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Abstract Machine learning is traditionally formalized and investigated as the study of
learning concepts and decision functions from labeled examples, requiring a representation
that encodes information about the domain of the decision function to be learned. We are in-
terested in providing a way for a human teacher to interact with an automated learner using
natural instructions, thus allowing the teacher to communicate the relevant domain exper-
tise to the learner without necessarily knowing anything about the internal representations
used in the learning process.

In this paper we suggest to view the process of learning a decision function as a natural
language lesson interpretation problem, as opposed to learning from labeled examples. This
view of machine learning is motivated by human learning processes, in which the learner is
given a lesson describing the target concept directly and a few instances exemplifying it. We
introduce a learning algorithm for the lesson interpretation problem that receives feedback
from its performance on the final task, while learning jointly (1) how to interpret the lesson
and (2) how to use this interpretation to do well on the final task. This approach alleviates
the supervision burden of traditional machine learning by focusing on supplying the learner
only with information that can be provided by a task expert.

We evaluate our approach by applying it to the rules of the solitaire card game. We
show that our learning approach can eventually use natural language instructions to learn the
target concept and play the game legally. Furthermore, we show that the learned semantic
interpreter also generalizes to previously unseen instructions.
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1 Introduction

Machine learning has traditionally focused on learning concepts in a supervised setting:
given a set of labeled examples, the learner constructs a decision function generalizing over
the observed training data. While this approach has been tremendously successful for many
learning domains, it carries an inherent drawback: the learner can only be as good as the
data it is given. Learning therefore depends on annotating considerable amounts of train-
ing data, an expensive and time consuming process. Furthermore, successful learning often
depends on machine learning expertise required for designing and calibrating the learning
environment.

In this work we take a first step towards alleviating some of this difficulty by suggest-
ing a different kind of learning protocol: Learning from Natural Instructions (LNI). This
protocol draws motivation from human learning processes, in which the learner is given a
“knowledge injection”, in the form of Natural Language (NL) instructions describing a high
level target concept and a few specific examples to validate the correct understanding of the
lesson. Under these definitions, learning is viewed as the process of converting a natural
language representation of the target concept into a machine language representation that
can be understood by an automated agent. The following example shows such a pair: a les-
son and its corresponding logical representation. This paper analyzes the process of teaching
rules of card games, the example therefore describes a precondition for a Solitaire card game
move.

Example 1 Solitaire card game NL instruction and logical form output
“You can move any top card to a free cell if it is empty”
Move(a1, a2)← card(a1) ∧ top(a1, x1) ∧ freecell(a2) ∧ empty(a2)

Supervised learning, an inductive process by nature, generalizes over the labeled ex-
amples. This contrasts with our approach, which attempts to learn the correct hypothesis
directly by interpreting NL instructions, rather than by inducing it from examples. This con-
ceptual difference between the approaches makes each one preferable in different situations.
For example, to effectively use LNI, a succinct definition of the target concept (i.e., the clas-
sification rule) is required. Capturing the intricacies required for defining an object detector
in images using natural language might not be possible, and is better approached using tra-
ditional example-based learning; however, defining the relations between objects in a scene
can be done concisely using natural instructions, making use of a vocabulary, some of which
might have been learned using example based learning. More broadly, learning from natu-
ral instructions is concerned with communicating symbolic knowledge between a human
teacher and an automated agent. This approach carries with it an immediate advantage, as it
allows the system designer to focus on task-related expertise. To ensure this advantage, we
focus here on natural instructions, describing the target concept in natural language.

While the promise of this approach is clear, successful learning in these settings depends
on correctly communicating relevant knowledge to the learning system. Unfortunately this
proves to be a non trivial task: allowing human users to communicate effectively with com-
puter systems in a natural manner is one of the longest standing goals of artificial intelli-
gence. This problem, often referred to as semantic parsing, is typically framed as a natural
language interpretation task, mapping between natural language input and a formal meaning
interpretation expressed in a logical language understandable by the target computer system.
Current approaches employ machine learning techniques to construct a semantic parser. The
learning algorithm is given a set of input sentences and their corresponding meaning repre-
sentations and learns a statistical semantic parser - a set of semantic parsing rules mapping
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lexical items and syntactic patterns to their meaning representation and a score associated
with each rule. Given a sentence, the semantic parsing rules are applied recursively to de-
rive the most probable meaning representation. We refer the reader to Section 4, where we
describe this process in more details. Since semantic interpretation is limited to syntactic
patterns identified in the training data, the learning algorithm requires considerable amounts
of annotated data to account for the syntactic variations associated with the meaning rep-
resentation. Annotating sentences with their corresponding logical meaning representation
is a difficult, time consuming task. The supervision effort required for learning is a major
challenge in scaling semantic parsing.

The difficulty of constructing a semantic parser presents us with a major obstacle, since
LNI shifts the weight from learning the target concept (e.g., a card game rule), to learning
a semantic parser for natural language instructions describing the target concept. Taking a
supervised learning approach for constructing a semantic parser would result in an equally
hard learning problem (if not a harder) than the one we hoped to avoid. Our learning frame-
work evades this difficulty by making the connection between the two learning tasks explicit.
In our settings, the learner has the ability to test its understanding over a handful of labeled
examples (e.g., solitaire card game moves). This small set of examples is insufficient for
constructing the target hypothesis, but it allows the learner to reject incorrect lesson in-
terpretations. We exploit this property to provide feedback to the semantic interpretation
learning process, and base the learning algorithm for semantic parsing on this feedback.

In this paper we examine learning in such settings, where the prediction of the learning
algorithm is executed by a computer program resulting with a response or observable action
in the target domain. We propose a response driven learning framework that is capable of
converting feedback to this action to supervision, and use it to further learn a better defini-
tion of the target. This type of supervision is very natural in many situations and requires no
machine learning expertise and thus can be supplied by any user. Continuing with Example
1, the response is generated by letting the agent play game scenarios using the classification
rule it generated. These moves are done against a game API that could accept the move as
a legal one, or reject it – thus providing a binary feedback signal. We consider scenarios
where the feedback is provided as a binary signal, correct +1 or incorrect -1. This weaker
form of supervision poses a challenge to conventional learning methods: semantic parsing
is in essence a structured prediction problem requiring supervision for a set of interdepen-
dent decisions (the predicates in the representation and the relations between them), while
the provided supervision is binary, only indicating the correctness of a generated meaning
representation. To bridge this difference, we propose a novel learning algorithm suited to
the response driven setting, that can make use of this weak supervision signal to improve
its semantic parsing model. We discuss the learning algorithm in detail in Section 3 of this
paper.

Furthermore, to account for the many syntactic variations associated with the output
meaning representation, we propose a new model for semantic parsing that allows us to learn
effectively. Current semantic parsing approaches extract parsing rules mapping natural lan-
guage sentences to their logical meaning representation, restricting possible interpretations
only to previously seen syntactic patterns. We replace this rigid inference process induced by
the learned parsing rules with a flexible framework. We model semantic interpretation as a
sequence of interdependent decisions, each mapping a text span to a logical symbol and use
syntactic information to determine how the meaning of these logical fragments should be
composed. We frame this process as an Integer Linear Programming (ILP) problem, a pow-
erful and flexible inference framework that allows us to inject relevant domain knowledge,
such as specific domain semantics that restrict the space of possible interpretations, into
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the inference process. We explain this terminology and discuss the interpretation process in
detail in Section 4.

We test our approach in an actionable setting, in which the learner can evaluate its
hypothesis by taking actions in a (simulated) world environment. We begin by evaluating
our learning algorithm and unique interpretation process on the well studied Geoquery do-
main [40,33], a database consisting of U.S. geographical information and natural language
questions. Although the textual input in this domain does not describe classification rules,
but rather database queries, it allows us to evaluate our learning algorithm and its properties
and, in addition, to compare our approach to existing work. We then evaluate our overall LNI
approach on a set of Solitaire card game rules, in which the lessons describe preconditions
on actions. We show that, by applying our protocol, an automated system can be taught the
rules required for playing games using natural language instructions.

2 Learning From Natural Instructions

In this section, we give a bird’s eye view of our framework and its components. The pur-
pose of our framework is to learn a classification function capturing an observable desired
behavior of the learning system. However, unlike traditional machine learning algorithms,
our framework does not learn from annotated examples, but rather from natural instructions
describing the target concept. The differences between the two frameworks are summarized
in Figure 1.

The learning process aims at improving the ability of the system to understand instruc-
tions. The only supervision signal available to the learner is the system’s behavior given its
interpretation of the instructions, following the intuition that correct behavior corresponds
to a correct interpretation of the input instructions. Section 3 describes the learning process
in detail.

The interpretation process is formulated as a structure prediction task, mapping a com-
plex input object, a natural language instruction, into a complex output structure, a set of
interconnected logical entities. This process is briefly defined below in Section 2.1, and in
more details in Section 4.

Our experiments are designed to evaluate the overall LNI approach in two domains. In
the card game domain we used the Freecell solitaire card game, taking as input instructions
describing the legality of game actions and used the instructions’ interpretations to predict
which moves are legal given specific game states. After learning terminates, the agent is
presented with natural language instructions describing a new rule, and without using any
feedback resources the instructions are converted into a logical rule and tested on relevant
game data.

Figure 1(a) describes an example of this process. Since our framework is concerned with
two learning processes, learning to interpret game instructions describing game rules and
learning game rules, we consider two evaluation measures. The first evaluates the quality of
learning a game rule, by testing the learned system over unseen game examples. The second
evaluates quality of the semantic interpretation model by testing its behavior on previously
unseen natural language definitions of rules.

In addition to the card game domain, we take a closer look the semantic interpretation
learning process by studying a different domain, a natural language database access domain
(Geoquery). In Section 5 we provide further details.
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(a) Language interpretation setup - from textual input to real world behavior.
The learner takes in as input a natural language instruction and utilizes a feed-
back function to test that the resulting formula was correctly generated from
the natural language input. Learning is driven by this feedback, and no feed-
back is given directly at the level of the intermediate semantic representation.
The result of the learning process is both a game move classification function
and a semantic interpreter.
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(b) Learning in a supervised setting depends completely on labeled game
moves. The result of learning is a game moves classification function. In this
example we assume an inductive logic programming learner which con-
structs a first order formula from labeled examples consisting of a game
state and a game move.

Fig. 1 LNI vs. Supervised learning. LNI learns a game classification function from interpreting natural lan-
guage instructions. The result of LNI is both a semantic interpreter and the game rule described by the text.
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h 
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Any top card can be moved to an empty freecell 

move(c, f) ← card(c) ∧ top(c, x) ∧ freecell(f) ∧ empty(f)

Fig. 2 A natural language sentence (denoted x), an output structure, a logical formula corresponding to the
sentence (denoted y), and a lexical alignment between the two (denoted h).

2.1 Semantic Interpretation

We formulate semantic interpretation as a structured prediction problem, mapping a natural
language input sentence (denoted by x), to its highest ranking logical interpretation (denoted
by y). The term structure refers to the set of interdependent output decisions (y). Since
these decisions are typically interrelated, taking these decisions independently may lead to
a sub-optimal solution. The preferred approach therefore is to consider them together by
optimizing a joint objective function.

In order to correctly parametrize and weigh the possible outputs, the decision relies on
an intermediate representation: an alignment between textual fragments and their meaning
representation (denoted h). This intermediate representation captures the mapping between
individual natural language fragments and logical fragments. Figure 2 exemplifies these
concepts.

In our experiments, the input sentences x are taken from two domains: natural language
Freecell Solitaire game instructions (which describe the legality of possible actions) and
geographical database queries. The output formula representation y is described using a
formal language. We provide further details about it in Section 2.2.

The prediction function, mapping a sentence to its corresponding interpretation, is for-
malized as:

ŷ = Fw(x) = argmax
h∈H,y∈Y

wTΦ(x,h,y) (1)

Where Φ is a feature function defined over an input sentence x, alignment h and output y.
The weight vector w contains the model’s parameters, whose values are determined by the
semantic interpretation learning process.

We refer to the argmax above as the inference problem. Given an input sentence, solv-
ing this inference problem based on Φ and w is what comprises our interpretation process.

In practice, the semantic parsing decision, mapping a sentence into a logical formula,
consists of many smaller decisions. The structure consists of two types of decisions: (1)
Lexical decisions, which correspond to lexical alignment decision (encoded via h); these
determine which logical symbols will appear in the output formula based on lexical evi-
dence (2) Compositional decisions, which determine how the symbols should be composed
into a logical formula that can be evaluated in a given a game state. For example, consider
the mapping described in Figure 2. The mapping between the word “freecell” and the pred-
icate freecell(f) is an example of the first decision type. The fact that the function
freecell(f) and the function empty(f) are applied over the same variable is an ex-
ample of the second type of decisions. Section 4 provides more details about the feature
representation and inference procedure used.

In this work we assume that there is a weak conceptual alignment between the set of
logical domain symbols used to describe the game and the language used to describe it. This
alignment is unknown and imperfect – we do not assume a one-to-one correspondence be-
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tween words and logical symbols, but rather assume that the entities and relations described
by the natural language sentence can be grounded into domain symbols. In general, this
assumption underlies all semantic parsing work.

2.2 Target Representation

The output of semantic interpretation is a logical formula, grounding the semantics of the
input sentence in the target domain (e.g., Solitaire card game, or Geoquery). We use a subset
of first order logic consisting of: (1) typed constants (corresponding to specific cards, values,
in the Solitaire domain, or states, cities and other geographic concepts, in the Geoquery
domain), and (2) functions, which capture relations between domain entities, and properties
of entities (e.g., value : E → N , where e ∈ E refers to an entity such as a card, and
n ∈ N is an integer). Our formulation of the Solitaire domain is an extended version of
the Freecell domain defined in the Planning Domain Definition Language (PDDL), which is
used for evaluating automated planning systems. We refer the reader to [40] for more details
about the Geoquery domain.

The Solitaire domain consists of 87 constants, such as cards and their values, colors and
suits. A game state is described by assigning truth values to logical functions which map
constants to properties (such as locations), the game is described using 14 logical functions.
Throughout the paper we denote the set of logical symbols in the domain as D. A game state
contains specific instantiations of the domain symbols, describing the relations between the
entities in the state. Given a game state, a logical formula defined over the domain symbols
can be evaluated. For example, with regard to the game state described in Figure 2, the
formula freecell(x1) ∧ top(x2, x1) ∧ value(x2, 6), stating that a card with a
value of 6 is on top of at least one freecell, will be evaluated to true.

As can be observed in this example, dependency among the values of logical functions
are expressed via argument sharing. We use this mechanism to construct meaningful logical
formulas from text, that can be evaluated given game states. Our goal is to predict the le-
gality of game actions, these are expressed as horn rules, an implication from an antecedent
to a consequent (a single formula referred to as the head). We refer to the predicate corre-
sponding to an action, move, as the head predicate and we denote its arguments by a1, a2.
We define args(p) to be a function mapping a predicate p to its list of argument vari-
ables, and denote by pi the i-th argument in this list. The Geoquery domain uses a more
restricted logical representation language, variable-free first order logic. In this case the
meaning of a sentence is constructed using function application and composition operators
(e.g., city(New York)).

Table 1 Notation Summary

Notation Explanation Section
x Input sentence Sec. 2.1
y Output structure Sec.2.1
h Hidden structure Sec. 2.1
Φ Feature Function Sec. 2.1
D Set of domain symbols Sec. 2.2

args(p) Mapping to the set of arguments of a function p Sec. 2.2
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2.3 Feedback from Real World Behavior

Observing the behavior resulting from instruction interpretation is the only feedback mecha-
nism available to our learner. We envision a human learning process, in which in addition to
high level instructions the learner receives a small number of examples used to clarify these
instructions. These examples consist of a game state and a move action whose legality de-
pends on the truth values of functions in the given game state, and the target move described
by the instruction. For each concept taught, the learner had access to a handful of positive
examples (a legal move in the given game state) and negative examples (an illegal move in
the given game state) which were chosen randomly. The feedback is obtained by comparing
the outcome of the rule generated by the learned semantic interpreter when applied to these
examples, with the true label. The feedback function is a conjunction of these comparisons.

Since our goal is to learn the target concept from instructions rather than from examples,
we designed a weak feedback mechanism which cannot be used to learn the target concept
directly as the set of examples is too small. Note that although the feedback function can
be called many times during the overall learning process, the effort involved in constructing
the feedback function remains unchanged. This contrasts with other learning protocols that
involve a learner querying an external teacher, such as active learning [9]. An active learner
intelligently explores the space of possible examples by selectively requesting labels from
an external teacher, while in our setting the number of available labeled examples remains a
small constant.

A different protocol, in which the learner is allowed to generate its own set of training
examples by sampling game moves while actually playing the game would result in a costly
feedback function. In other domains, in which the construction of the feedback function
does not rely on human annotation effort, this protocol can be applied.

In our setup we assume that there is a strong correspondence between the feedback
function and the correctness of the decision rule obtained by interpreting the natural lan-
guage lesson. This allows our semantic interpretation learning algorithm to use this type of
behavioral feedback when constructing a semantic parser. In order to ensure this correspon-
dence, we treat the different move action types of each game independently by assigning
each action a natural language instruction set and a dedicated feedback function (i.e., by
using a small set of labeled examples for each rule). A considerably more difficult scenario
in which all the game rules are learned together without dedicated feedback functions, is left
as future work.

In the Geoquery domain, the natural language input consists of geographical queries.
These NL queries are converted into a logical formula used to query a geographical database.
In order to construct the feedback function we supplied the correct answers to these ques-
tions, and compared the results obtained by the queries interpretation. Generating this type
of feedback is considerably easier than generating the logical queries which capture the
semantics of the NL questions. For example, we paired the query “what is the capital of
Texas?” with the result Austin. A positive feedback will only be generated if the same re-
sponse will be returned when using the NL query interpretation to query the database.

Throughout the paper we abstract over the implementation details and refer to the feed-
back mechanism as a binary function Feedback : Y → {+1,−1}, informing the learner
whether a predicted logical form y, when executed on the actual game, or geographical
database, produces the desired outcome.
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3 Updating the Semantic Interpreter

In this paper, we advocate the idea of instructable computing, in which an automated learn-
ing system is taught a concept via direct instructions rather than by examples. The role of
traditional machine learning is therefore shifted from learning the target concept to learning
to interpret natural instructions, which explain the target concept.

The learning problem is defined as finding a good set of parameters for the inference
function described in Eq. 1, such that, when applied to natural language instructions, the
corresponding output formula results in a correct behavior. Typically, such prediction func-
tions are trained in a supervised setting in which the learner has access to training examples,
consisting of the input sentences and their corresponding logical forms; we refer to these
annotated structures as gold structures, and denote them by {(xl,yl)}Nl=1 ( [41,38]). How-
ever, our learning framework does not have access to this type of annotation and relies only
on feedback obtained from world interaction–by executing the interpretation.

This setup gives rise to our algorithmic learning approach. We perform the following
steps iteratively - (1) generating logical formulas from natural language sentences (e.g., card
game rules from natural language instructions), (2) and receiving feedback by executing the
resulting output formula and updating the interpretation function parameters accordingly.
The difference between our approach and a supervised learning approach can be summa-
rized as follows - in a supervised setting the learner is trained over a fixed set of examples,
consisting of input objects and the corresponding output structures {(xl,yl)}Nl=1. In our
setting, the learner is trained iteratively over a set of training examples, consisting of triplets
(x,y, b), where b is a binary indication for the correctness of y, the predicted structure gen-
erated from the input sentence x. In addition, unlike the supervised setting in which the set of
training examples is fixed, in our setting at the end of each iteration the predicted structures
and the binary feedback associated with them are added to the set of training examples.

Providing an indication of correctness of the overall predicted structure is typically easy
to do. Alas, it is not informative enough to be used directly, as it does not provide direct feed-
back that indicates whether the components constituting the prediction (the semantic parse
output) are correct, as required by standard structured learning algorithms. More formally,
learning in these settings can be framed as learning a structured predictor1 using a binary
supervision source. Therefore, the key question is: how can one use the available binary
supervision signal to generate the structured feedback signal required for training?

In this section we aim to answer this question. Our discussion is driven by the observa-
tion that the key difficulty in bridging the gap between the binary supervision available and
the structured pairs required for learning, stems from the fault assignment problem. Super-
vised learning is guided by a basic principle–minimizing a loss function, defined over the
annotated data. In structure learning, the loss function quantifies the incorrect structural de-
cision, penalizing (or assigning fault) only to substructures predicted incorrectly. However
in our settings, the learner only has a binary indication of the incorrect prediction, rather
than the more informative structural decomposition required. A simple solution (taken for
example by [8,25] ), focuses on learning only from predictions receiving positive feedback,
by extracting structured signal from these predictions and iteratively training the model.

Unlike these approaches, our algorithm is designed to use both types of feedback: it uses
positive feedback as structural supervision, and negative as binary supervision, thus utilizing

1 The learning domains discussed in this paper rely on an intermediate layer, h, which is not included in
the training set. Our algorithm deals with this variation effortlessly, however when working in a supervised
setting a latent variable variation of these algorithms is required. See [39,4] for details.
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Algorithm 1 Existing Approaches: High level view
Input: Inputs {xl}Nl=1,

Feedback : X × Y → {+1, 1},
initial weight vector w
{Notation: B set of collected training examples, (X ,Y) space of (inputs,outputs),
φ feature function, f boolean variable, N number of examples}

1: repeat
2: for l = 1, . . . , N do
3: ĥ, ŷ = argmaxh,y wTΦ(xl,h,y)

4: f = Feedback(xl, ŷ)

5: B = B ∪ {(Φ(xl, ĥ, ŷ), f)}
6: end for
7: w← TRAIN (B)
8: until Convergence
9: return w

the supervision signal more effectively. In Section 3.3, we present an online learning algo-
rithm combining both binary learning and structured learning principles. In its most basic
form, our algorithm utilizes the negative feedback signal in a coarse way, by penalizing the
entire structure (i.e., all the structural decisions) uniformly. In Section 3.4 we take an addi-
tional step, and show how to amplify the binary signal by approximating the mistakes in the
predicted structures that receive negative feedback, thus providing finer grained feedback to
the algorithm. We follow the observation that the predicted structure can be naturally decom-
posed to multiple components, some of which can be predicted more reliably than others and
propose an algorithm that better exploits this structural decomposition; specifically, we sug-
gest to approximate the loss (i.e., the incorrect decisions) associated with structures assigned
negative feedback by decomposing the structure into individual components and assessing
their correctness probability. We can estimate the correctness probability reliably by using
the set of positive predictions to compute their statistics.

3.1 Learning Structures from Binary Feedback

In this section we discuss how to learn structures from binary signals in more details. We
begin by providing an overview of existing approaches to this problem. These typically rely
only on positive feedback by framing the problem as an incremental supervised learning
problem. We then proceed to describe our algorithm, and show how to use both structures
assigned positive and negative labels. Finally we show how the negative binary feedback
can be better exploited to provide finer-grained feedback to the learner instead of uniformly
demoting the negative structure.

3.2 Existing Approaches for Learning with Binary Feedback

In Algorithm 1 we describe a high level procedure for these settings. The algorithm in-
crementally samples the space of possible structures for a given input, modifying the model’s
parameter vector to encourage correct structures and reject incorrect ones. The algorithm re-
peatedly performs two steps:

1. Predict output structures using current model and receive feedback for them (lines 1-6)
2. Train the model on new data generated using this feedback (line 7).
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Given the training set collected at the first step, existing algorithms perform the second
step by doing one of the following:

Structured update Since positive feedback correspond to correct structural decision, these
can be used directly for training a structured supervised model. This instantiation of the
algorithm is in essence an incremental supervised learning algorithm, where at each stage
more labeled examples are added to the training set. The choice of structured learning proce-
dure used is left to the system designer. For example, previous works used structured SVM
and the EM algorithm.

While this procedure is very intuitive, it can only utilize structures assigned positive
feedback and it therefore ignores the negative feedback.

Binary update Cast the learning problem as a binary classification problem, where the fea-
ture decomposition of correct structures is treated as positive examples and incorrect struc-
tures as negative. The weight vector is updated using a binary learning algorithm. This ap-
proach allows using both types of feedback, but this feedback is very coarse, it does not take
advantage of structural information available for structures assigned a positive label, and
could thus suffer from a sparsity problem.

3.3 A Combined Feedback Perceptron

Our algorithm is designed to make use of both the negative and positive feedback, by com-
bining ideas from both structure and binary learning. Unlike supervised learning algorithms,
which take a fixed set of training examples, the algorithm iteratively generates its own train-
ing data2, using its current set of parameters to generate structures, and the feedback function
to label them. The algorithm can be considered as a fusion of the binary perceptron [29] and
structured perceptron [10] and works in an online fashion, performing error driven updates.

Algorithm 23 describes this procedure. The algorithm iteratively receives examples x
and generates the best corresponding structures given its current set of parameters w (line
4) and it then receives feedback for the chosen structure (line 5), if the feedback is negative,
it incurs a penalty–if the learner, in any of the previous iterations, has generated a positive
structure for that input object, the parameter set is updated towards that structure using the
structured perceptron update rule (line 8), and if not, the parameter set is updated away from
the selected point by using the binary perceptron update rule (line 10)4.

The algorithm performs two types of updates: a structural update is done when a posi-
tive structure for that example has already been encountered by the algorithm (we denoted
this structure as h∗, y∗). In this case the algorithm simply performs the structured perceptron
updated rule, given as–

Structural Update

w = w + Φ(xl, h∗, y∗)− Φ(xl, ĥ, ŷ) (2)

2 Since at different iterations, the inference process might return a different output, we only store the latest
output, although other caching policies could be used.

3 Throughout the paper we use the abbreviation CombPercept to refer to this algorithm.
4 The number of negative structures is likely to overwhelm the learning process; to prevent that we restrict

the number of binary updates to the size of the positive training set.
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Algorithm 2 Combined Feedback Perceptron
Input: Sentences {xl}Nl=1,

Feedback : X × Y → {+1, 1},
initial weight vector w
{Notation: Bl set of collected training examples, (X ,Y) space of (inputs,outputs),
φ feature function, f boolean variable, N number of examples}

1: Bl ← {} for all l = 1, . . . , N
2: repeat
3: for l = 1, . . . , N do
4: ĥ, ŷ = argmaxh,y wTΦ(xl,h,y)

5: f = Feedback(xl, ŷ)
6: if f = -1 then
7: if Bl contains an entry for xl then
8: w← Update using Structure(xl, ĥ, ŷ)
9: else

10: w← Binary Update(xl, ĥ, ŷ)
11: end if
12: else
13: add (Φ(xl, ĥ, ŷ)) to Bl
14: end if
15: end for
16: until Convergence
17: return w

Alternatively, in case the algorithm does not have a positive structure to update towards,
the algorithm demotes all active features uniformly, as described by the following equation.

Simple Binary Update

w = w − Φ(xl, ĥ, ŷ) (3)

Note that the binary update rule treats the entire structure as incorrect. The rationale
behind it is that there is not gold structure to update towards, the “blame” for the negative
structure is assigned uniformly. In the following section we describe how to refine this in-
formation by approximating which substructures are actually responsible for the negative
signal.

3.4 Learning to Approximate Structural Loss

The binary update rule targets a simple objective–updating the current set of parameters,
such that the incorrect structure will no longer be ranked highest by the model. This is
achieved by uniformly demoting the weights of all features corresponding to active deci-
sions in the incorrect structure. This contrasts with the structured update rule, which aims
to ”correct” the decision, rather than just change it, by demoting the weights of features
corresponding to incorrect decisions, and promoting the weights of those corresponding to
correct ones. In the supervised setting, these updates are possible since the gold structure
provides this information.

While this information is not available, we try to approximate it by learning a structural
loss function based on the set of correct predictions. Our loss function has a probabilistic
interpretation, mapping each structural decision in to a probability score. Given an incorrect
structure, we use the approximated loss function and update the model according to the
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score it assigns to structural decisions. Decisions assigned a low probability score are more
likely to correspond to the mistakes that have led to the incorrect prediction.

The approximation is done by following the observation that the predicted structure
is composed of several components, some more likely to be correct than others based on
their occurrence in the positive data. Note that although these components have appeared in
correct predictions, it does not necessarily imply that given a new input example, consisting
of similar constructs, the same prediction should be repeated, due to syntactic and lexical
variance. Some measure of confidence in these components is therefore required.

More formally, given an incorrect structural decision, we decompose the structure into
a set of substructures, and evaluate the conditional probability of each structural decision
(yi ∈ y) given the input generating it. The way in which the output structure decomposes
into individual decisions and how input fragments are assigned to them is determined by the
feature functions, and by whether parts of the inputs are relevant for a given decision. We
use the computed probabilities to appropriately penalize the model: if the decision is likely
to be correct (i.e., it is assigned a high probability) the demotion step will have little effect
on the weights of features corresponding to that decision and the vice versa.

Accommodating this procedure requires two changes to Algorithm 2. The first change
is to the Binary update rule described in line 10 of Algorithm 25. The uniform penalty is
replaced by a procedure described in Algorithm 3, which assigns a different penalty to each
structural decision based on its confidence score. The second change concerns the compu-
tation of the confidence score. This score is computed over the set of examples assigned a
positive feedback signal. We change line 13 in Algorithm 2, to consider newly added posi-
tive structures in the loss approximation computation. Our algorithm maintains a probability
distribution over the individual decisions that appear in the positively predicted structures.
Given a new positive structure we decompose it into the individual output decisions and the
relevant part of the inputs, and the probability distribution over the two is updated.

In order to understand the intuition behind this approach consider the following (sen-
tence,interpretation) pair.

Example 2 Input:
“What is the population of the largest city in New York?”
Output:
Population( Largest (City (NEW YORK CITY ))).

In this example the output structure will receive a negative feedback since its interpreta-
tion of the term “New York” refers to New York city, rather than the state of New York. By
focusing the update step on that decision we can encourage the model to try a different inter-
pretation of that specific term, rather than penalizing potentially correct substructures in the
output formula. Continuing with our example, consider two components in the output struc-
ture, an incorrect component – the mapping between “New York” and NEW YORK CITY,
and a correct one, mapping between “largest” and the predicate Largest. Since “New
York” is an ambiguous term which could refer to either a state or a city, the probability mass
is likely to be divided between all the senses of the term, when computed over the posi-
tive training data, and therefore the probability score p( NEW YORK CITY | “New York”)
will reflect it, leading to a heavier penalty assigned to this term. Since the term “largest” is
typically used to refer to a the same predicate symbol, a lower penalty will be assigned to it.

5 Throughout the paper we use the abbreviation CombPercept w AprxLoss to refer to the combined per-
ceptron algorithm using this update rule
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Algorithm 3 Approximated Structural Update (Line 10 in Alg. 2)
Input: Input (x,h,y)
1: for (x, h, y)i ∈ (x,h,y) do
2: w = w - φ((x, h, y)i) · (1− p(yi|xi))
3: end for

We observe that the success of our loss approximation method is dependent on the spe-
cific structural decomposition for the domain. In domains where the structural decompo-
sition considers local feature functions, computing the conditional probability is likely to
provide useful information, as these local input-output substructures are likely to appear fre-
quently in the data (as in the example above, where the lexical mapping decision depended
only on the term ”New York”, which is likely to appear in other examples). An extreme
opposite scenario could occur when each substructure relies on the entire input. Fortunately,
linguistic input decomposes naturally in to smaller units over which the structural decision
is defined, thus allowing our loss approximation approach to gather and provide useful in-
formation during learning.

The key idea behind this approach is to bias the model towards repeating sub-structures,
under the assumption that repeating patterns tend to be consistent when sampled from the
same domain. This results in biasing the update procedure to allow the model to focus on
new, or ambiguous, patterns. It should be noted that this method does not guarantee an
improved update procedure, since it can reduce to a uniform penalty, and could even penalize
correct structures more heavily than incorrect ones. However in our empirical evaluation, it
was shown to be useful (see Section 5 for experimental results and analysis).

4 Semantic Interpretation

Semantic parsing is the process of converting a natural language input into a formal logic
representation. This process is performed by associating lexical items and syntactic patterns
with logical fragments and composing them into a complete formula. Existing approaches
rely on extracting, from annotated training examples, a set of parsing rules, that map text
constituents to a logical representation and applying them recursively to obtain the meaning
representation. Adapting to new data is a major limitation of these approaches as they cannot
handle inputs containing syntactic patterns which were not observed in the training data.

For example, assume the training data produced the following set of parsing rules for
the Geoquery domain. Each rule consists of a right hand and left hand side. Each consists
of either a lexical element (e.g., “capital”), or a combination of a syntactic category and a
logical formula (e.g., NP [λx.capital(x)]).

Example 3 Typical parsing rules
(1) NP [λx.capital(x)]→ capital
(2) PP [ const(texas)]→ of Texas
(3) NNP [ const(texas)]→ Texas
(4) NP [capital(const(texas))]→
NP[λx.capital(x)] PP [ const(texas)]

Rules 1-3 describe lexical transformations, these rules are triggered by a raw input frag-
ment (such as a word, or a short phrase) and generate a logical symbol and a syntactic
category (such a Noun Phrase, Preposition Phrase etc.). Rule 4 describes a higher level
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transformation, in which two pairs of syntactic category and matching logical fragments are
unified into a single syntactic category and logical formula.

Given a sentence (such as the ones in Example 4) the meaning of a sentence is con-
structed by applying these rules recursively. It can be observed that despite the lexical sim-
ilarity in these examples, the semantic parser will correctly parse the first sentence but fail
to parse the second because the lexical items belong to a different syntactic category (i.e.,
the word Texas is not part of a preposition phrase in the second sentence). The third sen-
tence will fail to parse due to missing lexical information–the term “Longhorn State” is not
covered by any of the rules.

Example 4 Syntactic variations of the same meaning representation
Target logical form: capital(const(texas))
Sentence 1: “What is the capital of Texas?”
Sentence 2: “What is Texas’ capital?”
Sentence 3: “What is the capital of the Longhorn State?”

The ability to adapt to unseen inputs is one of the key challenges in semantic pars-
ing. Several works [42,17] have suggested partial solutions to this problem, for example by
manually defining syntactic transformation rules that can help the learned parser generalize
better.

Given the previous example (sentence 2), we observe that it is enough to identify that
the function capital(·) and the constant const(texas) appear in the target logical
interpretation, since there is a single way to compose these entities into a single formula–
capital(const(texas)).

Motivated by this observation we define our meaning derivation process over the rules
of the domain interpretation language and use syntactic information as a way to bias the
logical interpretation process. That is, our inference process considers the entire space of
meaning representations irrespective of the patterns observed in the training data. This is
possible as the logical interpretation languages are defined by a formal language and formal
grammar.6 The syntactic information present in the natural language is used as soft evidence
(features) which guides the inference process to good meaning representations.

In addition, we use existing external knowledge resources capturing lexical information
to make up for missing lexical information. In this case (sentence 3), mapping between
“Texas” and “Longhorn State”.

This formulation is a major shift from existing approaches that rely on extracting parsing
rules from the training data. In existing approaches the space of possible meaning represen-
tations is constrained by the patterns in the training data and syntactic structure of the natural
language input. Our formulation considers the entire space of meaning representations and
allows the model to adapt to previously unseen data; this way we always produce a semantic
interpretation, and the one produced is biased to cohere with patterns observed in the input.

We frame our semantic interpretation process as a constrained optimization process,
maximizing the objective function defined by Equation 1. The main part of this objective
function is the feature mapping φ that relies on extracting lexical and syntactic features
instead of parsing rules. In the remainder of this section we explain the components of our
inference model.

6 This is true for all meaning representations designed to be executed by a computer system.
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4.1 Semantic Interpretation as Constrained Optimization

Semantic interpretation, as formulated in Equation 1, is an inference procedure that selects
the top ranking output logical formula. In practice, this decision is decomposed into smaller
decisions, capturing local mappings of input tokens to logical fragments and their composi-
tion into larger fragments. These decisions are converted into a feature representation by a
feature function Φ, and is parameterized by a weight vector.

We formulate the inference process over these decision as an Integer Linear Program
(ILP), maximizing the overall score of active decisions, subject to constraints ensuring the
validity of the output formula. The flexibility of ILP has previously been advantageous in
natural language processing tasks [30,31,26] as it allows us to easily incorporate constraints
declaratively. These constraints help facilitate learning as they shape the space of possible
output structures, thus requiring the learned model’s parameters to discriminate between a
smaller set of candidates. The flexibility offered by using an ILP solver comes with a com-
putational cost – ILP is in general, NP-hard. In this work we used an off-the-shelf solver7

incurring the full computational cost, which while efficient for the most part, restricted us
in some of the experiments we performed. We consider using approximation techniques and
ILP-relaxation techniques as future work.

4.2 Decision Variables and Objective Function

The inference decision is defined over two types of decision variables. The first type, referred
to as alignment decision variables (abbreviated as a-var), encodes a lexical mapping deci-
sion as a binary variable αcs, indicating that a constituent c is aligned with a logical symbol
s. The pairs connected by the alignment (h) in Fig. 3(a) are examples of such decisions.

The final output structure y is constructed by composing individual predicates into a
complete formula. This is formulated as an argument sharing decision indicating if two
functions take the same variable as input. We refer to this type of decisions as composition
decision variables (abbreviated as c-var), encoded as a binary variable, βcsi,dtj indicating
if the j-th argument of t (associated with constituent d) and the i-th argument of s (as-
sociated with constituent c) refer to the same variable or constant symbol. For example,
the decision variables representation of the formula presented in Fig. 3(b): move(a1, a2)
top(a1, x2) includes an active c-var indicating that the corresponding predicates share an
argument.

Objective Function : Given an input sentence, we consider the space of possible semantic
interpretations as the space of possible assignments to the decision variables. The semantic
interpretation decision is done by selecting a subset of variables maximizing, subject to
constraints, a linear objective function, defined as follows -

Fw(x) = argmax
α,β

∑
c∈x

∑
s∈D

αcs ·w1
TΦ1(x, c, s)

+
∑
c,d∈x

∑
s,t∈D

∑
i,j

βcsi,dtj ·w2
TΦ2(x, c, s

i, d, tj) (4)

where i, j iterate over args(s) and args(t) respectively, and D is the set of logical
symbols in the domain.

7 We used the ILP solver Xpress-MP in our experiments.
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MOVE(a1,a2) TOP(x1, x2) EMPTY(x1) NULL … 

“ You can move top ... … ” 

(a) Alignment Decision variables

MOVE(a1, a2) 

“move” 

TOP(x1, x2) 

“top” 

(b) Compositional Decision
variables

“move” 
 MOVE 

“top” 
TOP 

(c) Flow variables

Fig. 3 An example of inference variables space for a given input. The dashed edges correspond to non-
active decision variables and the bold lines to active variables, corresponding to the output structure
move(a1,a2) top(a1,x2). Active variables include - a-vars: α(“move′′,move1), α(“top′′,top1), c-vars:
β(“move′′,move1),(“top′′,top1), and positive flow: f(“move′′,move1),(“top′′,top1)

4.3 Constraints

Given an input sentence, the space of possible interpretations is determined by the space
of possible assignments to the decisions variables. However, there is a clear dependency
between α-variables and β-variables assignments, as functions can only share a variable
(β decision) if they appear in the output formula (α decisions), for example, and these
dependencies restrict the space of feasible assignments.We take advantage of the flexible
ILP framework, and encode these restrictions as global constraints over Equation 4. Next
we describe the constraints used in the formulation.

Lexical Mapping Decisions

– An input constituent can only be associated with at most one logical symbol.

∀c ∈ x,
∑
s∈D αcs ≤ 1

– The head predicate (e.g., move) must be active.∑
c∈x αc,head = 1

Argument Sharing Decisions

– Variable sharing is only possible when variable types match.
– If two predicates share a variable, then these predicates must be active.

∀c, d ∈ x,∀s, t ∈ D, βcsi,dtj =⇒ αcs ∧ αdt
where i, j range over args(s) and args(t) respectively.

Global Connectivity Constraints In addition to constraints over local decisions we are also
interested in ensuring that the output formula has a correct global structure. We impose
constraints forcing an overall fully-connected output structure, in which each logical symbol
appearing in the output formula is connected to the head predicate via argument sharing.



18 Dan Goldwasser, Dan Roth

This property ensures that the value of each logical construct in the output is dependent
on the head predicate’s arguments. In order to clarify this idea, consider the output logical
formula described in Example 5. We consider it to be an illegitimate formula. The value of
that formula, when given a game state, is evaluated to true if the game state contains at
least one vacant freecell, not necessarily the target freecell specified by the head predicate
arguments.

Example 5 (Disconnected Output Structure)
move(a1, a2) ← top(a1, x1) ∧ card(a1) ∧ freecell(x2) ∧ empty(x2)

Note that this constraint does not limit the model’s effective expressivity as it only rules out
interpretations that are illegitimate or as in Example 5, where the target of the move may not
be an empty free cell. From a natural language processing point of view, this process is very
similar to the co-reference resolution problem of ensuring that all mentions refer back to an
originating entity.

We encode the connectivity property by representing the decision space as a graph, and
forcing the graph corresponding to the output prediction to have a connected tree structure
using flow constraints. LetG = (V,E) be a directed graph, where V contains vertices corre-
sponding to α variables andE contains edges corresponding to β variables, each adding two
directional edges. We refer to vertices corresponding to αc,move variables as head vertices.
Clearly, the output formula will be fully-connected if and only if the graph corresponding to
the output structure is connected. We associate a flow variable fcsi,dtj with every edge in
the graph, and encode constraints over the flow variables to ensure that the resulting graph
is connected.

Figure 3(c) provides an example of this formulation: the two nodes represent alignment
decisions, connecting lexical items and logical symbols. These two nodes are connected by
two edges, representing the compositional decision. We associate an additional flow variable
with the edges. Note that the flow variables take integer values, unlike other ILP variables
discussed so far that represent boolean decisions. In order to ensure a connected structure we
restrict the values of flow variables, in this simple example, if we assume that both alignment
decision variables are active (i.e., they represent active mappings to logical symbols), all
that is left to ensure connectivity is to force the flow to be equal to 1, or more broadly - the
number of active nodes in the graph (not including the head node). We can encode these
restrictions easily as ILP constraints.

– Only active edges can have a positive flow.

βcsi,dtj = 0 =⇒ fcsi,dtj = 0 ∧ fdtj ,csi = 0

– The total outgoing flow from all head vertices must be equal to the number of logical
symbols appearing in the formula.∑

f∗,movei,∗,∗ =
∑
c∈x

∑
s∈D\{move} αcs

For readability reasons, we use * to indicate all possible values for constituents in x and
logical symbols in D.

– Each non-head vertex consumes one unit of flow.

∀d ∈ x,∀t ∈ D,
∑
f∗,∗,dtj −

∑
fdtj ,∗,∗ = 1
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4.4 Features

The inference problem defined in Equation (4) uses two feature functions: Φ1 for alignment
decision variables and Φ2 for compositional decisions variables. In general, Φ1 represents
lexical information while Φ2 represents syntactic and semantic dependencies between sub-
structures.

Alignment Decision Features Φ1 : Determining if a logical symbol is aligned with a specific
constituent depends mostly on lexical information. Following previous work (e.g., [41]) we
create a small lexicon, mapping logical symbols to surface forms. We initialize the lexicon
by mapping the logical entities to lexical items carrying the same name (e.g., card(·)
was mapped to ”card”). We extend the lexicon during the learning process–whenever the
model predicts a logical formula assigned a positive feedback, the lexical choices done by
the model are added to the lexicon. For example, given an alignment h that maps the word
“neighboring” to the predicate border(·), the pair will be added to the lexicon.

We rely on an external knowledge base, WordNet [28], to extend the initial lexicon
and add features which measure the lexical similarity between a constituent and a logical
symbol’s surface forms (as defined by the lexicon). In order to disambiguate preposition
constituents, an additional feature is added. This feature considers the current lexical context
(one word to the left and right) in addition to word similarity.

Compositional decision features Φ2 : Compositional decisions rely on syntactic informa-
tion. We use the dependency tree [20] of the input sentence. Given a compositional decision
βcs,dt, the dependency feature takes the normalized distance between the head words in the
constituents c and d.

In addition, a set of features indicate which logical symbols are usually composed to-
gether, without considering their alignment to text. These features allow the model to recover
in cases where the input sentence contains unknown lexical items. Since no lexical evidence
is available, these features allow the model to take an informed guess based on previous
decisions. For example, given the input sentence “what is the population of NY?”, the in-
terpretation of the ambiguous term “NY” as a city would result in a compositional decision
population(city(·)), and its interpretation as a state would result with the decision
population(state(·)). Each of the competing compositional decisions would pro-
duce a feature capturing the logical output of each decision, which would bias the decision
towards the output structure that appears more frequently in the training data.

5 Experiments

In this section we describe our experimental evaluation8. We begin this section by describing
our experiments on instructional text for several variations of the Solitaire card game. In this
domain we evaluated the results of applying our overall approach, teaching an agent the
rules to a card game, treating the predicted structure as a classification rule and evaluating
the result on card game moves.

In the second part of this section we focus on response based learning, and evaluate
our approach on the well known Geoquery domain. In the Geoquery domain the predicted

8 The data used in this paper will be made available at: http://cogcomp.cs.illinois.edu/
page/resources_exp2
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structure is a database query. This well studied domain allows us to compare our results to
existing work and evaluate different properties of response based learning.

5.1 Overall Approach: Teaching Solitaire Card Game Rules

Experimental Setup: The decision function described by the text classifies the legality of
several Solitaire card game moves given a game state. The input sentences were taken from
solitaire game instructions appearing on-line, with some modifications to accommodate the
learning scenario (e.g., breaking instructions down to individual rules and removing irrele-
vant parts of the instructions).

We consider several games, each having one or more such rules. All the rules describe a
similar operation - moving a card from one location to another. The rules differ according to
the game and the source and target cards locations. Consider for example two such rules for
the famous Freecell solitaire game - FREECELL (move a card to a freecell) and TABLEAU

(move a card to a tableau).

Example 6 ( FREECELL concept and its description)
move(a1, a2) ← top(a1, x1) ∧ card(a1) ∧ freecell(a2) ∧ empty(a2)

– “You can move any of the top cards to an empty freecell”
– “Any playable card can be moved to a freecell if it is empty”

Example 7 ( TABLEAU concept and its description)
move(a1, a2) ← top(a1, x1) ∧ card(a1) ∧ tableau(a2) ∧ top(x2,a2) ∧ color(a1, x3)

∧ color(x2, x4) ∧ not-equal(x3, x4) ∧ value(a1, x5) ∧ value(x2, x6) ∧ successor(x5, x6)

– “A top card can be moved to a tableau if it has a different color than the color of the
top tableau card, and the cards have successive values”

It can be easily observed that the rule in Example 6 is considerably easier to predict than
the one described in Example 7. Both the input sentence and the predicted output structure
are simpler. We can therefore expect a variability in the results based on the complexity of
the rules.

In order to evaluate our framework we associate with each target concept instructional
text describing the target rule, along with game data over which the predicted structures
are evaluated. Each target concept (e.g., move a card to a free cell) is associated with 10
different textual instructions describing it, with variations in both sentence structure and
lexical choices. In addition, in order to provide feedback to the learning process we provided
a set of 10 labeled game examples for each rule, 5 positive and 5 negative. Testing the correct
interpretation of the rule was done by sampling 900 game moves. Since the space of possible
moves consists of mostly illegal moves, we biased the sampling process to ensure that the
test set contains an equal number of positive and negative examples. Note that these 900
examples were used for evaluation only.

We evaluated the performance of our learning system by measuring the proportion of
correct predictions for each of the target concepts on the game data. The accuracy for each
target concept is measured by averaging the accuracy score of each of the individual instruc-
tion interpretations.
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The semantic interpreter was initialized using a simple rule based procedure, assigning
uniform scores to input constituents appearing in the lexicon (a-vars) and penalizing com-
positional decisions (c-vars) corresponding to input constituents which are far apart on the
dependency tree of the input sentence.

Experimental Approach: Our experiments were designed to evaluate the learner’s ability
to generalize beyond the limited supervision offered by the feedback function. The term
generalization can be interpreted in two different ways, it can refer to the quality of the
learned target concept described by the natural language instructions (e.g., move a card to
a free cell) or to the quality of the learned semantic parser. We design two experiments to
evaluate our learning approach in light of the two notions of generalization. In the first, we
assume the learner has supervision, via the binary feedback function, for the target concept
described by the natural language instruction. In the second experiment, this feedback is
not available, and the system relies on a semantic parser that was learned, using the binary
feedback function, while interpreting other tasks.

(1) Evaluating the quality of the learned target concept: the ability of the system to
correctly classify previously unseen solitaire game moves. The game-related resources used
in the training process amount to the small and fixed set of labeled game moves used by
the feedback function. A very intuitive notion of over-fitting the model to the training data
is constructing an output formula that can only classify the game moves observed during
training. Testing the resulting output formula on previously unseen game moves evaluates
this notion of generalization directly. In some sense this is a measure of how well the natural
language lesson succeeded in biasing the learning process away from the direct feedback
provided by the grounded labeled examples used by the feedback function. The learning
process in this scenario is applied to each rule using its feedback function. Since rules use a
common lexicon we learned these rules together (i.e., updating a shared weight vector when
learning all the rules sequentially).

(2) Evaluating the quality of the learned semantic interpretation model. Our goal goes
beyond learning the rules for a single task: the semantic interpreter is meant to provide
a broader interpretation ability, to the extent it can be applied, after learning one task, to
other tasks defined over a similar lexicon. To study this scenario, after the learning process
terminated, the system was given a set of new textual instructions describing a previously
unseen game rule, and its performance was evaluated based on the quality of the newly
generated rules. To accommodate this setup we performed a 10 fold cross-validation over
the data and report the averaged results over the target rule’s interpretations. In this case
cross-validation refers to leaving one rule out during the learning process, and then at test
time, averaging the results over all the textual variations of that rule.

Results: Our results are summarized in tables 2 and 3, the first describing the ability of our
learning algorithm to generalize to new game data, and the second, to new instructions.

A natural baseline for the prediction problem is to simply return false (or true)
regardless of the input – this ensures a baseline performance of 0.5 . The system’s perfor-
mance when using only the initialized model without learning improves over the simplified
baseline, considerably in some cases, and only barely in others. After learning results con-
sistently improve for all rules.

As can be noticed in examples 6 and 7 described above, target concepts have different
levels of difficulty. For example, the FREECELL concept is relatively easy compared to the
other rules, both in terms of the output structure and the text used to describe it. The results
indeed support this observation, and performance for this task is excellent. The other tasks
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Target Concept Initial Model Learned Model
FREECELL FREECELL 0.76 0.948
FREECELL HOMECELL 0.532 0.686
FREECELL TABLEAU 0.536 0.641
ACCORDION CONSECUTIVE LEFT 0.64 0.831
ACCORDION THREE CARDS GAP 0.561 0.724
AGREEMENT 0.74 0.932
ALHAMBRA KING 0.61 0.786
ALHAMBRA ACE 0.632 0.764
ACES UP BETWEEN 0.76 0.924
ACES UP OUT 0.591 0.691

Table 2 Testing generalization over Solitaire game data. Each rule is described by the game it belongs to
(larger font), and the specific rule name in that game (smaller font). Accuracy was evaluated over previously
unseen game moves using the classification rules learned from the instructions used in training. The Initial
Model column describes the performance of the rules generated by the initial interpretation model (i.e., before
learning).

Target Concept Initial Model Learned Model
FREECELL FREECELL 0.76 0.948
FREECELL HOMECELL 0.532 0.679
FREECELL TABLEAU 0.536 0.635
ACCORDION CONSECUTIVE LEFT 0.64 0.817
ACCORDION THREE CARDS GAP 0.561 0.678
AGREEMENT 0.74 0.932
ALHAMBRA KING 0.61 0.763
ALHAMBRA ACE 0.632 0.753
ACES UP BETWEEN 0.76 0.924
ACES UP OUT 0.591 0.631

Table 3 Testing generalization over Solitaire game textual rules . Each rule is described by the game it
belongs to (larger font), and the specific rule name in that game (smaller font). Accuracy was evaluated over
previously unseen game moves using classification rules generated from previously unseen game instructions.
Semantic interpretation was done using the learned semantic interpreter.

are more difficult, resulting in a more modest improvement; however, the improvement due
to learning is still clear.

In the second scenario we tested the ability of our semantic interpreter to generalize to
previously unseen tasks. In this case successful learning depends on the different learning
tasks sharing similar constructs and lexical items. We can expect performance to drop in this
case, even simply for the reason that the semantic interpreter is trained using less data.

Nonetheless, the question remains - does the improvement obtained after learning stems
only from the guidance provided by the concrete game data examples provided (via the feed-
back function), or does LNI actually supported the development of a semantic parser in the
course of learning the rules of the game? If the improvement is only due to supervision of-
fered by the labeled game moves used by the feedback function, we can expect performance
to drop significantly as in these new settings the system is evaluated on a classification rule
it generated after training, without feedback from the domain while constructing it.

Table 3 shows the performance achieved in this challenging learning scenario. It can
be observed that while there is some performance drop, generally our learning algorithm is
also able to learn a good semantic interpreter, which generalizes well to previously unseen
instructions. Interestingly, the difference in performance compared to the first setting (Ta-
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ble 2) differs depending on which rule is tested. Simple rules achieve good score in both
cases, and their performance does not change. We hypothesize that this is due to the fact
that the text corresponding to these rules is relatively simple and the model can predict the
correct rule even without game data. As rules get harder, a specialized learning process is
required. This can be observed by the drop in performance. Most notably this happens in the
case of ACCORDION THREE CARDS GAP which uses a predicate not used in any of the other rules.

5.2 Understanding Learning with Binary Supervision: Geoquery Domain

In order to get a better understanding of our response based learning procedure we used
the Geoquery dataset, and compared the performance of several variations of our algorithm,
trained over datasets of varying sizes. The dataset we used contains 250 queries used for
training, and additional 250 used for testing9.

5.3 Empirical Results

We compare the results obtained by our algorithm to two natural reference points. The first
is the initial model used to bootstrap learning (denoted INITIAL MODEL), improving signif-
icantly over this baseline is required to demonstrate effective learning. The second reference
point is a supervised model, trained over the same inputs, however using annotated struc-
tures rather than binary feedback. We measure performance using the Accuracy score. We
refer to our combined learning algorithm as COMBPERCEPT, and when applied with loss
approximation we use the term COMBPERCEPT W APRXLOSS.

The results for the Semantic Interpretation domain are summarized in Table 4. The initial
model used for bootstrapping (INITIAL MODEL), resulted in an accuracy of 22.2%. Using
our algorithm, without using loss-approximation, resulted in an accuracy score of 79.6%,
and with loss-approximation, performance was improved to - 81.6%.

This model outperforms other systems working under this learning scenario that use the
same dataset. We first consider the two models used in [8]. The first uses both types of feed-
back, using binary updates only (see Section 3 for details) and achieves a score of 69.2%;
the second uses structural updates but utilizes only the positive feedback and achieves a
score of 73.2%. The model presented by [25] combines an effective semantic inference pro-
cedure with a learning procedure but utilizes only structures receiving positive feedback.
Their model resulted in a score of 78.9% for this dataset, bootstrapped using the similar
lexical resources10.

There are many works operating in supervised settings. Our model outperforms the su-
pervised model presented in [8], and other supervised models [37,38] when trained over
dataset of a similar size. This is not surprising, since during training, as the model collects
more positive training examples, it converges towards a supervised learning framework.

In order to get a better understanding of the improvement achieved by the loss-approximation
framework our algorithm uses, we compared the results of training the two variations of our
algorithm (with and without the loss approximation) on datasets of varying sizes. Fig 4

9 This dataset was used by several previous works [8,13,25]. While other datasets exist for Geoquery,
most notably Geo880, this smaller dataset allowed us to learn efficiently and try out many variations of our
algorithm, while providing external reference points to compare our results to.

10 [25] presents an additional model which uses a larger manually constructed lexicon, resulting in a con-
siderable improvement. Since we did not have the additional information we did not compare to it.
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Algorithm Sup. Acc.
INITIAL MODEL — 22.2
BINARY SUPERVISION (SEPARATE)
CLARKE ET AL. 2010 [8] (BIN) 250 ans. 69.2
CLARKE ET AL. 2010 [8] (ST) 250 ans. 73.2
LIANG ET AL. 2011 [25] 250 ans. 78.9
BINARY SUPERVISION (COMBINED)
COMBPERCEPT 250 ans. 79.6
COMBPERCEPT W APRXLOSS 250 ans. 81.6

SUPERVISED
CLARKE ET AL. 2010 [8] 250 strct. 80.4
WONG&MOONEY. 2006 [37] 310 strct. 60.0
WONG&MOONEY. 2007 [38] 310 strct. 75.0
ZETTLEMOYER&COLLINS [41] 600 strct. 79.3
ZETTLEMOYER&COLLINS[42] 600 strct. 86.1
WONG&MOONEY. 2007[38] 800 strct. 86.6

Table 4 Results for the semantic interpretation domain, comparing several models learning with Binary
supervision. Our approach outperforms these models when trained over the same datasets and resources.
Note that our combined model (CombPercept) always outperform competing models using only one type of
feedback, and that loss-approximation (CombPercept w AprxLoss) improves the results even further.
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Fig. 4 Comparing the results of the two variations of our combined-perceptron algorithm - with, and without
loss-approximation, over datasets of increasing size in the semantic interpretation domain. Results show
consistent improvement when using loss-approximation (CombPercept w AprxLoss).

presents the results of these experiments and shows consistent improvement when using
loss-approximation.

6 Related Work

In this work we study a novel learning protocol based on learning from instructions given
by a human teacher. Instructable computing approaches leveraging human expertise are of-
ten studied in a reinforcement learning setting, in which a human teacher provides feedback
to the learning process (a few recent examples include [16,21,35]). The role of human in-
tervention in our learning framework is different, as we simulate a natural learning lesson
scenario. The approach closest to ours is described in [22], integrating the interpretation of
natural language advice into a reinforcement learner. However, in their setting the language
interpretation model is trained independently from the learner in a fully supervised process.
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Converting natural language sentences into a formal meaning representation is referred
to as semantic parsing. This task has been studied extensively in the natural language pro-
cessing community, typically by employing supervised machine learning approaches. Early
works [40,32] employed inductive logic programming approaches to learn a semantic parser.
More recent works apply statistical learning methods to the problem [18,38,41,43,23].
These works rely on annotated training data, consisting of sentences and their corresponding
logical forms.

We learn to interpret natural language instructions from feedback given by executing
game moves, or by querying a database, instead of supervised learning. Taking this ap-
proach helps alleviate the cost of providing the proper supervision for constructing a seman-
tic parser. Learning in similar settings for semantic interpretation has been studied recently
by several works: [7,24,2,34,6,19]. These works deal with the problem of natural language
grounding in a concrete external environment, represented symbolically, and use an exter-
nal world context as a supervision signal for semantic interpretation. However the semantic
interpretation task is different than ours, as the natural language input is completely situ-
ated in an external world state. For example, in [7,24] the natural language input describes
robotic soccer events, such as a player kicking a ball. In this work the natural language input
describes a high level rule abstracting over specific states, and is therefore more difficult to
interpret.

Several other works learn a semantic parser using other indirect supervision sources.
In [27], the authors consider the natural language grounding problem in physical percep-
tion, rather then symbolic one. In [36] the authors use a reinforcement learning framework
to train an agent to follow navigational instructions. In [1] the authors approximate the struc-
tural loss using conversational cues. Modeling language acquisition using indirect supervi-
sion was studied at [11] where a semantic-role labeler was learned using partial supervision.

Most relevant to our work are [8,25,14] which use these settings for learning a semantic
parser. We show how to extend the learning protocol in order to better exploit the binary
feedback.

The connection between structured prediction and binary classification over structural
decisions was studied in [5]. In their settings a global optimization objective was defined
over a fixed set of annotated structures and labeled binary examples. Our algorithm on the
other hand does not have any annotated structures, but rather creates its own dataset itera-
tively by receiving feedback.

Leveraging textual instructions to improve game rules learning was pioneered by [12]
for Freecell Solitaire. In that work textual interpretation was limited to mining repeating
patterns and using them as features for learning the game rules over considerable amounts
of game training data. Incorporating natural language advice in a game playing framework
was also studied [3]. In their settings, text interpretation is used to augment the state space
representation in a reinforcement learning framework.

7 Conclusions

In this paper we investigate the feasibility of a new type of machine learning based on
language interpretation rather than learning only from labeled examples. This process, mo-
tivated by human learning processes, takes as input a natural language lesson describing the
target concept and outputs a logical formula capturing the learning system understanding
of the lesson. This approach has both theoretical and practical advantages, as it reduces the
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annotation cost and positions the learning process in a way that requires human-level task
expertise rather than machine learning and technical expertise.

Learning from Natural Instructions shifts the weight of learning to semantic interpre-
tation and therefore requires a robust semantic interpreter which can be learned without
incurring the cost of learning a semantic parser in a supervised fashion. We suggest a train-
ing procedure for semantic interpretation that is based on interaction done in the context of
the domain of interest. To further facilitate the interpretation process we introduce a light-
weight interpretation process that is driven by lexical and syntactic cues, rather than parsing
rules.

To fulfill its promise, this type of learning requires communicating effectively with the
learning system in a natural, human-level manner. This introduces the major challenge in
lesson based learning: interpreting natural language instructions. To avoid the difficulty of
training a semantic interpreter independently, we introduce a novel learning algorithm that
learns both tasks jointly by exploiting the dependency between the target concept learning
task and the language interpretation learning task.

Following the dual role of learning in LNI, we design our experiments to evaluate the
system’s ability to generalize under both definitions. We begin by showing that our system is
able to learn the target concept described by the instructions using behavioral feedback, by
testing the classification rule resulting from interpreting the natural language instructions,
on previously unseen instances. We then proceed to show that the learned semantic parser
can be used to interpret previously unseen instructions without any additional supervision
directing the new interpretation task. In both cases we show that the system was able to
generalize beyond the supervision it received.

In our experiments we exploit the fact that the different concepts, described in natural
language, used a similar vocabulary. Although each instruction described a different clas-
sification rule, all instructions used terms relevant to card games. Building on that fact the
semantic parser trained on one task was able to generalize to previously unseen tasks. In the
future we intend to study how to leverage the parser learned for one task, when approach-
ing a new task defined over a different vocabulary and a different set of output symbols.
In [15] we made a first step in this direction, where we show how to separate the inter-
pretation process into domain-specific and domain-independent components, and reuse the
domain-independent information when approaching a new interpretation task.
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