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Abstract
We construct and analyze programmable quantum-like bits (QL-bits) 
as two-level logical encodings realized by eigenmodes of signed graph 
adjacency matrices. Two 𝑘-regular subgraphs coupled by an 𝑙-regular 
bipartite connector produce a composite signed adjacency 𝑅. We 
prove that symmetric regular coupling yields exact logical Hadamard 
modes ± 𝐿 with eigenvalues 𝑘 ± 𝑙. We then give two constructive 
state-synthesis mechanisms for any real encoded state (𝜔1𝑉𝐴; 𝜔2𝑉𝐵): 
(i) symmetric degree detuning with Δ = (𝑘𝐴 − 𝑘𝐵)/(2𝑙) , and (ii) 
directed/asymmetric coupling with Δ𝐶 = 𝑙𝐴/𝑙𝐵 . In both cases, 
parameter/inverse switching avoids singular regimes and covers 
boundary amplitude ratios. Because degrees are integer in the 
unweighted signed model, target amplitudes are approximated by 
rational degree ratios, while uniform degree scaling provides an 
independent knob for spectral separation/robustness.

Model
We build a single QL-bit from two regular graphs 𝐺𝐴, 𝐺𝐵 (adjacency 
𝐴, 𝐵) coupled by a signed bipartite connector. The composite signed 

adjacency is 𝑅 =
𝐴 𝐶𝐴

𝐶𝐵 𝐵
, with 𝐶𝐵 = 𝐶𝐴

𝑇  in the symmetric case. For 

𝑘𝐴- and 𝑘𝐵-regular subgraphs, the Perron-Frobenius eigenvectors are 
uniform unit vectors 𝑉𝐴, 𝑉𝐵, giving an encoded basis

| ۧ0 𝐿 =
𝑉𝐴

0
, | ۧ1 𝐿 =

0

𝑉𝐵
.

Goal: choose integer degree parameters so that | ۧ𝜓 𝐿 = (𝜔1𝑉𝐴;  𝜔2𝑉𝐵) 
is an eigenvector of 𝑅 with 𝜔1

2 + 𝜔2
2 = 1.

Fig. 1. Example composite QL-bit graph formed by two 𝑘-regular subgraphs coupled by an ℓ-regular bipartite 
connector. The adjacency spectrum shows two emergent eigenvalues near 𝑘 ± ℓ, corresponding to the 
encoded Hadamard-like eigenmodes. Gap persists under degree scaling / perturbations.

Lemma: Regular Coupling
Regular coupling gives Hadamard-like modes.
If 𝐴, 𝐵 are 𝑘-regular (same size) and 𝐶 ∈ {−1,0} is 𝑙-regular (𝑙 directed 
couplings per vertex across the cut), then

| ۧ+ 𝐿 =
1

2

𝑉𝐴

𝑉𝐵
    and    | ۧ− 𝐿 =

1

2

𝑉𝐴

−𝑉𝐵

are eigenvectors of 𝑅 =
𝐴 𝐶

𝐶𝑇 𝐵
 with eigenvalues 𝑘 − 𝑙 and 𝑘 + 𝑙 

(ordering depends on sign convention).

Practical Considerations and Extensions
With signed unweighted edges 𝐶 𝑖𝑗 ∈ {−1,0}, the regularities are integers, hence 
Δ and Δ𝐶  are rational; larger graphs/denominators give finer amplitude resolution, 
and switching to Δ−1 or ΔC

−1 avoids singular regimes. Keeping ratios fixed while 
scaling degrees tunes spectral separation. Next: complex discrete weights (e.g., 
𝜇4 = {±1, ±𝑖}) for phases and explicit gate/multi-bit constructions.

Unified Design Equation and Random-Walk Lens
A single constraint unifies the symmetric-detuning and directed-coupling 

constructions. Allow all four regularities to vary (𝑘𝐴, 𝑘𝐵 , 𝑙𝐴, 𝑙𝐵 ) in 𝑅 =
𝐴 𝐶𝐴

𝐶𝐵 𝐵
, 

and require an encoded eigenvector 𝜓 𝐿 = (𝜔1𝑉𝐴; 𝜔2𝑉𝐵). Then the regularities 
must satisfy (Appendix C)

𝜔2
2𝑙𝐴 − 𝜔1

2𝑙𝐵 + 𝜔1𝜔2 𝑘𝐵 − 𝑘𝐴 = 0
Specializing recovers both mechanisms:
• 𝑙𝐴 = 𝑙𝐵  gives the symmetric detuning relation (Theorem 3.1).
• 𝑘𝐴 = 𝑘𝐵  gives the directed ratio Δ𝐶 = 𝑙𝐴/𝑙𝐵 = 𝜔1

2/𝜔2
2 (Lemma 4.1)

Random-walk interpretation (Sec. 5): on the undirected composite graph, the 
stationary distribution is degree-proportional. Under symmetric detuning,

𝜋𝑖 =
𝑘𝐴 + 𝑙

𝑛 𝑘𝐴 + 𝑘𝐵 + 2𝑙
𝑖 ∈ 𝐴 , 𝜋𝑖 =

𝑘𝐵 + 𝑙

𝑛 𝑘𝐴 + 𝑘𝐵 + 2𝑙
𝑖 ∈ 𝐵 ,

while the encoded QL amplitudes depend only on the ratio parameter (Δ or Δ𝐶), 
leaving absolute scaling available to tune secondary criteria (e.g., 
separation/robustness) without changing 𝜓 𝐿.
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Theorem: Tuning arbitrary states
State synthesis reduces to tuning degree ratios. Two mechanisms 
realize any real-amplitude encoded state | ۧ𝜓 𝐿 = (𝜔1𝑉𝐴; 𝜔2𝑉𝐵) :
(i) symmetric degree detuning and (ii) directed/asymmetric coupling. 
Because degrees are discrete and the base formulas have “blow-up” 
loci, we use a switching rule in each mechanism by also allowing the 
inverse parameterization.
Theorem 3.1: Mechanism A – Symmetric detuning + switching
With symmetric coupling 𝐶𝐴 = 𝐶𝐵

𝑇 = 𝐶 and detuned subgraph degrees 
𝑘𝐴 ≠ 𝑘𝐵, define

Δ ≔
𝑘𝐴 − 𝑘𝐵

2𝑙
.

For target 𝜓 𝐿 = 𝜔1 ۧ0 𝐿 + 𝜔2 ۧ1 𝐿 (𝜔1
2 + 𝜔2

2 = 1, real),

Δ =
𝜔2

2 − 𝜔1
2

2𝜔1𝜔2

makes | ۧ𝜓 𝐿 an eigenvector.
Switching (symmetric): where the above ratio becomes large in 
magnitude, use the inverse parameter Δ−1.
Lemma 4.1: Mechanism B – Directed coupling + switching
Allow directed regular couplings with degrees 𝑙𝐴, 𝑙𝐵:

𝑅 =
𝐴 𝐶𝐴

𝐶𝐵 𝐵
, 𝐶𝐴𝑉𝐵 = −𝑙𝐴𝑉𝐴, 𝐶𝐵𝑉𝐴 = −𝑙𝐵𝑉𝐵,

and set 𝑘𝐴 = 𝑘𝐵 = 𝑘. Define
Δ𝐶 ≔ 𝑙𝐴/𝑙𝐵, then Δ𝐶 = 𝜔1

2/𝜔2
2

makes 𝜓 𝐿 an eigenvector.
Switching (directed): Similarly to the symmetric case, use Δ𝐶

−1 when 
Δ𝐶  becomes unbounded.

Discrete Feasibility: Integer Degrees ⇒ Rational Approx.
In the signed/unweighted model 𝐶 𝑖𝑗 ∈ {−1,0}, regularities are integers, so the 
tunable parameters live in the rationals. This is the source of a clean “accuracy 
scaling” story: increasing graph size (or denominators) increases how finely one 
can approximate a desired amplitude ratio.
Symmetric coupling constraints (simple graphs, 2𝑛 vertices; 𝑛 per side):

𝑘𝐴, 𝑘𝐵 , 𝑙 ∈ ℤ, 𝑘𝐴, 𝑘𝐵 , 𝑙 ≠ 0, |𝑘𝐴 − 𝑘𝐵| < 𝑛, |𝑙| < 𝑛.
Hence,

Δ =
𝑘𝐴 − 𝑘𝐵

2𝑙
∈ ℚ, Δ < 𝑛 (maximal setting).

Directed coupling constraints:
𝑙𝐴, 𝑙𝐵 , 𝑘 ∈ ℤ, 𝑙𝐴, 𝑙𝐵 , 𝑘 ≠ 0, 𝑙𝐴 − 𝑙𝐵 < 𝑛.

Hence,
Δ𝐶 = 𝑙𝐴/𝑙𝐵 ∈ ℚ, Δ𝐶 < 𝑛 (maximal setting).
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