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ky=kg =20
We construct and analyze programmable quantum-like bits (QL-bits)

as two-level logical encodings realized by eigenmodes of signed graph
adjacency matrices. Two k-regular subgraphs coupled by an [-regular
bipartite connector produce a composite signed adjacency R. We
prove that symmetric regular coupling yields exact logical Hadamard
modes |t); with eigenvalues k + [. We then give two constructive
state-synthesis mechanisms for any real encoded state (w1V}; w,Vg):
(i) symmetric degree detuning with A = (k4 —kg)/(20), and (ii)
directed/asymmetric coupling with A; =1/l . In both cases,
parameter/inverse switching avoids singular regimes and covers
boundary amplitude ratios. Because degrees are integer in the
unweighted signed model, target amplitudes are approximated by
rational degree ratios, while uniform degree scaling provides an
independent knob for spectral separation/robustness.

Model
We build a single QL-bit from two regular graphs G, G5 (adjacency | Rl SN R IR gLt El gLt (R s (o o WAV o) o] ()€

A, B) coupled by a signed bipartite connector. The composite signed In the signed/unweighted model [C];; € {—1,0}, regularities are integers, so the
adjacency is R = (A Ca tunable parameters live in the rationals. This is the source of a clean “accuracy

Cgp B ) ) scaling” story: increasing graph size (or denominators) increases how finely one
k4- and kg-regular subgraphs, the Perron-Frobenius eigenvectors are can approximate a desired amplitude ratio.

uniform unit vectors Vy, Vp, giving an encoded basis Symmetric coupling constraints (simple graphs, 2n vertices; n per side):
_ V4 _ 0 kg kg, l €Z, ka kg, l + 0, kg — kg| <n, || < n.
[0}, = 1) = :
0 Vg
ka—kp

Goal: choose integer degree parameters so that |), = (w1Vy; w,Vp) A= €Q
is an eigenvector of R with w? + w% = 1. 21 ’

Directed coupling constraints:
Lemma: Regular Coupling

lalg, k EZ,
Regular coupling gives Hadamard-like modes.
If A, B are k-regular (same size) and C € {—1,0} is [-regular (I directed
couplings per vertex across the cut), then

_1(Va y _ 1 VA)
|+)L - ‘/E(VB> and | )L - ‘/E<_VB
A C
cT B
(ordering depends on sign convention).

Theorem: Tuning arbitrary states
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Fig. 1. Example composite QL-bit graph formed by two k-regular subgraphs coupled by an #-regular bipartite
connector. The adjacency spectrum shows two emergent eigenvalues near k + £, corresponding to the
encoded Hadamard-like eigenmodes. Gap persists under degree scaling / perturbations.

), with Cp = C} in the symmetric case. For

Hence,

|A] < n (maximal setting).

Lolsk #0, |l —lg] <n.

Hence,
Ac =1L/l €Q,

Unified Design Equation and Random-Walk Lens

A single constraint unifies the symmetric-detuning and directed-coupling
A Cy
b B)
and require an encoded eigenvector |); = (w,Vy; w,Vp). Then the regularities
must satisfy (Appendix C)
w3l — Wil + wiwy(kg —ky) =0
Specializing recovers both mechanisms:

|[Ac| < n (maximal setting).

constructions. Allow all four regularities to vary (ky, kg, l4,lg) in R = (

are eigenvectors of R = ( ) with eigenvalues k — land k + [

State synthesis reduces to tuning degree ratios. Two mechanisms .

realize any real-amplitude encoded state |Y);, = (w,Vy; w,V5) :
(i) symmetric degree detuning and (ii) directed/asymmetric coupling.
Because degrees are discrete and the base formulas have “blow-up”
loci, we use a switching rule in each mechanism by also allowing the
inverse parameterization.
Theorem 3.1: Mechanism A - Symmetric detuning + switching
With symmetric coupling C, = CE = C and detuned subgraph degrees
k4 #+ kg, define

A= —kA — .

21
For target [}, = w1]0), + w,|1), (w? + w3 = 1,real),
w3 — wf

A e
2w wy
makes |Y); an eigenvector.
Switching (symmetric): where the above ratio becomes large in
magnitude, use the inverse parameter A™1.
Lemma 4.1: Mechanism B - Directed coupling + switching
Allow directed regular couplings with degrees I, lg:

A
R=(2 %) GVe=-la  CoVa=—lsVs,
C; B

and setk, = kg = k. Define
Ac == 1,/lg, then A; = w? /w3
makes [y), an eigenvector.
Switching (directed): Similarly to the symmetric case, use AEl when
Ac becomes unbounded.

I, = lp gives the symmetric detuning relation (Theorem 3.1).
 ky = kg gives the directed ratio A; = I /lg = w?/w? (Lemma 4.1)
Random-walk interpretation (Sec. 5): on the undirected composite graph, the
stationary distribution is degree-proportional. Under symmetric detuning,
kg +1 kg +1

M= i (ky + ki + 20) ~ n(ky + kg + 20)
while the encoded QL amplitudes depend only on the ratio parameter (A or A.),
leaving absolute scaling available to tune secondary criteria (e.g.,
separation/robustness) without changing |i); .

(ied), m

(i € B),

Practical Considerations and Extensions

With signed unweighted edges [C]ij € {—1,0}, the regularities are integers, hence
A and A; are rational; larger graphs/denominators give finer amplitude resolution,
and switching to A1 or AEI avoids singular regimes. Keeping ratios fixed while
scaling degrees tunes spectral separation. Next: complex discrete weights (e.g.,
s = {1, £i}) for phases and explicit gate/multi-bit constructions.
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