler matches the two rates

CS 503 - PART 9 12 2010

Managing Real-Time Clock Events

d Must be efficient

– Events examined on each clock interrupt

– Clock interrupts continuously

– Should avoid searching a list

d Mechanism

– Keep events on linked list

– One item on list for each outstanding event

– Called event queue

CS 503 - PART 9 13 2010

Delta List

d List of timed events

d Ordered by time of occurrence

d For efficiency, store relative times

d Key in item stores difference (delta) between the time for
event and time for previous event

d Key in first event stores time from “now”

CS 503 - PART 9 14 2010

Delta List Example

d Assume events will occur 17, 27, 28, and 32 ticks from now

d Delta keys are 17, 10, 1, and 4

CS 503 - PART 9 15 2010

Real-Time Clock Processing In Xinu

d Clock interrupt handler

– Decrements preemption counter

– Reschedules if timeslice has expired

– Processes event list

d Clock queue

– Delta list of delayed processes

– Each item corresponds to one process

– Global variable clockq specifies head

CS 503 - PART 9 16 2010

Keys On The Xinu Clock Queue

d Processes on clockq are ordered by time at which they will
awaken

d Each key tells the number of clock ticks that the process
must delay beyond the preceding one on the list

d Relationship must be maintained when items are inserted or
deleted

CS 503 - PART 9 17 2010

Real-Time Delay And Clock Resolution

d Process calls sleep to delay for a specified time

d Original Xinu hardware used 60 Hz real-time clock

– Sleep times were measured in seconds

– Smallest resolution was tenths of seconds

d Modern Xinu system uses high-resolution timer hardware

– Processes can specify delay in milliseconds

d Question: what resolution should be used for sleep?

CS 503 - PART 9 18 2010

Xinu Sleep Primitives

d Set of primitives accommodates range of possible
resolutions

d Sleep specifies delay in seconds

d Sleep10 specifies delay in tenths of seconds

d Sleep100 specifies delay in hundredths of seconds

d Sleep1000 specifies delay in milliseconds

d Given system may not support all primitives

CS 503 - PART 9 19 2010

Process State For Delayed Processes

READY CURRENT

resched

resched

SUSPENDED
suspendresume

suspend

create

WAITING
waitsignal

RECEIVING
receivesend

SLEEPING
sleepwakeup

CS 503 - PART 9 20 2010

Xinu Sleep Function (part 1)

/* sleep.c - sleep sleepms */

#include <xinu.h>

#define MAXSECONDS 4294967 /* max seconds per 32-bit msec */

/*--
* sleep - Delay the calling process n seconds
*--
*/
syscall sleep(

uint32 delay /* time to delay in seconds */
)

{
if (delay > MAXSECONDS) {

return(SYSERR);
}
sleepms(1000*delay);
return OK;

}

CS 503 - PART 9 21 2010

Xinu Sleep Function (part 2)

/* sleep.c - sleep sleepms */

#include <xinu.h>

#define MAXSECONDS 4294967 /* max seconds per 32-bit msec */

/*--
* sleep - Delay the calling process n seconds
*--
*/
syscall sleep(

uint32 delay /* time to delay in seconds */
)

{
if (delay > MAXSECONDS) {

return(SYSERR);
}
sleepms(1000*delay);
return OK;

}

CS 503 - PART 9 22 2010

Inserting An Item On Clockq

d Current process

– Specifies delay in seconds

d Sleep function

– Computes delay in milliseconds

– Inserts current process on clockq

– Calls resched to allow other processes to execute

d Method

– Walk through clockq (assumes interrupts disabled)

– Find place to insert the process

– Adjust remaining keys as necessary

CS 503 - PART 9 23 2010

Xinu Insertd (part 1)

/* insertd.c - insertd */

#include <xinu.h>

/*--
* insertd - Insert a process in delta list using delay as the key
*--
*/
status insertd(/* assumes interrupts disabled */

pid32 pid, /* ID of process to insert */
qid16 q, /* ID of queue to use */
int32 key /* delay from "now" (in ms.) */

)
{

int next; /* runs through the delta list */
int prev; /* follows next through the list*/

if (isbadqid(q) || isbadpid(pid)) {
return SYSERR;

}

CS 503 - PART 9 24 2010

Xinu Insertd (part 2)

prev = queuehead(q);
next = queuetab[queuehead(q)].qnext;
while ((next != queuetail(q)) && (queuetab[next].qkey <= key)) {

key -= queuetab[next].qkey;
prev = next;
next = queuetab[next].qnext;

}

/* insert new node between prev and next nodes */

queuetab[pid].qnext = next;
queuetab[pid].qprev = prev;
queuetab[pid].qkey = key;
queuetab[prev].qnext = pid;
queuetab[next].qprev = pid;
if (next != queuetail(q)) {

queuetab[next].qkey -= key;
}

return OK;
}

CS 503 - PART 9 25 2010

Invariant During Clockq Insertion

At any time during the search, both key and
queuetab[next].qkey specify a delay relative to
the time at which the predecessor of the “next”
process awakens.

CS 503 - PART 9 26 2010

Clock Initialization

d Clock hardware can be optional

d If optional, OS must test for presence of a clock

– Initialize clock interrupt vector

– Enable interrupts

– Loop long enough

– If interrupt occurs, declare clock present

– Otherwise, declare no clock present and disable sleep

CS 503 - PART 9 27 2010

Clock Interrupt Handler

d Highly optimized (assembly code)

d Decrements preemption counter

– Calls resched if counter reaches zero

d Decrements count of the first element on clock queue

– Calls wakeup if counter reaches zero

d Important notes

– More than one process may awaken at the same time

– Wakeup must awaken all processes that have zero time
remaining before allowing any of them to run

CS 503 - PART 9 28 2010

Xinu Wakeup

/* wakeup.c - wakeup */

#include <xinu.h>

/*--
* wakeup - Called by clock interrupt handler to awaken processes
*--
*/
void wakeup(void)
{

/* awaken all processes that have no more time to sleep */

while (nonempty(sleepq) && (firstkey(sleepq) <= 0)) {
ready(dequeue(sleepq), RESCHED_NO);

}
resched();
return;

}

d Rescheduling is deferred until all processes are awakened

CS 503 - PART 9 29 2010

Operation Timeout

d Many operating systems facilities need “timeout” feature

d Especially useful in building communication protocols

d Possible approaches

– Add timeout feature to each system call (difficult)

– Provide a single facility for timeout

d Xinu uses latter approach with timed message reception

CS 503 - PART 9 30 2010

Timed Message Reception

d Implemented with recvtime()

d Argument specifies maximum delay

d A call to recvtime() returns

– If a message arrives before the specified timeout

– After the specified timeout if no message has arrived

d Value TIMEOUT returned if time expires

d Note: timer is cancelled if message arrives

CS 503 - PART 9 31 2010

Xinu Recvtime (part 1)

/* recvtime.c - recvtime */

#include <xinu.h>

/*--
* recvtime - wait specified time to receive a message and return
*--
*/
umsg32 recvtime(

int32 maxwait /* ticks to wait before timeout */
)

{
intmask mask; /* saved interrupt mask */
struct procent *prptr; /* table entry of current process*/
umsg32 msg; /* message to return */

if (maxwait < 0) {
return SYSERR;

}
mask = disable();

CS 503 - PART 9 32 2010

Xinu Recvtime (part 2)

/* schedule wakeup and place process in timed-receive state */

prptr = &proctab[currpid];
if (prptr->prhasmsg == FALSE) { /* if message waiting, no delay */

if (insertd(currpid,sleepq,maxwait) == SYSERR) {
restore(mask);
return SYSERR;

}
prptr->prstate = PR_RECTIM;
resched();

}

/* Either message arrived or timer expired */

if (prptr->prhasmsg) {
msg = prptr->prmsg; /* retrieve message */
prptr->prhasmsg = FALSE;/* reset message indicator */

} else {
msg = TIMEOUT;

}
restore(mask);
return msg;

}

CS 503 - PART 9 33 2010

Summary

d Computer can contain several types of clocks

– CPU

– Time of day

– Interval timer

– Real-time

d Real-time clock or interval timer used for

– Preemption

– Process delay

d OS may need to convert hardware pulse rate to appropriate
tick rate

CS 503 - PART 9 34 2010

Summary
(continued)

d List of sleeping processes stored in a delta list

d Only the key of the first item on the list needs to be updated
on each clock tick

d Multiple processes may awaken at the same time;
rescheduling is deferred until all have been made ready

d Recvtime allows a process to wait a specified time for a
message to arrive

CS 503 - PART 9 35 2010

