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Abstract
Building on experimental observations of composite graphs 
that exhibit emergent eigenvectors in complex synchronized 
networks [1,3], we develop a rigorous graph theoretic 
framework for constructing quantum-like bits (QL-bits). Our 
approach builds a composite system from two 𝑘 -regular 
subgraphs coupled via a bipartite connection matrix 𝐶, whose 
emergent eigenvectors form a natural qubit basis. Rigorous 
proofs establish that the composite matrix 𝑅 = [𝐴 𝐶; 𝐶𝑇  𝐵] 
yields eigenvectors corresponding to eigenvalues 𝜆− = 𝑘 + 𝑙 
and 𝜆+ = 𝑘 − 𝑙 under symmetric coupling. By introducing state 
tuning through detuning (varying subgraph regularity) and 
employing asymmetric coupling (via directed matrices 𝐶𝐴, 𝐶𝐵  in 
replacement of 𝐶, 𝐶𝑇), we show how to generate an arbitrary 
state 𝜓 = 𝑎𝜓+ + 𝑏𝜓− (with 𝑎2 + 𝑏2 = 1). This work extends 
previous research on QL state representations and offers a 
flexible methodology for state manipulation with applications 
in quantum simulation and network synchronization. Practical Considerations + Extensions

The present framework employs discrete coupling weights (-1 
and 0), which may limit the precision of state tuning. Strategies 
such as using high-precision rational entries or employing 
ensemble averaging can address these limitations. Future work 
may extend this approach to multi-qubit systems and explore 
the effects of heterogeneous graph structures, thereby 
broadening the applicability of QL-bits in quantum simulation 
and complex network analysis.

Introduction and Motivation
Emergent Behavior: Complex synchronized networks give rise 
to emergent (satellite) eigenvectors that can be leveraged to 
mimic qubit states.
Graph Theory Meets Quantum Computing: By modeling qubit 
states through the structure of regular graphs, we can explore 
QL information processing using classical network constructs.
Objective: Develop a rigorous yet flexible method to construct 
and tune QL-bits by coupling two regular subgraphs. In 
particular, we show how to construct:

𝜓 =
𝑎𝑉𝐴

𝑏𝑉𝐵
  for  𝑎2 + 𝑏2 = 1

Where 𝜓 is the eigenvector associated with the top emergent 

eigenvalue of the adjacency matrix 𝑅 =
𝐴 𝐶

𝐶𝑇 𝐵
.

Tuning Mechanisms
To generate an arbitrary QL-bit state, we express the state as
𝜓 = 𝑎𝜓+ + 𝑏𝜓− , where 𝑎  and 𝑏  satisfy the normalization 
condition 𝑎2 + 𝑏2 = 1.  One tuning mechanism involves 
detuning the regularities of the subgraphs. By varying 𝑘𝐴 and 
𝑘𝐵, we define a detuning parameter Δ = (𝑘𝐴 − 𝑘𝐵)/2, which 
controls the relative contributions of 𝜓+  and 𝜓−  in the 
composite state. However, in regimes where detuning leads to 
divergence (for instance, when either 𝑎 or 𝑏 approaches zero) 
or becomes infeasible (e.g. Δ ≥ 𝑛 ), symmetric coupling 
becomes less practical. To remedy this, we propose the use of 
asymmetric coupling. In this alternative approach, the 
undirected coupling matrix 𝐶  is replaced by two directed 
matrices, 𝐶𝐴  and 𝐶𝐵 , satisfying 𝐶𝐴𝑉𝐴 = −𝑙𝐴𝑉𝐴  and 𝐶𝐵𝑉𝐴 =
− 𝑙𝐵𝑉𝐴. This method allows independent adjustment of the 
coupling strengths and ensures a balanced emergent state.
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Theoretical Framework
The composite (undirected) graph is formed by two subgraphs, 𝐺𝐴 and 𝐺𝐵, of 
orders 𝑛 and 𝑚, respectively, with adjacency matrices 𝐴 and 𝐵. Both subgraphs 
are assumed to be 𝑘-regular, meaning each vertex has exactly 𝑘 connections. 
They are coupled by a bipartite matrix 𝐶, whose entries are chosen from {-1, 0}. 
The composite adjacency matrix is then expressed as 𝑅 = [𝐴 𝐶; 𝐶𝑇  𝐵].
Let 𝑉𝐴 and 𝑉𝐵  be the normalized Perron-Frobenius eigenvectors of 𝐴 and 𝐵, given 
by 𝑉𝐴= ( 1

𝑛
)[1, 1, …, 1]ᵀ and 𝑉𝐵  = ( 1

𝑚
)[1, 1, …, 1]ᵀ [2]. These eigenvectors allow us to 

define the qubit basis vectors as

 𝜓+ =
1

2

𝑉𝐴

𝑉𝐵
    and    𝜓+ =

1

2

𝑉𝐴

−𝑉𝐵

In our rigorous treatment (Lemma 4.1), we show that when 𝐶 is 𝑙-regular and the 
subgraphs have equal order (𝑛 = 𝑚), these basis vectors become eigenvectors of 
𝑅 with eigenvalues 𝜆− = 𝑘 + 𝑙 and 𝜆+ = 𝑘 − 𝑙.

Fig 1. Regular graph and adjacency spectrum.  Each subgraph has n/2 nodes. m_subgraph is set to None, indicating 
no edges deleted for a total of 678 edges ≈ 2*(#edges in a k-regular subgraph of size n
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 )+Pr(connect)*(#possible 

(undirected) connecting edges) = 2(𝑘(
𝑛

2
)/2)+0.1(

𝑛

2
)2 = 20*30+0.1*30^2=690. Note the two emergent eigenvectors are 

approximately 20 ± 3 = 𝑘 ± 𝑙 for 𝑘-regular subgraphs 𝑎1, 𝑎2 and approximately 𝑙-regular connecting graph 
𝐺𝐶(randomly adding edges uniformly adds approximately 𝑙 ≔ (#edges added)/v)*2 edges to each node).
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