

‘Blockhub’: Blockchain-based Software Development System

for Untrusted Environments

Denis Ulybyshev*, Miguel Villarreal-Vasquez*,

Bharat Bhargava, Ganapathy Mani

Computer Science Department, CERIAS

Purdue University

West Lafayette, United States of America

dulybysh, mvillar, bbshail, manig@purdue.edu

Steve Seaberg, Paul Conoval, Robert Pike,

Jason Kobes
 Northrop Grumman

McLean, United States of America

Steve.Seaberg, Paul.Conoval, Robert.Pike,

Jason.Kobes@ngc.com

Abstract— To ensure integrity, trust, immutability and authenticity

of software and information (cyber data, user data and attack

event data) in a collaborative environment, research is needed for

cross-domain data communication, global software collaboration,

sharing, access auditing and accountability. Blockchain

technology can significantly automate the software export auditing

and tracking processes. It allows to track and control what data or

software components are shared between entities across multiple

security domains. Our blockchain-based solution relies on role-

based and attribute-based access control and prevents

unauthorized data accesses. It guarantees integrity of provenance

data on who updated what software module and when.

Furthermore, our solution detects data leakages, made behind the

scene by authorized blockchain network participants, to

unauthorized entities. Our approach is used for data

forensics/provenance, when the identity of those entities who have

accessed/ updated/ transferred the sensitive cyber data or sensitive

software is determined. All the transactions in the global

collaborative software development environment are recorded in

the blockchain public ledger and can be verified any time in the

future. Transactions can not be repudiated by invokers. We also

propose modified transaction validation procedure to improve

performance and to protect permissioned IBM Hyperledger-based

blockchains from DoS attacks, caused by bursts of invalid

transactions.

Keywords—blockchain; access control; privacy; data provenance;

collaborative software development

I. INTRODUCTION

Blockchain technologies can be categorized in two groups
based on their architecture and controls applied to the
participants. Permissionless blockchains are the networks in
which any node can act as a verifier of the network without
previous authorization (e.g. Bitcoin, Ethereum). On the other
hand, permissioned blockchains are networks that require
authorization from a centralized authority or consortium, which
imposes identity management and role-based access control
(e.g. Hyperledger). Blockchain technologies can also be
categrozied as public or private blockchains depending on
whether access control is applied to the network. Whether a
blockchain is permissionless or permissioned, there are several
key technical challenges that limit the powerful potential of
blockchain technology. One of the challenges that we address

in this paper is data privacy. Multiple untrusted entities can
access, update or transfer software modules in collaborative
software development environment. We proposed a
‘WAXEDPRUNE’ mechanism in [1], that extends
methodology of a privacy-preserving data exchange between
services in SOA, when each service can access only those data
items the service is authorized for [2], [3], [4]. Data exchange
model uses role-based and attribute-based access control.

In this paper, we aim to combine ‘WAXEDPRUNE’
framework with blockchain-based technology that guarantees
integrity of provenance data. This novel application of
blockchain technology allows tracking and controlling what
data or software modules are shared between entities across
multiple security domains. It is used for effective data
forensics/provenance in cross-domain data communication
networks and in global software collaboration environments
with multiple untrusted writers. In our permissioned blockchain
network, the attribute-based access control is used, in addition
to role-based access control. Client attributes, that are evaluated
by access control kernel, include cryptographic capabilities of a
web browser, authentication method, type of the client’s device,
context and trust level, which is constantly re-calculated [1].
Furthermore, our blockchain application inherits the data
leakage detection feature [12] from ‘WAXEDPRUNE’ [1]. It
allows to detect several types of data leakages, made by
authorized blockchain network participants behind the scene to
unauthorized entities outside of blockchain network.

Another challenge that we address in this paper is
performance of blockchain-based technologies. We aim to
improve the performance of IBM Hyperledger Fabric platform,
which is a permissioned blockchain. Modified transaction
validation procedure involves less amount of communications
and drops invalid transactions at earlier phase. This is also used
to protect Hyperledger network from DoS attacks, caused by
bursts of invalid transactions.

II. RELATED WORK

Compared to regular centralized databases, blockchain
provides more trust, robustness and fault tolerance due to its
immutability [5]. Blockchain provides disintermediation i.e.,
instead of relying on a central administrator, the transactions
can be verified by the collaborators that can view the digital
ledger and provide consensus. However, recent security

*Both authors contributed equally and are considered co-first authors

Approved For Public Release #18-1247

mailto:Jason.Kobes@ngc.com

breaches show that blockchain technology is prone to hacking.
The Krypton blockchain, Ethereum-based blockchains, coded
in golang, is hacked by “51 crew” [16]. They were able to
replicate and manufacture their own blockchain, and push that
into production as a real Krypton chain with large amounts of
hashing power and DDoS attack on Krypton chain nodes. Thus,
in some cases, it is not necessary to use blockchain [17].

Microsoft has announced that in collaboration with
Blockstack Labs, ConsenSys and developers from all over the
world, it is working on an open-source, blockchain-based
identity system that allows applications and services to
interoperate across blockchains, clouds and organizations [18].
 Recent study [9] demonstrates that trust and immutability
are provided through provenance on blockchain technology,
where smart contracts can be created. This increases trust and
reduces the need for a third party intervention in decentralized
systems. Our approach utilizes data provenance with
blockchain technology.

III. CORE DESIGN

 A. Blockchain-based cross-domain data and software sharing

We use blockchain technology for secure cross-domain
software development, global software collaboration, sharing
and audit. Blockchain allows tracking and controlling what data
items and software components are shared between what
entities across multiple security domains. It guarantees that
transactions cannot be repudiated by invokers. Recording
provenance and the identity determination for those entities
who have accessed/ updated/ transferred the sensitive software
modules are provided. Blockchain guarantees integrity of
provenance records that are used for forensics in case of
detected data/software leakages. Distributed data storage
mechanism using blockchains with smart contracts provides
access auditing, tracking capabilities and software leakage
prevention. This mechanism supports tamper-resistant software
supply chain that allows to develop and exchange software
components across multiple entities, e.g. across multiple
departments of a company.

The core idea is that any two untrusted collaborators, e.g. X
and Y, can securely share software in a controlled manner via
smart contracts running in the blockchain network that regulates
the access to software modules (see Fig.1). Every access to the
software module is granted or rejected based on the policies
established in these smart contracts and every successful
request and transfer of software module is logged as a record in
the blockchain distributed ledger. Software modules are stored
in encrypted form as a Software Bundle (SB), which is a self-
protected structure that incorporates encrypted software
modules, access control policies and policy enforcement engine
(see Fig.2). Thus, in addition to smart contracts, running in the
blockchain network, there are access control policies,
embedded into SBs that control the access to software modules.
SB mechanism is built on top of Active Bundle [2], [3]
technology for secure data transfer between untrusted entities.

For each software request, the following steps are executed:
(a) Registration of software attribute and ID based on

software location: Collaborators in the software distribution
network provide SB identifier (ID), linked to the software
storage location, to the blockchain distributed ledger. Software
modules are stored in SBs in encrypted form. Collaborator is

Figure 1. Blockchain-based software management system

able to find required software module in the distributed storage
using the stored ID information.
(b) Smart Contract management: Each collaborator is able to
manage access control policies in the smart contract for its own
software module when the ID of SB is registered in the
blockchain network. Software owners decide who can access
what particular software module via the distributed ledger using
policies in smart contracts.
(c) Secure software distribution through ‘WAXEDPRUNE’
solution: collaborators are not allowed to download software
directly from the repository. They are required to pass
authentication, access control policy and attributes evaluation.
To provide confidentiality, integrity, leakage detection, role-
based and attribute-based access control, software modules are
stored in a non-relational database in SB in the form of key-
value pairs with encrypted values. Here is the example of key-
value pair:

{“ab.Module1Code” : “Enc(#include<stdio.h>;
 int main() {int var1=1; … })” }

Value for a given software module, e.g. source code in C
language, is ‘#include<stdio.h>; int main() {int var1=1; … }’
and it is stored in encrypted form. Each separate software
module is encrypted with a separate AES symmetric key, which
is generated on-the-fly based on execution flow, depending on
SB modules, authentication code and resources: authentication
certificate and access control policies. Details are given in [2].
When collaborator X requests a software module SMi from an
SB, hosted by another collaborator Y (see Fig.1), the identity of
X is verified. In the authentication phase [2], [3], X presents its
X.509 certificate signed by a trusted Certificate Authority (CA)
to the SB, hosted by Y. If authentication passes, then X’s
attributes, including browser’s cryptographic capabilities, are
evaluated and enforced. Cryptographic capabilities assume
existence and support of certain cryptographic libraries in the
collaborator’s browser [10], [11]. If the check of attributes for
X passes then evaluation of applicable access control policies
starts. It is determined what data can be disclosed to X. Based
on that evaluation, decryption keys are derived to decrypt
accessible values from key–value
pairs. SB has a built-in tamper-
resistance mechanism, based on the
digest of the SB modules and their
resources. Furthermore, our
blockchain-based solution inherits the
data leakage detection feature [12]
from ‘WAXEDPRUNE’ framework. Figure 2. Software Bundle

Approved For Public Release #18-1247

It supports data leakage detection/prevention for multiple types
of data leakages, made by authorized blockchain network
insiders behind the scene to unauthorized entities outside of
blockchain network. The solution relies on data protection,
provided by SB. To address plaintext leakages, we rely on
digital/visual watermarks, as well as on partial data disclosure.
Details of our data leakage detection solution are available in
[12]. SB is written in Java and implemented as a JAR-file.
Prototype demo video [7] is available.
(d) Automated Process: Blockchain contains smart contracts
that are triggered when a transaction is invoked. These smart
contracts automatically run a series of jobs that will complete
the software sharing process, from verifying the access
authorization to starting software transfer in case when
authorization has been granted by both smart contract and
policy enforcement engine of SB. Every request for software
that is authorized and executed, is recorded in the blockchain
public ledger. Thus, integrity of provenance data is guaranteed.

Adversary Model: Blockchain network participant can be
malicious in terms of: (a) corrupting transactions log records
(provenance data) in order to hide and/or repudiate transactions;
(b) leaking data, for which participant is authorized, to
unauthorized entities outside of blockchain network.

Assumption: entity that hosts/executes SB has trusted hardware,
trusted operating system and trusted Java Virtual Machine.

B. Protection against DoS attacks in permissioned blockchains

In permissioned blockchain [13], there are three major nodes
(see Fig. 3): (1) Client service invokes a transaction on behalf
of a user, submits it to the transaction endorsers and broadcasts
the transaction to the sorting module; (2) Committing peers
commit the transactions and keep the copy of a blockchain.
Some of these peers can have a special role of Endorsers. Before
the commitment of a transaction, an endorsing peer checks the
validity of the transaction; (3) Sorting module orders
transactions in a chronological order and acts as a
communication channel between client services and
communicating/endorsing peers. This channel outputs the same
message to all connected peers in the same chronological order.
These communicated messages are nothing but transactions to
be included in the blockchain. For efficiency, the blocks are
created with a batch of transactions and sorting module imposes
a deterministic ordering of transactions in each block.

Clients can create a dense set of invalid transactions to make
network busy. These bursts of transactions can create a
bottleneck in Endorsers thus stopping the transmission of valid
transactions from other clients. In the baseline (old) workflow
the client service creates a transaction and broadcasts it to Tx
Endorsers of its choice. The Endorsers simulate the invoked
transaction, check if it is valid and if it adheres to the
endorsement policies. After the validation procedure, each
Endorser produces an endorsement signature. Client receives
the endorsed transactions with Read/Write set and sends it to
the Sorting Module. The Sorting Module delivers the
transaction to Tx Committers. Tx Committers validate the
transactions read set again with database before committing.
The block is added to the blockchain with transaction marked
as valid or invalid based on the validation. We propose the new
workflow which eliminates client communication with the

Figure 3. Permissioned Hyperledger-based blockchain platform architecture

Sorting Module. The Tx Endorsers will directly send the
endorsed transactions to the Sorting Module. In this way, we
create a proper order when multiple clients create transactions
at the same time. This order avoids confusion and excessive use
of resources even if there was a burst of transactions. The
sorting module knows the list of Tx Endorsers and waits for all
of them to confirm the transaction. Here we use the majority
endorsement principle. This solution is scalable, since Tx
Endorsers and Sorting Module process clients’ invoked
transaction requests in parallel. Only transactions that fulfill the
endorsement policies are passed directly to the Sorting Module
(Ordering Service). Invalid transactions are discarded.

IV. EVALUATION

 We evaluated performance overhead of our ‘Blockhub’
prototype that combines IBM Hyperledger Fabric platform [13]
and ‘WAXEDPRUNE’ framework [1]. In our experiment, there
are three web services in IBM Hyperledger network. In the first
experiment, they host software modules in the form of SBs. In
the second experiment, they have a pointer to a google cloud
instance that hosts SBs. Services are deployed on top of IBM
Hyperledger network in NodeJS framework, provided by
“Marbles” open-source project [6]. Service 1 sends a request for
software module 1 to Service 2. Firstly, this data request is
registered in the blockchain network and smart contracts are
triggered (see Fig.1). Then the request is redirected to
corresponding SB, which contains the requested software
module. The overall transaction latency includes blockchain
transaction processing time and Round-Trip Time (RTT) for
data request, processed by SB. Data request RTT for SB is
measured between the moment when data request processing is
finished by blockchain network and the moment when data
(software source code), retrieved from SB, are received by the
client (Service 2). Details of the ‘WAXEDPRUNE’ installation
are covered in [8]. In addition, we measure chaincode validation
time, which is part of blockchain transaction processing time.
We ran the data request 50 times and compute average values
of chaincode validation time, blockchain transaction latency
and RTT for SB.

Experimental setup 1
SB hosting Hardware: Intel Core i7, CPU 860 @2.8GHz x8,
8GB DRAM
OS: Linux Ubuntu 14.04.5, kernel 3.13.0-107-generic, 64 bit

Experimental setup 2: Google cloud instance with the
following characteristics:

Approved For Public Release #18-1247

SB hosting Hardware: Intel(R) Xeon(R) CPU@ 2.30GHz
OS: Linux Debian 4.9.65-3+deb9u2 (2018-01-04) x86 64,
kernel 4.9.0-5-amd64, 64 bit

Blockchain platform IBM Hyperledger Fabric ver. 1.0.x is used
in both experiments.

Figure 4. Transaction latency for local / Google cloud Software Bundle

As we see in Fig.4, blockchain transaction latency is way
greater than SB RTT. Overall blockchain transaction latency,
including chaincode validation time, is 6.02 [sec]. Benefits,
provided by SB, such as attribute-based access control and
leakage detection, impose only 0.23% overhead when SB is
hosted by the service in the blockchain network, and 0.8%
overhead when hosted by Google cloud instance. IBM
announced that new Hyperledger Fabric version 1.1 [14] will
have way better performance. Microsoft Coco blockchain
platform [15] provides transaction latency 0.152 sec, but it is
not open-sourced yet. Once it is open-sourced, we will be able
to integrate it in our framework and improve its performance.

V. CONCLUSION

We presented a comprehensive solution for collaborative
software development that allows to track and control what
software components are shared between entities across
multiple security domains. The solution combines
‘WAXEDPRUNE’ [1] framework with permissioned
blockchain, IBM Hyperledger Fabric [13]. ‘WAXEDPRUNE’
provides flexible attribute-based access control and capabilities
of detecting leakages, made by authorized blockchain network
participants (malicious insiders) to unauthorized entities outside
of blockchain network. The overhead, imposed by
‘WAXEDPRUNE’, does not exceed 0.8%.
 We also proposed a modified transaction validation
procedure in order to improve performance and to protect
permissioned IBM Hyperledger-based networks from DoS
attacks, caused by bursts of invalid transactions.

FUTURE WORK

We plan to finalize integration of our ‘WAXEDPRUNE’

framework [1] with IBM Hyperledger Fabric and perform more

experiments to test ‘Blockhub’ prototype. ‘Blockhub’ will be

compared with the baseline solution, which will be

‘WAXEDPRUNE’ [1] for secure data and software exchange

extended with capabilities of blockchain-based recording of

provenance data for all the transactions, blockchain replication

and with verifiability of every transaction any time in the future.

In addition, modified transaction validation procedure for IBM

Hyperledger Fabric will be tested.

ACKNOWLEDGMENT

This work was partially supported by a Corporate Partners

Award of Purdue Computer Science department. This work was

also partially supported by the Northrop Grumman

Cybersecurity Research Consortium. We thank Prof. Leszek

Lilien (Purdue University, Western Michigan University) and

Aala Oqab-Alsalem for their help and valuable feedback.

REFERENCES

[1] D. Ulybyshev, B. Bhargava, M. Villarreal-Vasquez, D. Steiner, L. Li, J.
Kobes, H. Halpin, R. Ranchal, A. Oqab-Alsalem, “Privacy-Preserving
Data Dissemination in Untrusted Cloud”, IEEE CLOUD 2017, pp. 770-
773.

[2] R. Ranchal, “Cross-domain data dissemination and policy enforcement,”
PhD thesis, Purdue University, 2015.

[3] L. B. Othmane, “Active bundles for protecting confidentiality of sensitive
data throughout their lifecycle,” PhD thesis, Western Michigan
University, 2010.

[4] R. Ranchal, B. Bhargava, P. Angin, and L. B. Othmane, “Epics: A
framework for enforcing security policies in composite web services,”
IEEE Transactions on Services Computing, 2018.

[5] “Blockchains vs centralized databases”, March 17, 2016. Available:
https://www.multichain.com/blog/2016/03/blockchains-vs-centralized-
databases/, accessed: May 2018

[6] “Marbles Demo,” Available: https://github.com/IBM-
Blockchain/marbles, accessed: May 2018

[7] D. Ulybyshev and B. Bhargava, “Secure dissemination of EHR demo
video,”Available:https://www.dropbox.com/s/4wg3vuv52j4s16v/NGCR
C-2017-Bhargava-Demo1.wmv?dl=0, accessed: May 2018

[8] D. Ulybyshev, B. Bhargava, L. Li, J. Kobes, D. Steiner, H. Halpin, B.An,
M.Villarreal, R.Ranchal, T.Vincent, “Secure dissemination of EHR in
untrusted cloud," Tutorial, Purdue University, 2016.

[9] G. Gordon, “Provenance and authentication of oracle sensor data with
block chain lightweight wireless network authentication scheme for
constrained oracle sensors,” 2017

[10] “W3C web cryptography API,” 2018. Available:
https://www.w3.org/TR/WebCryptoAPI/, accessed: May 2018

[11] “Web authentication: an API for accessing scoped credentials,” Available:
http://www.w3.org/TR/webauthn/, accessed: May 2018

[12] D. Ulybyshev, B. Bhargava, A. Alsalem, “Secure Data Exchange and
Data Leakage Detection in Untrusted Cloud,” ICACCT 2018, in press

[13] “IBM Blockchain 101: Quick-start guide for developers,” 2016.
Available: https://www.ibm.com/developerworks/cloud/library/cl-ibm-
blockchain-101-quick-start-guide-for-developers-bluemix-
trs/index.html, accessed: May 2018

[14] “About Fabric performance testing report,” 2017. Available:
https://lists.hyperledger.org/pipermail/hyperledger-fabric/2017-
October/001895.html, accessed: May 2018

[15] “Announcing the Coco Framework for enterprise blockchain networks,”
2017. Available: https://azure.microsoft.com/en-us/blog/announcing-
microsoft-s-coco-framework-for-enterprise-blockchain-networks/,
accessed: May 2018

[16] “Krypton Abandons Ethereum-Based Blockchain After 51% Attack”,
May 31, 2017. Available: http://krypton.rocks/blog/krypton-abandons-
ethereum-based-blockchain-after-51-attack/, accessed: May 2018

[17] G. Greenspan, “Avoiding the Pointless Blockchain Project”, 11/22/2015,
Available: http://www.multichain.com/blog/2015/ 11/avoiding-pointless-
blockchain-project/, accessed: May 2018

[18] “Microsoft building Open Blockchain-based Identity System With
Blockstack, ConsenSys. Available:
https://bitcoinmagazine.com/articles/microsoft-building-open-
blockchain-based-identity-system-with-blockstack-consensys-
1464968713/, accessed: May 2018

Approved For Public Release #18-1247

https://www.multichain.com/blog/2016/03/blockchains-vs-centralized-databases/
https://www.multichain.com/blog/2016/03/blockchains-vs-centralized-databases/
https://github.com/IBM-Blockchain/marbles
https://github.com/IBM-Blockchain/marbles
https://www.dropbox.com/s/4wg3vuv52j4s16v/NGCRC-2017-Bhargava-Demo1.wmv?dl=0
https://www.dropbox.com/s/4wg3vuv52j4s16v/NGCRC-2017-Bhargava-Demo1.wmv?dl=0
http://www.w3.org/TR/WebCryptoAPI/
http://www.w3.org/TR/WebCryptoAPI/
http://www.w3.org/TR/webauthn/
https://www.ibm.com/developerworks/cloud/library/cl-ibm-blockchain-101-quick-start-guide-for-developers-bluemix-trs/index.html
https://www.ibm.com/developerworks/cloud/library/cl-ibm-blockchain-101-quick-start-guide-for-developers-bluemix-trs/index.html
https://www.ibm.com/developerworks/cloud/library/cl-ibm-blockchain-101-quick-start-guide-for-developers-bluemix-trs/index.html
https://lists.hyperledger.org/pipermail/hyperledger-fabric/2017-October/001895.html
https://lists.hyperledger.org/pipermail/hyperledger-fabric/2017-October/001895.html
https://azure.microsoft.com/en-us/blog/announcing-microsoft-s-coco-framework-for-enterprise-blockchain-networks/
https://azure.microsoft.com/en-us/blog/announcing-microsoft-s-coco-framework-for-enterprise-blockchain-networks/
http://krypton.rocks/blog/krypton-abandons-ethereum-based-blockchain-after-51-attack/
http://krypton.rocks/blog/krypton-abandons-ethereum-based-blockchain-after-51-attack/
https://www.multichain.com/blog/author/gdg/
http://www.multichain.com/blog/2015/%2011/avoiding-pointless-blockchain-project/
http://www.multichain.com/blog/2015/%2011/avoiding-pointless-blockchain-project/
https://bitcoinmagazine.com/articles/microsoft-building-open-blockchain-based-identity-system-with-blockstack-consensys-1464968713/
https://bitcoinmagazine.com/articles/microsoft-building-open-blockchain-based-identity-system-with-blockstack-consensys-1464968713/
https://bitcoinmagazine.com/articles/microsoft-building-open-blockchain-based-identity-system-with-blockstack-consensys-1464968713/

