
Learning From Natural Instructions

Dan Goldwasser Dan Roth
Department of Computer Science

University of Illinois at Urbana-Champaign
{goldwas1, danr}@illinois.edu

Abstract
Machine learning is traditionally formalized and
researched as the study of learning concepts and
decision functions from labeled examples, requir-
ing a representation that encodes information about
the domain of the decision function to be learned.
We are interested in providing a way for a human
teacher to interact with an automated learner us-
ing natural instructions, thus allowing the teacher
to communicate the relevant domain expertise to
the learner without necessarily knowing anything
about the internal representations used in the learn-
ing process.
In this paper we suggest to view the process of
learning a decision function as a natural language
lesson interpretation problem instead of learning
from labeled examples. This interpretation of ma-
chine learning is motivated by human learning pro-
cesses, in which the learner is given a lesson de-
scribing the target concept directly, and a few in-
stances exemplifying it. We introduce a learning
algorithm for the lesson interpretation problem that
gets feedback from its performance on the final
task, while learning jointly (1) how to interpret the
lesson and (2) how to use this interpretation to do
well on the final task. This approach alleviates the
supervision burden of traditional machine learn-
ing by focusing on supplying the learner with only
human-level task expertise for learning.
We evaluate our approach by applying it to the rules
of the Freecell solitaire card game. We show that
our learning approach can eventually use natural
language instructions to learn the target concept
and play the game legally. Furthermore, we show
that the learned semantic interpreter also general-
izes to previously unseen instructions.

1 Introduction
Machine learning has traditionally focused on learning con-
cepts from labeled examples: given a set of labeled examples
the learner constructs a decision function generalizing over
the observed training data. While this approach has been

tremendously successful for many learning domains, it car-
ries an inherent drawback - the learner can only be as good as
the data it is given. Learning therefore depends on annotating
considerable amounts of training data, an expensive and time
consuming process. Furthermore, successful learning often
depends on machine learning expertise required for design-
ing and calibrating the learning environment.

In this work we aim to alleviate some of this difficulty by
suggesting a different kind of learning protocol - a lesson
based learning protocol, instead of example based learning.
This protocol draws motivation from human learning pro-
cesses, in which the learner is given a “knowledge injection”,
in the form of a lesson describing a high level concept and a
few specific examples to validate the correct understanding of
the lesson. Example-based learning, an inductive process by
nature, generalizes over the labeled examples. This contrasts
directly with our approach, which attempts to learn the cor-
rect hypothesis directly. The proposed approach carries with
it an immediate advantage, as it allows the system designer to
focus on task-related expertise. To ensure this advantage we
focus on natural instructions, describing the target concept in
natural language (NL).

While the promise of this approach is clear, successful
learning in these settings depends on correctly communicat-
ing relevant knowledge to the learning system. Unfortunately
this proves to be a non trivial task: allowing human users to
communicate effectively with computer systems in a natural
manner is one of the longest standing goals of artificial intel-
ligence. This problem is typically framed as a NL interpreta-
tion task, mapping between NL input and a formal meaning
interpretation, expressed in a logical language understandable
by the target computer system. Current works approach this
task using supervised machine learning methods, which are
difficult and expensive as the original learning problem we
hoped to avoid.

Our learning framework avoids this difficulty by making
the connection between the learning tasks explicit. In our set-
tings the learner has the ability to test its understanding, while
this is clearly insufficient for constructing the target hypoth-
esis it allows the learner to reject incorrect lesson interpre-
tations. We exploit this property to provide feedback to the
semantic interpretation learning process, and base the learn-
ing algorithm on this feedback.

We test our approach in an actionable settings, in which the

“ You can move any top card to an empty freecell ”

MOVE(a1,a2) TOP(a1,x) EMPTY(a2) CARD(a1) FREECELL(a2)

Natural Instruction

Semantic Interpreter

Output Formula

Game Instance

?

8QK9 2

… !

… !

… !
A6

MOVE(King2,Freecell4)

C
O
R
R
E
C
T
/
I
C
O
R
R
E
C
T

!

Real world
behavior

Fe
ed

ba
ck

	

Figure 1: Language interpretation setup - from textual input
to real world behavior.

learner can evaluate its hypothesis by taking actions in a (sim-
ulated) world environment. Our experiments were conducted
over the Freecell solitaire card game, in which the lessons
describe preconditions on actions. We show that using our
protocol an automated system can be taught to play games
using NL instructions.

2 Learning From Natural Instructions
In this section we give a bird’s eye view of our framework
and its components. The purpose of our framework is to learn
a classification function capturing an observable desired be-
havior of the learning system. However unlike traditional ma-
chine learning algorithms, our framework does not learn from
annotated examples, but rather from natural instructions de-
scribing the target concept.

The learning process in which the system improves per-
tains only to its ability to better understand instructions. The
only supervision signal available to the learner is the system’s
behavior given the instruction interpretation, following the in-
tuition that correct behavior corresponds to a correct interpre-
tation of the input instructions. Sec. 3 describes the learning
process in detail.

In our experiments we used the Freecell solitaire card
game, taking as input instructions describing the legality of
game actions and used the instructions’ interpretation to pre-
dict which moves are legal given specific game states. Fig. 1
describes an example of this process.

2.1 Semantic Interpretation
We formulate semantic interpretation as a structured predic-
tion problem, mapping a NL input (denoted x), to its highest
ranking logical interpretation (denoted z). In order to cor-
rectly parametrize and weight the possible outputs, the deci-
sion relies on an intermediate representation: an alignment
between textual fragments and their meaning representation
(denoted y). In our experiments the input sentences x are nat-
ural language Freecell Solitaire game instructions, describing

actions legality. The output formula representation z is de-
scribed using a formal language, we provide further details
about it in Sec. 2.2.

The prediction function, mapping a sentence to its corre-
sponding interpretation, is formalized as follows:

ẑ = Fw(x) = arg max
y∈Y,z∈Z

wTΦ(x,y, z) (1)

Where Φ is a feature function defined over an input sentence
x, alignment y and output z. The weight vector w contains
the model’s parameters, whose values are determined by the
learning process.

We refer to the arg max above as the inference problem.
Given an input sentence, solving this inference problem based
on Φ and w is what compromises our interpretation process.
Sec. 4 provides more details about the feature representation
and inference procedure used.

2.2 Target Representation
The output of semantic interpretation is a logical formula,
grounding the semantics of the input sentence in the Free-
cell domain. We use a subset of first order logic consisting of
typed constants (corresponding to specific cards, values, etc.)
and functions, which capture relations between domains en-
tities, and properties of entities (e.g., value : E → N). Our
formulation of the Freecell domain is a slightly modified ver-
sion of the Freecell domain defined in the Planning Domain
Definition Language (PDDL), which is used for evaluating
automated planning systems. Throughout the paper we de-
note the set of logical symbols in the freecell domain as D.

The domain consists of 87 constants and 11 predicates.
A game state contains specific instantiations of the domain
symbols, describing the relations between the entities in the
state. Given a game state, a logical formula defined over
the domain symbols can be evaluated. For example, with
regard to the game state described in Fig. 1, the formula
freecell(x1) top(x2, x1) value(x2, 6), stating that
a card with a value of 6 is on top of at least one freecell, will
be evaluated to a true.

As can be observed in this example, dependency between
the values of logical predicates is expressed via argument
sharing. We use this mechanism to construct meaningful log-
ical formulas from text, that can be evaluated given game
states. Since our goal is to predict the legality of game ac-
tions (i.e., horn rules), we refer to the predicate corresponding
to an action, move, as the head predicate and as a convention
we denote its arguments as a1, a2. We define args(p), to
be a function mapping a predicate p to its list of argument
variables, and denote by pi the i-th argument in this list.

2.3 Feedback from Real World Behavior
Observing the behavior resulting from instruction interpreta-
tion comprises the only feedback mechanism available to our
learner. We envision a human learning process, in which in
addition to high level instructions the learner receives a small
number of examples used for clarification. For each concept
taught, the learner had access to 10 positive and 10 negative

labeled examples chosen randomly1.
Throughout the paper we abstract over the implementa-

tion details, and refer to the feedback mechanism as a binary
function Feedback : Z → {+1,−1}, informing the learner
whether a predicted logical form z when executed on the ac-
tual game states domain produces the desired outcome.

3 Updating the Semantic Interpreter
In this paper we advocate the idea of instructable computing,
in which an automated learning system is taught a concept
via direct instructions rather than by examples. The role of
traditional machine learning is therefore shifted from learning
the target concept to learning to interpret natural instructions,
explaining the target concept.

The learning problem is defined as finding a good set of
parameters for the inference function described in Eq. 1, such
that when applied to NL instructions the corresponding out-
put formula will result in a correct behavior. Typically, such
prediction functions are trained in a supervised settings in
which the learner has access to training examples, consist-
ing of the input sentences and their corresponding logical
forms {(xl, zl)}Nl=1 (e.g., [Zettlemoyer and Collins, 2005;
Wong and Mooney, 2007]). However our learning framework
does not have access to this type of data, and relies only on
feedback obtained from world interaction - by trying out the
interpretation. This setup gives rise to our algorithmic learn-
ing approach, iteratively performing the following steps- gen-
erating rules from instructions, receiving feedback by acting
in the world and updating the interpretation function param-
eters accordingly. We explain the technical aspects of this
protocol in the following subsection.

3.1 Learning Structures from Binary Feedback
From a machine learning perspective the algorithm learns a
structured predictor, Fw(x), using binary feedback. In gen-
eral, the goal of structured learning is to learn, given “gold”
structures, the parameters to a ranking function, such that the
correct structure will be ranked first. Since the only indica-
tion of correctness our framework has is game data prediction
accuracy, we use this feedback to approximate the structured
learning goal, by promoting output structures that result in
the desired world behavior so that their score will increase.
Our algorithm samples the space of possible structures (align-
ments and logical forms (Y × Z)) for a given input x, modi-
fying the model’s parameter vector (w) to encourage correct
structures.

Using this intuition we can cast the problem of learning
a weight vector for Equation (1) as a binary classification
problem where we directly consider structures the feedback
assigns +1 as positive examples and those assigned −1 as
negative. We represent the input to the binary classifier as a
feature vector Φ(x,y, z) normalized by the size of the input
sentence. 2

1Since our goal is to learn the target concept from instructions
rather than from examples, we designed a weak feedback mecha-
nism which cannot be used to learn the target concept directly

2Normalization is required to ensure that each sentence con-
tributes equally to the binary learning problem regardless of the sen-

Algorithm 1 Learning from Natural Instructions
Input: Sentences {xl}Nl=1,

Feedback : Z → {+1, 1},
initial weight vector w

1: Sl ← {} for all l = 1, . . . , N
2: repeat
3: for l = 1, . . . , N do
4: ŷ, ẑ = arg maxy,z w

TΦ(xl,y, z)
5: f = Feedback(ẑ)
6: add (Φ(xl, ŷ, ẑ)/|xl|, f) to Sl
7: end for
8: w← Learn(S) where S = ∪lSl
9: until no Sl has new unique examples

10: return w

Algorithm 1 outlines the approach in detail. The first stage
of the algorithm iterates over all the training input sentences
and computes the best logical form ẑ and alignment ŷ by
solving the inference problem (line 4). The output structures
are evaluated using the feedback function (line 5), and a new
training example is created by extracting features from the
triple containing the sentence, alignment and logical form and
the feedback is used as a label. This training example is added
to the working set of training examples for this input sentence
(line 6). All the feedback training examples are used to train
a binary classifier whose weight vector is used in the next it-
eration (line 8). The algorithm repeats until no new unique
training examples are added to any of the working sets for
any input sentence.

In our experiments we used the SVM algorithm with linear
kernel and squared hinge loss to train the model.

4 Inference
Semantic interpretation, as formulated in Eq. 1, is an infer-
ence procedure selecting the top ranking output logical for-
mula. In practice this decision is decomposed into smaller
decisions, capturing local mappings of input tokens to logical
fragments and their composition into larger fragments. These
decisions are converted into a feature representation by a fea-
ture function Φ, and parameterized by a weight vector.

We formulate the inference process over these decision
as an Integer Linear Program (ILP), maximizing the over-
all score of active decisions, subject to constraints ensuring
the validity of the output formula. The flexibility of ILP has
previously been advantageous in natural language processing
tasks [Roth and Yih, 2007; Martins et al., 2009] as it allows
us to easily incorporate constraints declaratively. These con-
straints help facilitate learning as they shape the space of pos-
sible output structures, thus requiring the learned model’s pa-
rameters to discriminate between a smaller set of candidates.

4.1 Decision Variables and Objective Function
The inference decision is defined over two types of decision
variables. The first type, referred to as a first order decision,
encodes a lexical mapping decision as a binary variable αcs,

tence’s length.

indicating that a constituent c is aligned with a logical symbol
s. The pairs connected by the alignment (y) in Fig. 2(a) are
examples of such decisions.

The final output structure z is constructed by composing
individual predicates into a complete formula, this is formu-
lated as an argument sharing decision indicating if two func-
tions take the same variable as input. We refer to this type
of decisions as a second order decision, encoded as a binary
variable, βcsi,dtj indicating if the j-th argument of t (associ-
ated with constituent d) and the i-th argument of s (associated
with constituent c) refer to the same variable or constant sym-
bol. For example, the decision variables representation of the
formula presented in Fig. 2(b): move(a1, a2) top(a1, x2)
includes an active second order variable indicating that the
corresponding predicates share an argument.

Objective Function given an input sentence, we consider
the space of possible semantic interpretations as the space of
possible assignments to the decision variables. The semantic
interpretation decision is done by selecting a subset of vari-
ables maximizing a linear objective function, defined as fol-
lows -

Fw(x) = arg max
α,β

∑
c∈x

∑
s∈D

αcs ·w1
TΦ1(x, c, s)

+
∑
c,d∈x

∑
s,t∈D

∑
i,j

βcsi,dtj ·w2
TΦ2(x, c, si, d, tj) (2)

where i, j iterate over args(s) and args(t) respectively.

MOVE(a1,a2) TOP(x1, x2) EMPTY(x1) NULL …

“ You can move top ... … ”

(a) 1st-order decisions

MOVE(a1, a2)

“move”

TOP(x1, x2)

“top”

(b) 2nd-order decisions

“move”
 MOVE

“top”
TOP

(c) Flow variables

Figure 2: An example of inference variables space for a given
input. The dashed edges correspond to non-active decision
variables and the bold lines to active variables, corresponding
to the output structure move(a1,a2) top(a1,x2). Active
variables include - 1st-order: α(“move′′,move1), α(“top′′,top1),
2nd-order: β(“move′′,move1),(“top′′,top1), and positive flow:
f(“move′′,move1),(“top′′,top1)

4.2 Constraints
Given an input sentence, the space of possible interpretations
is subsumed by the space of possible assignments to the deci-
sions variables. For example, there is a clear dependency be-
tween α-variables and β-variables assignments, as functions

can only share a variable (β decision) if they appear in the
output formula (α decisions). In order to prevent spurious as-
signments, we restrict the decision space. We take advantage
of the flexible ILP framework, and encode these restrictions
as global constraints over Eq. 2.

Lexical Mapping Decisions
• An input constituent can only be associated with at most

one logical symbol.

∀c ∈ x,
∑
s∈D αcs ≤ 1

• The head predicate (e.g., move) must be active.∑
c∈x αc,move = 1

Argument Sharing Decisions
• Variable sharing is only possible when variable types

match.
• If two predicates share a variable, then these predicates

must be active.

∀c, d ∈ x,∀s, t ∈ D, βcsi,dtj =⇒ αcs ∧ αdt
where i, j range over args(s) and args(t) respec-
tively.

Global Structure: Connectivity Constraints In addition
to constraints over local decision we are also interested in en-
suring a correct global structure of the output formula. We
impose constraints forcing an overall fully-connected output
structure, in which each logical symbol appearing in the out-
put formula is connected to the head predicate via argument
sharing. This property ensures that the value of each logical
construct in the output is dependent on the head predicate’s
arguments. In order to clarify this idea, consider the output
logical formula described in example 1. The value of that
formula, when given a game state, is evaluated to TRUE if
the game state contains at least one vacant freecell, not nec-
essarily the target freecell specified by the head predicate ar-
guments.
Example 1 (Disconnected Output Structure)
move(a1, a2)
top(a1, x1) card(a1) freecell(x2) empty(x2)

We encode the connectivity property by representing the
decision space as a graph, and forcing the graph correspond-
ing to the output prediction to have a connected tree structure
using flow constraints. Fig. 2(c) provides an example of this
formulation.

Let G = (V,E) be a directed graph, where V contains
vertices corresponding to α variables and E contains edges
corresponding to β variables, each adding two directional
edges. We refer to vertices corresponding to αc,move vari-
ables as head vertices. Clearly, the output formula will be
fully-connected if and only if the graph corresponding to the
output structure is connected. We associate a flow variable
fcsi,dtj with every edge in the graph, and encode the follow-
ing constraints over the flow variables to ensure that the re-
sulting graph is connected.

• Only active edges can have a positive flow.

βcsi,dtj = 0 =⇒ fcsi,dtj = 0 ∧ fdtj ,csi = 0

• The total outgoing flow from all head vertices must be
equal to the number of logical symbols appearing in the
formula.∑

f∗,movei,∗,∗ =
∑
c∈x

∑
s∈D\{move} αcs

For readability reasons, we use * to indicate all possible
values for constituents in x and logical symbols in D.

• Each non-head vertex consumes one unit of flow.

∀d ∈ x,∀t ∈ D,
∑
f∗,∗,dtj −

∑
fdtj ,∗,∗ = 1

4.3 Features
The inference problem defined in Eq. (2) uses two feature
functions: Φ1 for first order decision and Φ2 for second order
decisions. In general, Φ1 represents lexical information while
Φ2 represents syntactic and semantic dependencies between
sub-structures.

First-order decision features Φ1 Determining if a logi-
cal symbol is aligned with a specific constituent depends
mostly on lexical information. Following previous work
(e.g., [Zettlemoyer and Collins, 2005]) we create a small lex-
icon, mapping logical symbols to surface forms.

We rely on external knowledge [Miller et al., 1990] to ex-
tend the initial lexicon, and add features which measure the
lexical similarity between a constituent and a logical sym-
bol’s surface forms (as defined by the lexicon). In order to
disambiguate preposition constituents, an additional feature
is added. This feature considers the current lexical context
(one word to the left and right) in addition to word similarity.

Second-order decision features Φ2 Second order deci-
sions rely on syntactic information. We use the dependency
tree [Klein and Manning, 2003] of the input sentence. Given
a second-order decision βcs,dt, the dependency feature takes
the normalized distance between the head words in the con-
stituents c and d. In addition, a set of features indicate which
logical symbols are usually composed together, without con-
sidering their alignment to text.

5 Experiments
We applied our learning framework to instructional text, and
evaluated the output formulas on Freecell game data. In this
section we describe our experimental evaluation, we begin by
describing the experimental setup and report the results in the
subsequent section.

Experimental Setup The decision function described by
the text classifies the legality of Freecell game moves given a
game state. Since this rule is dependent on the move action
target location we break this decision into three target con-
cepts, each capturing the legality of moving a card to a dif-
ferent location. We denote the three target concepts as FREE-
CELL, HOMECELL and TABLEAU. The following examples

describe the FREECELL and TABLEAU target concepts and
their textual descriptions.

Example 2 (FREECELL concept and its description)
move(a1, a2)
top(a1, x1) card(a1) freecell(a2) empty(a2)

• “You can move any of the top cards to an empty free-
cell”
• “Any playable card can be moved to a freecell if it is

empty”

Example 3 (TABLEAU concept and its description)
move(a1, a2)
top(a1, x1) card(a1) tableau(a2) top(x2,a2)
color(a1, x3) color(x2, x4) not-equal(x3, x4)
value(a1, x5) value(x2, x6) successor(x5, x6)

• “A top card can be moved to a tableau if it has a different
color than the color of the top tableau card, and the cards
have successive values”

In order to evaluate our framework we associate with each
target concept instructional text describing the target rule, and
game data over which the predicted structures are evaluated.
Each target concept is associated with 25 different instruc-
tions describing the target rule, and 900 relevant game moves
sampled randomly. To avoid bias the game moves contain an
equal number of positive and negative examples. Note that
these examples are used for evaluation only.

We evaluated the performance of our learning system by
measuring the proportion of correct predictions for each of
the target concepts on the game data. The accuracy for each
target concept is measured by averaging the accuracy score of
each of the individual instruction interpretations.

The semantic interpreter was initialized using a simple
rule based procedure, assigning uniform scores to input con-
stituents appearing in the lexicon (first-order decisions) and
penalizing second order decisions corresponding to input
constituents which are far apart on the dependency tree of
the input sentence.

Experimental Approach Our experiments were designed
to evaluate the learner’s ability to generalize beyond the lim-
ited supervision offered by the feedback function. General-
ization is evaluated along two lines: (1) Evaluating the qual-
ity of the learned target concept: the ability of the system to
perform well on unseen solitaire game data (2) Evaluating the
quality of the learned semantic interpretation model. In this
case after the learning process terminates the system is given
a set of new textual instructions, and its performance is eval-
uated based on the quality of the newly generated rules. To
accommodate this set up we performed a 5-fold cross valida-
tion over the textual data, and report the averaged results.

Results Our results are summarized in Table 1 and 2, the
first describing the ability of our learning algorithm to gener-
alize to new game data, and the second - to new instructions.

A natural baseline for the prediction problem is to simply
return FALSE regardless of the input - this ensures a base-
line performance of 0.5 . The performance achieved without

Target Concept Initial Model Learned Model
FREECELL 0.78 0.956
HOMECELL 0.532 0.672
TABLEAU 0.536 0.628

Table 1: Results for the Freecell game rules. Accuracy was eval-
uated over previously unseen game moves using the classification
rules learned from the instructions used in training. The Initial
Model column describes the performance of the rules generated by
the initial interpretation model (i.e., before learning).

Target Concept Initial Model Learned Model
FREECELL 0.78 0.967
HOMECELL 0.532 0.668
TABLEAU 0.536 0.608

Table 2: Results for the Freecell game rules. Accuracy was eval-
uated over previously unseen game moves using classification rules
generated from previously unseen instructions. Semantic interpreta-
tion was done using the learned semantic interpreter.

learning (using the initialized model) barely improves on that
baseline, after learning this figure consistently improves.

As can be noticed in the examples above, target concepts
have different levels of difficulty - the FREECELL concept is
the easiest one, both in terms of the output structure and the
text used to describe it. The results indeed support this obser-
vation, and performance for this task is excellent. The other
tasks are more difficult, resulting in a more modest improve-
ment, however the improvement due to learning is still clear.

Finally, we can see that our learning algorithm is also able
to learn a good semantic interpreter which generalizes well to
previously unseen instructions.

6 Related Work
Human-centric learning protocols In this work we study
a novel learning protocol based on learning from instruc-
tions given by a human teacher. Instructable computing ap-
proaches leveraging human expertise, have typically been
studied in a reinforcement learning setting, in which a hu-
man teacher provides additional feedback to the learning
process (a few recent examples include [Isbell et al., 2006;
Knox and Stone, 2009; Thomaz and Breazeal, 2006]). The
role of human intervention in our learning framework is dif-
ferent, as we simulate a NL lesson scenario. The approach
closest to ours is described in [Kuhlmann et al., 2004], in-
tegrating NL advice into a reinforcement learner. However
in their setting the language interpretation model is trained
independently from the learner in a fully supervised process.

Semantic Interpretation of Natural Language Convert-
ing NL into a formal meaning representation is referred to
as semantic parsing. This task has been studied exten-
sively in the natural language processing community, typi-
cally by employing supervised machine learning approaches.
Early works [Zelle and Mooney, 1996; Tang and Mooney,
2000] employed inductive logic programming approaches to
learn a semantic parser. More recent works apply statistical

learning methods to the problem [Kate and Mooney, 2006;
Wong and Mooney, 2007; Zettlemoyer and Collins, 2005;
2009]. These works rely on annotated training data, consist-
ing of sentences and their corresponding logical forms.

We learn to interpret NL instructions from game interac-
tion feedback, instead of supervised learning. Learning in
similar settings for semantic interpretation has been stud-
ied recently by several works: [Chen and Mooney, 2008;
Liang et al., 2009; Branavan et al., 2009; Clarke et al., 2010]
use an external world context as a supervision signal for se-
mantic interpretation. However the semantic interpretation
task is different than ours - the NL input is completely situ-
ated in an external world state, while in our case the NL input
describes a high level rule abstracting over specific states.

Leveraging textual instructions to improve game rules
learning has been studied previously in [Eisenstein et al.,
2009] for Freecell solitaire. In that work textual interpre-
tation was limited to mining repeating patterns and using
them as features for learning the game rules over consider-
able amounts of game training data. Incorporating natural
language advice in a game playing framework was also stud-
ied [Branavan et al., 2011]. In their settings text interpre-
tation is used to augment the state space representation in a
reinforcement learning framework.

7 Conclusions

In this paper we investigate the feasibility of a new type
of machine learning, based on language interpretation rather
than labeled examples. This process, motivated by human
learning processes, takes as input a natural language lesson
describing the target concept and outputs a logical formula
capturing the learning system understanding of the lesson.
This approach has both theoretical and practical advantages,
as it reduces the annotation cost and focuses the learning pro-
cess on human-level task expertise rather than on machine
learning and technical expertise.

To fulfill its promise this type of learning requires com-
municating effectively with the learning system in a natural,
human-level manner. This introduces the major challenge in
lesson based learning - interpreting natural language instruc-
tions. To avoid the difficulty of training a semantic interpreter
independently, we introduce a novel learning algorithm that
learns both tasks jointly by exploiting the dependency be-
tween the target concept learning task and the language in-
terpretation learning task.

Acknowledgments We thank the anonymous reviewers for
their helpful feedback. This research is supported by the De-
fense Advanced Research Projects Agency (DARPA) Boot-
strapped Learning Program and Machine Reading Program
under Air Force Research Laboratory (AFRL) prime contract
no. FA8750-09-C-0181. Any opinions, findings, and conclu-
sion or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the view of the
DARPA, AFRL, or the US government.

References
[Branavan et al., 2009] S.R.K. Branavan, H. Chen, L. Zettle-

moyer, and R. Barzilay. Reinforcement learning for map-
ping instructions to actions. In ACL, 2009.

[Branavan et al., 2011] S.R.K. Branavan, D. Silver, and
R. Barzilay. Playing games with language in a monte-carlo
framework. In ACL, 2011.

[Chen and Mooney, 2008] D. Chen and R. Mooney. Learn-
ing to sportscast: a test of grounded language acquisition.
In ICML, 2008.

[Clarke et al., 2010] J. Clarke, D. Goldwasser, M. Chang,
and D. Roth. Driving semantic parsing from the world’s
response. In CoNLL, 7 2010.

[Eisenstein et al., 2009] J. Eisenstein, J. Clarke, D. Gold-
wasser, and D. Roth. Reading to learn: Constructing fea-
tures from semantic abstracts. In EMNLP, 2009.

[Isbell et al., 2006] C.L Isbell, M. Kearns, S. Singh, C. Shel-
ton, P. Stone, and D. Kormann. Cobot in lambdamoo: An
adaptive social statistics agent. In AAMAS, 2006.

[Kate and Mooney, 2006] R. Kate and R. Mooney. Using
string-kernels for learning semantic parsers. In ACL, 2006.

[Klein and Manning, 2003] D. Klein and C. D. Manning.
Fast exact inference with a factored model for natural lan-
guage parsing. In NIPS, 2003.

[Knox and Stone, 2009] B. Knox and P. Stone. Interactively
shaping agents via human reinforcement. In KCAP, 2009.

[Kuhlmann et al., 2004] G. Kuhlmann, P. Stone, R. J.
Mooney, and J. W. Shavlik. Guiding a reinforcement
learner with natural language advice: Initial results in
robocup soccer. In AAAI workshops, 2004.

[Liang et al., 2009] P. Liang, M. I. Jordan, and D. Klein.
Learning semantic correspondences with less supervision.
In ACL, 2009.

[Martins et al., 2009] A. Martins, N. A. Smith, and E. Xing.
Concise integer linear programming formulations for de-
pendency parsing. In ACL, 2009.

[Miller et al., 1990] G. Miller, R. Beckwith, C. Fellbaum,
D. Gross, and K.J. Miller. Wordnet: An on-line lexical
database. International Journal of Lexicography, 1990.

[Roth and Yih, 2007] D. Roth and W. Yih. Global inference
for entity and relation identification via a linear program-
ming formulation. In Lise Getoor and Ben Taskar, editors,
Introduction to Statistical Relational Learning, 2007.

[Tang and Mooney, 2000] L. Tang and R. Mooney. Auto-
mated construction of database interfaces: integrating sta-
tistical and relational learning for semantic parsing. In
EMNLP, 2000.

[Thomaz and Breazeal, 2006] A. L. Thomaz and
C. Breazeal. Reinforcement learning with human
teachers: Evidence of feedback and guidance with
implications for learning performance. In AAAI, 2006.

[Wong and Mooney, 2007] Y.W. Wong and R. Mooney.
Learning synchronous grammars for semantic parsing
with lambda calculus. In ACL, 2007.

[Zelle and Mooney, 1996] J. M. Zelle and R. J. Mooney.
Learning to parse database queries using inductive logic
proramming. In AAAI, 1996.

[Zettlemoyer and Collins, 2005] L. Zettlemoyer and
M. Collins. Learning to map sentences to logical form:
Structured classification with probabilistic categorial
grammars. In UAI, 2005.

[Zettlemoyer and Collins, 2009] L. Zettlemoyer and
M. Collins. Learning context-dependent mappings
from sentences to logical form. In ACL, 2009.

