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Abstract—Maintaining and cultivating student engagement is critical for learning. Understanding factors affecting student engagement
can help in designing better courses and improving student retention. The large number of participants in massive open online courses
(MOOCs) and data collected from their interactions on the MOOC open up avenues for studying student engagement at scale. In this
work, we develop an interpretable statistical relational learning model for understanding student engagement in online courses using a
complex combination of behavioral, linguistic, structural, and temporal cues. We show how to abstract student engagement types of
active, passive, and disengagement as meaningful latent variables using logical rules in our model connecting student behavioral
signals with student success in MOOCs. We demonstrate that the latent formulation for engagement helps in predicting two measures
of student success: performance, their final grade in the course, and survival, their continued presence in the course till the end, across
seven MOQC:s. Further, in order to initiate better instructor interventions, we need to be able to predict student success early in the
course. We demonstrate that we can predict student success early in the course reliably using the latent model. We also demonstrate
the utility of our models in predicting student success in new courses, by training our models on one course and testing on another
course. We show that the latent abstractions are helpful in predicting student success and engagement reliably in new MOOCs that
haven’t yet gathered student interaction data. We then perform a closer quantitative analysis of different features derived from student
interactions on the MOOC and identify student activities that are good indicators of student success at different points in the course.
Through a qualitative analysis of the latent engagement variable values, we demonstrate their utility in understanding students’
engagement levels at various points in the course and movement of students across different types of engagement.

Index Terms—Iatent engagement models, student engagement, graphical models, statistical relational models, course success

prediction

1 INTRODUCTION

The large number of students participating in MOOCs provides
the opportunity to perform rich analysis of large-scale online
interaction and behavioral data. This analysis can help improve
student engagement in MOOC:s by identifying patterns, suggesting
new feedback mechanisms, and guiding instructor interventions.
Additionally, insights gained by analyzing online student en-
gagement can also help validate and refine our understanding of
engagement in traditional classrooms.

In this work, we study the different aspects of online student
behavior in MOOC:s, develop a large-scale, data-driven approach
for modeling student engagement. We study two course success
indicators for online courses—1) performance: how well the
student performs in the graded elements in the courses, and 2)
survival: whether the student follows the course to completion.
We demonstrate the construction of a holistic model incorpo-
rating content (e.g., language), structure (e.g., social interactions
in discussion forums), and outcome data and show that jointly
measuring different aspects of student behavior early in the course
can provide a strong indication of course success indicators.

Examining real MOOC data, we observe that there are sev-
eral indicators useful for gauging students’ engagement, such
as viewing course content, interacting with other students or
instructors on the discussion forums, and the topic and tone of
these interactions. Furthermore, students often engage in different

aspects of the course throughout its duration. For example, some
students engage in the social aspects of the online community—
by posting in forums and asking and answering questions—while
others only watch lectures and take quizzes without interacting
with the community. We take these differences into account and
propose a model that uses the different behavioral aspects to
distinguish between forms of engagement: passive, active, and
disengagement. We use these engagement types to predict student
success, and reason about their behavior over time.

Predictive modeling over MOOC data poses a significant
technical challenge requiring the ability to combine language
analysis of forum posts with graph analysis over very large
networks of entities (students, instructors, assignments, etc.). To
address this challenge, we use a recently developed statistical
relational learning framework—hinge-loss Markov random fields
(HL-MRFs). This framework provides an easy means to represent
and combine behavioral, linguistic, and structural features in a
concise manner. Our model is specified using weighted first-order
logic rules, thus making it easy to encode and interpret how
different behavioral, linguistic, structural, and temporal signals are
indicative of different types of engagement and student success.
Our first contribution is constructing a holistic model to represent
and reason about various student activities in the MOOC setting.
Our work is a step toward helping educators understand how
students interact on MOOCs.

Our second contribution is providing a data-driven formulation
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that captures student engagement in the MOOC setting. As in the
traditional classroom setting, assessing online student engagement
requires interpretation of indirect cues. Identifying these cues in
an electronic setting is challenging, but the large amounts of
available data can offset the loss of in-person communication. We
analyze students’ online behavior to identify how they engage with
course materials and investigate how engagement can be helpful
in predicting student performance and survival in the course.
We extend our HL-MRF model to encode engagement as latent
variables, which take into account the observed behaviors of online
students and their resulting performance and survival in the class.
The latent engagement variables in our model represent three
prominent forms of engagement: 1) active engagement, 2) passive
engagement, and 3) disengagement. Uncovering these different
latent engagement states for students provides a better explanation
of students’ behavior leading to course completion and resulting
grades.

We apply our models to real data collected from seven
Coursera' courses at University of Maryland, College Park and
empirically show their ability to capture behavioral patterns of
students and predict student success. Our experiments validate the
importance of providing a holistic view of students’ activities,
combining all aspects of online behavior, in order to accurately
predict the students’ motivation and ability to succeed in the class.
We conduct experiments to evaluate two important course success
parameters in online courses: course performance and survival.
Early detection of changes in student engagement can help ed-
ucators design interventions and adapt the course presentation
to motivate students to continue with the course [1]. We show
that our model is able to make meaningful predictions using data
obtained at an early stage in the class. These predictions can help
provide a basis for instructor intervention at an early stage in the
course, helping to improve student retention rates. Further, we
evaluate the strength of our models in predicting student survival
on unseen courses and demonstrate that our models are able to
make meaningful predictions for previously unseen courses, even
at an early stage in the course. We also perform a comprehensive
feature evaluation in predicting student success in MOOCs in
different time periods of the course. Our interpretable probabilistic
framework helps in encoding the different feature dependencies
and evaluating their individual and combined effect on student
success and engagement. Our findings strengthen the importance
of using a holistic model and uncover important details about
student interactions that is helpful for instructors. Finally, we
use the latent engagement variables to unearth patterns in student
engagement over the course of the class and detect changes in
engagement. This can be potentially used by instructors to under-
stand student movement from one engagement type to another and
initiate interventions.

This work expands on the work described in [2], by providing
additional experimental results. We look into several measures of
student success, such as predicting student performance, predict-
ing final student survival, and early prediction of student survival,
building on our work in [3] and [2], and provide experimental
results for seven MOOCs, covering a wide range of topics. We
also include a suite of results for predicting student survival,
predicting student survival at early time periods, predicting student
survival for unseen courses, and predicting student survival early
for unseen courses. We also include a comprehensive analysis

1. https://www.coursera.org

2

of engagement variables by providing intuition on engagement
patterns and changes to the students’ engagement levels over time.
Our analysis significantly improves our understanding of the early
signs of student drop out.

2 RELATED WORK

Here, we outline related work specifically related to our two
contributions: 1) engagement in MOOCs, and 2) predicting
grades/dropout/outcomes in online courses. These can be classi-
fied into two broad categories: 1) work on classroom and tradi-
tional distance education settings, and 2) work on larger settings
such as MOOC:s.

2.1 Engagement in Classroom Settings

Much of the work before MOOCs concentrate on understanding
student engagement using various forms of instructor intervention
experiments in classroom settings. Postel et al. [4] analyze the
effects of intervention on school dropouts and Tinto et al. [5]
examine the reasons behind student attrition in the undergraduate
level and discuss possible preventative measures using interven-
tion. Several works perform targeted studies on the effect on
intervention on student engagement [6], [7], [8]. Rocca et al.
[9] presents an analysis of student engagement in classroom
settings, comparing the effects of different methods of teaching on
student participation. These studies primarily analyze the effec-
tiveness of various instructor intervention techniques and teaching
methodologies on getting students to participate in classroom
discussions. Further, these studies primarily refer to participation
in classroom discussions as student engagement. Other forms
of student engagement such as attending lectures and giving
exams are considered integral part of the class. Herrmann [8]
analyzes the effect of intervention on passively engaged students
to make them engage more actively in the classroom. However,
in online settings, the diverse population of the students leads to
varied participation levels. This calls for a more nuanced notion
of engagement. Drawing analogies from classroom settings and
carefully considering student dynamics in online settings, we
model three types of student engagement. We refer to participating
in discussion forums, which is analogous to participating in
classroom discussions as active engagement. We refer to following
class materials and tests as passive engagement and dropping
out of the class as disengagement. Kuh et al. [10] and Carini
et al. [11] study the relationship between student engagement
and academic performance for traditional classroom courses; they
identify several metrics for user engagement (such as student-
faculty interaction, level of academic challenge). Carini et al. [11]
demonstrate quantitatively that though most engagement metrics
are positively correlated to performance, the relationships in many
cases can be weak. Our work borrows ideas from Kuh et al. [10],
Carini et al. [11], and from statistical survival models [12] and
adapts these to the MOOC setting.

2.2 Engagement in MOOCs
There is growing work studying student engagement in MOOCs
[13], [14], [15], [16], [17], [18]. Here, we explain differences of
our work from existing work:
1) Most existing work only model a single form of engagement
and do not differentiate between different forms of engage-
ment such as active and passive [17]. In our work, we model
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multiple different forms of engagement, active, passive, and
absence of engagement as three different variables, thus
incorporating the ability to distinguish between these dif-
ferent types of engagement. Also, our engagement variables
are continuous-valued, so it is possible for a student to
have multiple different types of engagement simultaneously,
providing a finer-grained analysis of engagement.

2) Our engagement variables are learned via predictive analysis,
as opposed to unsupervised models [15], which allow our
models to use feedback from student success variables of
performance and survival and other features and their combi-
nation to guide latent variable values during training.

3) We define engagement explicitly according to education
theory as discussed by Rocca et al. [9]. The intuitive and
interpretable nature of our model that captures dependencies
among features and feature-groups and the meaningful na-
ture of our latent engagement variables make our models
easy to encode and interpret by domain experts. Existing
approaches use machine learning approaches such as logistic
regression/factor graphs [13], [16], [19], [20], which lack in-
terpretability on how different features/feature-groups come
together to predict student engagement and performance,
which our models especially bring forth via first-order logic
rules.

4) Further, our experimental results in Section 5 demonstrate
that our models, especially model with latent engagement
variables, can achieve superior prediction performance on
courses previously unseen by the model, asserting that the
latent engagement variables indeed abstract important behav-
ioral, linguistic, structural, and temporal information that is
useful across courses.

2.3 Learning Analytics

There is also a growing body of work in the area of learning
analytics. Various works analyze student dropouts in MOOC:s [16],
[19], [20], [21], [22], [23], [24], [25]. However, all these works
only consider final grades as the measure of student success. Due
to the presence of a diverse student population in MOOCs, we
use a combination of performance and survival for measuring
student success. Some works also model student engagement
in MOOCs [26], [27], [28], while others focus on discussion
forums and post-test performance [29], [30]. These works use
students interacting with the online MOOC platform a sign of
engagement and analyze the different factors surrounding their
online presence such as content in the discussion forums, and
quality of the videos. They however do not consider nuanced
definitions of engagement that we model in our work. [31] develop
models to predict learning outcomes early in online courses. While
their approach can predict learning outcomes early, their models
function as a black-box classifier, thus providing little insight on
how specific features/feature-groups, outcomes, and engagement
come together for this prediction. The most significant difference
between our approach and existing work on predicting learning
outcomes/dropout in MOOC:s is that we encode meaningful com-
binations of several factors that contribute to student engagement
and hence their survival in online courses using first-order logic
rules, which provide our models with superior interpretability.
Further our experimental results show the performance of our
models on early prediction and previously unseen courses, which
further demonstrates the capabilities of the model in prediction.

3

Our work will potentially pave the way for constructing better
quality MOOCs, which will then result in increase in enrollment
and student retention.

2.4 Hinge-loss Markov random fields (HL-MRFs) and
Probabilistic Soft Logic

To model the different types of interactions between features and
course success, we propose a powerful approach using HL-MRFs.
HL-MREFs falls under the class of statistical relational learning
models, which combine logic and probability to create richer
models. Often in structured domains, first order logic is used
to encode intricate dependencies between the different features,
latent, and target variables. Statistical relational models use logic
to define feature functions in a probabilistic model, to create richer
models that are capable of encoding both structural dependencies
and uncertainty in the data.

Hinge-loss Markov random fields (HL-MRFs) are a scalable
class of continuous, conditional graphical models [32]. Inference
of the most probable explanation in HL-MRFs is a convex op-
timization problem, which makes working with HL-MRFs very
efficient in comparison to many relational modeling tools that use
discrete representations.

M
PYIX) scexp (= 30N an(Y X))
(Y, X) = (max{l, (Y, X),0})"" , 0

where ¢,.(Y, X) is a hinge-loss potential corresponding to an
instantiation of a rule r containing observed features X and
target variables Y that we are interested in predicting. The linear
function [, refers to a linear combination of X and Y and an
optional exponent p, € {1,2}. A\, gives the weight of the rule.
Each rule is then grounded using actual data creating multiple
instantiations of the rule. The weights and potentials are grouped
into templates, which are then be used to define HL-MRFs for the
MOOC data.

2.4.1 Probabilistic Soft Logic

HL-MRF models can be specified using Probabilistic Soft Logic
(PSL) [32]. PSL is a framework for collective, probabilistic rea-
soning in relational domains, which uses syntax based on first-
order logic as a templating language for continuous graphical
models over random variables representing soft truth values. Like
other statistical relational learning methods, PSL uses weighted
rules to model the dependencies in a domain. However, one distin-
guishing aspect is that PSL uses continuous variables to represent
truth values, relaxing Boolean truth values to the interval [0,1].
Triangular norms, which are continuous relaxations of logical
connectives AND and OR, are used to combine the individual
atoms in the first-order clauses. Logical conjunctions of Boolean
predicates X and Y (X A Y) can be generalized to continuous
variables using the hinge function max{X +Y —1, 0}, also known
as the Lukasiewicz t-norm. Similarly, disjunctions (X V Y) are
relaxed to min{X + Y, 1}, and =X to 1 — X. Using data, we
ground out substitutions for these logical terms in the rules. The
groundings of a template define hinge-loss potentials that share
the same form and the same weight.
An example of a PSL rule is

A: P(a) AQ(a,b) = R(b),
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where P, Q, and R are predicates, a and b are variables, and A
is the weight associated with the rule. Inference in HL-MRFs is
a convex optimization problem, which makes working with PSL
very efficient in comparison to relational modeling tools that use
discrete representations.

PSL enables us to encode our observed features, latent and
target variables as logical predicates and design models by writing
rules over these predicates. The expressiveness and flexibility
of PSL allows us to easily build different models for MOOC
data, and we exploit this by comparing a model that represents
multiple forms of latent engagement against a simpler model
that directly relates the observable features to student success.
To demonstrate this, consider the task of collectively predicting
student performance, by capturing how students interact with each
other in the discussion forums.

Let U; and U, be two students interacting in the same thread
in the discussion forum, posting posts P; and P5 in the discussion
forum, respectively. Predicates POST(U1, P;) and POST(Us, P2)
denote student U, posting P;, and U posting Py in the discussion
forum. The predicate SAMETHREAD(P;, P2) captures if posts P
and P are in the same thread. The PSL rule below captures the
influence students have on each other when interacting in the
forums. Students U; and Uy post in the same threads, hence
influence each other to have similar succeeding abilities. This
example especially brings out the relational and collective nature
of our model, whereby we can reason about users’ prediction
performance jointly based on their interaction with each other.

A : POST(Uy, P1) A POST(Usg, P3) A SAMETHREAD(Py, P3)
ASUCCESS(U;) — succCEss(Us).

_ The potential (Y, X) = [maz{Yg, p, + Y, p, + Y5, p, +
Y3 =Y, —1,0}]7 is one minus the truth value of the Boolean for-
mula given above when Y} 5, Y5, 5, Y3 p,, i, andY, €
[0, 1]. Since the variables take on values in [0, 1], the potential is
a convex relaxation of the implication. An HL-MRF with this
potential function assigns higher probability to variable states
that satisfy the logical implication above, which can occur to
varying degrees in the continuous domain. Given the behavioral
data containing all student interactions, PSL constructs the fully
ground HL-MREF by grounding out substitutions for different U,
Us, P;, and P, and subsequently generating potential functions
for all these substitutions.

2.4.2 Latent Variables in HL-MRFs

HL-MRFs admit various learning algorithms for fully-supervised
training data, and are amenable to expectation maximization (EM)
for partially-supervised data with latent variables [33]. Latent
variables can improve the quality of probabilistic models in many
ways. Using latent variables to mediate probabilistic interactions
can improve generalization by simplifying models. HL-MRFs’
capability in representing continuous latent variables is helpful
in expressing more nuanced information when compared to dis-
crete latent variables. Latent variable HL-MRFs are accurate and
scalable for three reasons: 1) the continuous variables of HL-
MRFs can express complex, latent phenomena, such as mixed
group memberships, which add flexibility and modeling power to
these models, 2) fast, exact inference for HL-MRFs can identify
the most probable assignments to variables quickly, and 3) HL-
MRFs can easily express dependencies among latent variables

4

creating rich, interpretable models. We use this capability to
represent student engagement types as a latent variables. We can
generate more complex rules connecting the different features and
latent variables, which we will demonstrate in Section 3.1.4. The
HL-MRF model uses these rules to encode domain knowledge
about dependencies among the predicates. The continuous value
representation further helps in understanding the confidence of
predictions. In Section 3.1, we detail the various features we
collect from the data.

3 STUDENT SuccEsSs PREDICTION MODELS

As students interact on a MOOC, detailed records are generated,
including page and video views, forum visits, forum interactions
such as voting, posting messages and replies, and graded elements
such as quizzes and assignments. In this section, we develop our
models for predicting student success in MOOCs. Our models
connect performance indicators to complex behavioral, linguistic,
temporal, and structural features derived from the raw student in-
teractions. Our first model, referred as the DIRECT model, directly
encodes the dependence between student interactions and student
success in MOOCs. We then extend the DIRECT model by adding
latent variables modeling three types of student engagement: 1)
active engagement, 2) passive engagement, and 3) disengagement.
We refer to this model as the LATENT model. In the LATENT
model, we capture dependencies among student interactions, their
different types of engagement, and success measures.

We evaluate the models by employing them to predict student
success in MOOCs. We consider two course success indicators in
MOOC:s: 1) performance: whether the student earns a certificate in
the course, and 2) survival: whether the student follows the course
till the end.

3.1 Modeling MOOC Student Activity

MOOC students interact with three main resources on the MOOC
website: video lectures, quizzes, and discussion forums. Students
can watch lectures multiple times and respond to on-demand
quizzes during the lectures. Students can interact by asking and
responding to questions in the forums. There are typically multiple
forums organized by topics, each consisting of multiple threads,
and each thread consisting of multiple posts. Students can respond,
vote (up or down) on existing posts and subscribe for updates to
forums threads. Each student is given a reputation score based on
the votes on posts created by the student. These activities are de-
picted in Figure 1. Though our datasets are all from Coursera, the
core activities captured in Figure 1 are present in all other MOOCs
offered by other popular companies such as EdX and Udacity; they
also have video lectures, quizzes and discussion forum posts and
ability to view, follow, reply to, and upvote/downvote discussion
forum posts, making our features extensible across platforms.

We quantify these activities by defining a set of PSL predicates
over the raw student data, and capture more complex behaviors by
combining these predicates into expressive rules, used as features
in our predictive models. We categorize these predicates as either
behavioral, linguistic, structural, or temporal, and describe them
in the following sections.

3.1.1 Behavioral Features

Behavioral features are derived from various activities that stu-
dents engage in while interacting on the MOOC website. These
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Fig. 1: Structure of MOOC student activity.

features measure the different levels of activity of MOOC par-
ticipants on the site. We consider three types of student interac-
tions on the discussion forums: posting in the forums, voting on
forum posts, and viewing forum posts. We consider two types
of behavioral features: aggregate and non-aggregate. Aggregate
features are predicates comparing students’ activity level to the
median value of that activity considering all students. With the
median value of student activity corresponding to a value of
0.5 for the predicate, all other values are scaled appropriately
to have a value in (0,1). The predicates POST-ACTIVITY(USER),
VOTE-ACTIVITY(USER) and VIEW-ACTIVITY(USER) represent
aggregate features capturing student activity in the forums. Non-
aggregate features directly quantify student’s behavior. The pred-
icates POSTS(USER, POST) and VOTES(USER, POST) capture an
instance-level log of users posting and voting on the discussion
forums. The predicates POSTS and VOTES are true if the USER
posts or votes on POST. Predicate UPVOTE(POST) is true if the
post has positive votes and false otherwise, and predicate DOWN-
VOTE(POST) is true if a post has been down-voted. In addition to
that, we also measure the reputation of student in the forum taking
into account, the total number of upvotes/downvotes gained by the
student across all the posts. We refer to this aggregate feature as
REPUTATION(USER) in our model. The student who gathers the
most upvotes gets a score of 1.0 and the student who gathers the
most downvotes gets a score of 0.0 and all other students get a
score in (0, 1).

The second class of behavioral features capture students’
interaction with lectures and quizzes on the MOOC website. We
measure the percentage of lectures and accompanying quizzes
that were submitted by the student in the course. The features
LECTURE-VIEWED(USER) captures the fraction of lectures sub-
mitted by the student in the course. The feature LECTURE-
VIEWED-ONTIME(USER) captures the fraction of lectures submit-
ted by the student within the due date. Similarly, for quizzes we de-
rive QUIZ-SUBMITTED and QUIZ-SUBMITTED-ONTIME(USER).
These predicates are continuous valued in [0, 1].

3.1.2 Forum Content and Interaction Features

MOOC forums are rich with relevant information, indicative of
the students’ attitudes toward the course and its materials as
well as the social interactions between students. We capture
this information using two types of features, linguistic features
capturing the sentiment of the post content, and structural features

5

capturing the forum structure, organized topically into threads and
forums types.

3.1.2.1 Linguistic Features: The attitudes expressed by
students on the forums can be captured by estimating sentiment
polarity (positive or negative) and identifying subjective posts.
Since MOOC forums contain thousands of posts, we use an
automated tool, OpinionFinder [34] to avoid manual annotation.
The tool segments the forums posts into sentences, and assigns
subjectivity and polarity tags for each sentence. Based on its
predictions, we define two predicates, POLARITY(POST) and SUB-
JECTIVE(POST). Both predicates are calculated by normalizing the
number of subjective/objective tags and positive/negative polarity
tags marked by OpinionFinder. The normalization keeps these
values in the [0, 1] interval, where values close to 0.0 indicate
that the post has negative polarity and values close to 1.0 indicate
that the post has positive polarity.

Tables 1 show some examples of posts having negative polarity
and positive polarity scores. Most negative sentiment posts in
MOOC forums are on logistic issues as evidenced in Table 1.
Posts that get a value around 0.5 are either neutral posts or
posts with both positive and negative sentiment words (Table
2). Positive sentiment posts mostly are either feedback posts or
posts that thank the instructor or other students when they respond
to their queries. In our models, we especially focus on positive
and negative polarity posts as indicated by POLARITY(POST) and
—POLARITY(POST).

3.1.2.2 Structural Features: Forums are structured en-
tities, organized by high-level topics (at the forum level) and
specific topics (thread level). Including these structural relation-
ships allows our model to identify structural relations between
forum posts and connect them with students participating in the
forum discussions. The predicates representing forum structure are
SAME-THREAD(POST1, POSTy) and SAME-FORUM(THREAD1,
THREAD2), which are true for posts in the same thread and
threads in the same forum, respectively. These predicates capture
forum interaction among students and propagate performance,
survival and engagement values among them. Table 3 gives posts
from some example threads. We observe that posts in the same
thread often contain posts on topics that have certain amount of
connectivity as considered by [35]. Even if this is not the case, the
students posting on the same threads, may have a certain amount
of overlap in interests. In our rules, we model this interaction and
how it influences their respective survival capabilities using the
SAME-THREAD and SAME-FORUM predicates. These rules also
help us use behavioral and interaction features from students to
have strong signals to infer performance, survival, and engagement
values for students who have less behavioral information. For
example, in Table 3, we find that post 1 and 2 are both reporting
the same issue. Looking closely at the posts, both the students
seem to be interested in completing the assignment and are likely
to have similar performance and survival. So it is possible to
improve prediction accuracy for the students based on the features
and prediction of the other student.

3.1.3 Temporal Features

Student activity levels change over the span of the course. Students
are often active at early stages and lose interest as the course
progresses. To include signals of how student activity changes
over time, we introduce a set of temporal features. We divide the
course into three time periods: start, mid, and end. The time period
splits are constructed by dividing the course by duration into three
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polarity example post

polarity = 0.25

JSTOR allowed 3 items (texts/writings) on my ’shelf’ for 14 days. But, I read the items and wish to return them, but cannot, until

14 days has expired. It is difficult then, to do the extra readings in the "Exploring Further” section of Week 1 reading list in a timely
manner. Does anyone have any ideas for surmounting this issue?

polarity = 0.0

polarity = 0.9 Kudos to the Professor for a great course!

There are some mistakes on quiz 2. Questions 3, 5, and 15 mark you wrong for answers that are correct.

TABLE 1: Negative sentiment posts

polarity = 0.45
polarity = 0.4
course in the sequence.

This course is very interesting. I initially had some trouble, but managed to do well.
I am sort of disappointed that my final grade did not turn out to be that good. But I enjoyed the course and look forward to the next

TABLE 2: Posts having both negative and positive sentiment

polarity = 0.0

I was just looking at the topics for the second essay assignments. The thing is I don’t see what the question choices are. I have the

option of Weeks and I have no idea what that even means. Can someone help me out here and tell me what the questions for the
second essay assignment are I think my computer isn’t allowing me to see the whole assignment! Someone please help me out and

let me know that the options are.
polarity = 0.25

polarity = 0.78

I’d appreciate someone looks into this at the earliest. I am having the same problem with the essay assignments. Thanks..

Hopefully the essay assignments now open for you. Thanks for reporting this.

TABLE 3: Example posts in a thread

equal chunks. The temporal features LAST-QUIZ, LAST-LECTURE,
LAST-POST, LAST-VIEW and LAST-VOTE indicate the time-period
in which each last interaction of the user occurred. These features
measure to what lengths the user participated in different aspects
of the course.

3.1.4 Constructing Complex Rules

We use the features above to construct PSL rules using logical
connectives, as demonstrated in Table 4. We construct meaningful
combinations of predicates to model student engagement and
student success. Our rules combine features across the different
feature categories, discrete and continuous feature values, and
observed, latent, and target variables to capture intricate depen-
dencies in the data. For example, the first rule in Table 4 combines
the posting activity of user U relative to other students in the
class (POST-ACTIVITY) with reputation of the user in the forums
to infer student success. This rule captures that students posting
high-quality posts (given by reputation) show greater signs of
succeeding in the class. This is helpful in discerning between
students who post a lot and students who post few highly upvoted
posts. Similarly, the third rule combines posting in forums and the
polarity of forum posts to capture that students posting positive
sentiment posts are more likely to engage and succeed in the
course. The PSL models associate these rules with student success,
either directly or indirectly using latent variables. We explain this
process in Section 4.

3.2 Student Engagement in MOOCs

Student engagement cannot be directly measured from the data.
The interpretable nature of our models (i.e., encoded in first order
logic) makes it possible to abstract definitions of engagement
in latent engagement variables using combinations of observed
features and student success target variables. We therefore treat
student engagement as latent variables and associate various
observed features to one or more forms of engagement. Drawing
analogies from classroom settings and adapting them to the online

e Behavioral Features

POST-ACTIVITY(U) A REPUTATION(U) — SUCCESS(U)
LECTURE-VIEWED(U) ALECTURE-VIEWED-ONTIME(U) — SUCCESS(U)
e Forum Content Features

POSTS(U, P) A POLARITY(P) — SUCCESS(U)

POSTS(U, P) A =POLARITY(P) — —SUCCESS(U)

e Forum Interaction Feature
posTS(U1, P1) A POSTS(Ugz,
SUCCESS(U)

o Temporal Features
LAST-QUIZ(U, T1) A LAST-LECTURE(U, T1) A LAST-POST(U, T1) —
SUCCESS(U)

P2) A SAME-THREAD(P;, P2) —

TABLE 4: Constructing complex rules in PSL

settings, we model three types of student engagement. These
three types of engagement are denoted by three engagement
variables, ACTIVE-ENGAGEMENT, PASSIVE-ENGAGEMENT and
DISENGAGEMENT. ACTIVE-ENGAGEMENT represents students
actively engaged in the course by participating in the forums,
PASSIVE-ENGAGEMENT represents students following the class
materials but not making an active presence in the forums,
and DISENGAGEMENT represents students discontinuing from
engaging with the course both actively or passively. We associate
different features representing MOOC attributes relevant for each
engagement type. Our engagement scores for each student across
the three types of engagement are normalized to sum to 1.

e Active Engagement Actively participating in course-
related discussions by posting in the forums are signs of active
engagement.

e Passive Engagement Passively following course material
by viewing lectures, viewing/voting/subscribing to posts on
discussion forums, and giving quizzes are signs of passive
engagement.

e Disengagement Temporal features, indicating the last point of
user’s activity, capture signs of disengagement.
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4 PSL MODELS FOR STUDENT SUCCESS PRE-
DICTION

We construct two different PSL models for predicting student
success in a MOOC setting—first, a model (denoted DIRECT)
that directly infers student success from observable features, and
second, a latent variable model (LATENT) that infers student
engagement as a hidden variable to predict student success. By
building both models, we are able to evaluate the contribution
of the abstraction created by formulating engagement patterns as
latent variables.

41 PSL-DIRECT

In PSL-DIRECT model, we model student success by using the
observable behavioral features exhibited by the student, linguistic
features corresponding to the content of posts, structural features
derived from forum interactions, and temporal features capturing
discontinuity in activity. Meaningful combinations of one or more
observable behavioral, linguistic, temporal, and structural features
are constructed as described in Section 3.1 and they are used
to predict student SUCCESS. Table 5 contains the rules used
in the DIRECT model. U and P in tables 5, 6, and 7 refer to
USER and POST respectively. The DIRECT model rules allow
observable features to directly imply student success. For ease of
understanding, we categorize the rules into four groups based on
the features present in them. The first group of rules presents the
different combinations of student interactions with the three course
elements: discussion forums, lectures, and quizzes, to predict
student success indicated by SUCCESS. Note that we capture
combinations of features to infer student success. For example, the
fourth rule in the first group combines posting activity, viewing
activity, and voting activity to infer student success. Similarly,
we combine viewing lectures (VIEW-LECTURE) and if they were
viewed before the due date (ONTIME) to infer success. We use a
similar combination for quizzes as well combining taking quizzes
(SUBMITTED-QUIZ) and the taking them before the due date
(ONTIME-QUIZ) to infer student success. The second group of
rules combine the behavioral features with the linguistic features
to predict student success. Here, we combine posting on the
forums, which is a behavioral feature with the linguistic features
such as polarity of the post, to infer student success. The third set
of rules capture the structural interactions of students with other
fellow students in the forums and how that impacts each other’s
course succeeding capabilities. The last set of rules capture the
interaction between behavioral and temporal features.

4.2 PSL-LATENT

In the LATENT model, we enhance reasoning in the DIRECT model
by including latent variables semantically based on concepts of
student engagement as outlined in Section 3.2. We introduce three
latent variables ACTIVE-ENGAGEMENT, PASSIVE-ENGAGEMENT,
and DISENGAGEMENT to capture the three different types of
student engagement. We present the LATENT model in two parts in
Tables 6 and 7. In Table 6, we present rules connecting observable
features to different forms of engagement. It is important to note
that both our models have been provided the same set of features.
Also, note that the rules in the LATENT model are identical to the
rules in the DIRECT model presented in Table 5, except that in the
LATENT model they are changed to imply the latent engagement
variables instead of student success.

7

In this model, some of the observable features (e.g, POST-
ACTIVITY, VOTE-ACTIVITY, VIEW-ACTIVITY) are used to clas-
sify students into one or more forms of engagement or disengage-
ment. For example, in Table 6, conjunction of POST-ACTIVITY
and REPUTATION implies ACTIVE-ENGAGEMENT; conjunc-
tion of VOTE-ACTIVITY and REPUTATION implies PASSIVE-
ENGAGEMENT. Rules that combine observed features that are
indicative of more than one form of engagement, such as POST-
ACTIVITY and VOTEACTIVITY, are left unchanged from the DI-
RECT model to directly imply SUCCESS. We then connect the
latent engagement variables to student success using the rules
in Table 7. For example, ACTIVE-ENGAGEMENT and PASSIVE-
ENGAGEMENT implies SUCCESS. We consider various combi-
nations of engagement and their relationship to SUCCESS. For
example, exhibiting both passive and active forms of engagement
implies SUCCESS. Also, exhibiting only one form of engagement,
either active or passive, implies SUCCESS. In Section 5, we present
results from training and testing our models on the two success
measures. The resulting model with latent engagement suggests
which forms of engagement are good indicators of student suc-
cess. We demonstrate that the LATENT model not only produces
better predictive performance, but also provides more insight into
MOOC user behavior when compared to the DIRECT model.

4.3 Weight Learning

We train the weights for both the models using SUCCESS
as the target variable. The weighted combinations of different
engagement types encodes variations in student engagement types
and their relationship to student success. The weights of the rules
in the PSL-DIRECT model are learned by maximum likelihood
estimation. This is accomplished by finding the parameter values
(weight values) that will maximize the likelihood of the data given
the parameters. In the PSL-LATENT model, due to the presence
of latent variables, the rule weights are learned by performing ex-
pectation maximization (EM), which iterates alternatively between
estimating the values of the latent variables and weight values till
a local optimum solution is achieved. This is carried out by first
estimating the expected value of the latent engagement variables
in the current setting of the weights. Then, using the estimated
expected values of latent variables and the ground truth values of
target outcome variables, the new weights are estimated by finding
the values of the parameters that will maximize the likelihood of
the data given the parameter values.

5 EMPIRICAL EVALUATION

Here, we present our detailed experimental evaluation of our mod-
els. We conduct extensive experiments to answer the following
questions.

1) How effective are our models at predicting student success:
performance and survival in online courses?

2) How effective are our models at predicting student survival
considering student interactions only from early part of the
course?

3) How effective are our models at predicting student survival on
previously unseen courses and how reliably can they predict
student survival on unseen courses by considering student
interactions from only the early part of the course?

4) How useful are our different classes of features in predicting
student success, across different time periods in the course?

5) How useful are the values learned by the latent engagement
variables?
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PSL-DIRECT RULES

Rules combining behavioral features

POST-ACTIVITY(U) A REPUTATION(U) — SUCCESS(U)
VOTE-ACTIVITY(U) A REPUTATION(U) — SUCCESS(U)
VIEW-ACTIVITY(U) A REPUTATION(U) — SUCCESS(U)

POST-ACTIVITY(U) A VIEW-ACTIVITIY(U) A VOTE-ACTIVITIY(U) — SUCCESS(U)

—POST-ACTIVITY(U) — —SUCCESS(U)
—VOTE-ACTIVITY(U) — —SUCCESS(U)

= VIEW-ACTIVITY(U) — —SUCCESS(U)
POST-ACTIVITY(U) A =REPUTATION(U) — —SUCCESS(U)
POSTS(U, P) A REPUTATION(U) — SUCCESS(U)
VIEWED-LECTURE(U) — SUCCESS(U)
—VIEWED-LECTURE(U) — —=SUCCESS(U)
VIEWED-LECTURE(U) A ONTIME(U) — SUCCESS(U)
VIEWED-LECTURE(U) A =ONTIME(U) — —SUCCESS(U)
SUBMITTED-QUIZ(U) — SUCCESS(U)
—SUBMITTED-QUIZ(U) — —SUCCESS(U)
SUBMITTED-QUIZ(U) A ONTIME-QUIZ(U) — SUCCESS(U)

SUBMITTED-QUIZ(U) A “ONTIME-QUIZ(U) — —SUCCESS(U)
SUBMITTED-QUIZ(U) A SUBMITTED-QUIZ(U) — SUCCESS(U)

Rules combining behavioral and linguistic features
POSTS(U, P) A POLARITY(P) — SUCCESS(U)
POSTS(U, P) A =POLARITY(P) — —SUCCESS(U)
Rules combining behavioral and structural features

POSTS(Uq, P1) A POSTS(U2, P2) A SUCCESS(U1) A SAME-THREAD(P1, P2) — SUCCESS(Usz)
POSTS(U1, P1) A POSTS(Uz, P2) A SUCCESS(U;1) A SAME-FORUM(P1, P2) — SUCCESS(U2)

Rules combining behavioral and temporal features
LAST-POST(U, start) — —SUCCESS(U)
LAST-LECTURE(U, start) — —SUCCESS(U)
LAST-QUIZ(U, start) — —SUCCESS(U)
LAST-POST(U, mid) — —~SUCCESS(U)
LAST-LECTURE(U, mid) — —SUCCESS(U)
LAST-QUIZ(U, mid) — —SUCCESS(U)
LAST-POST(U, end) — —SUCCESS(U)
LAST-LECTURE(U, end) — SUCCESS(U)
LAST-LECTURE(U, end) — —SUCCESS(U)
LAST-QUIZ(U, end) — SUCCESS(U)
LAST-QUIZ(U, end) — —SUCCESS(U)

LAST-QUIZ(U, end) A LAST-LECTURE(U, end) N LAST-POST(U, end) — SUCCESS(U)
LAST-QUIZ(U, end) N LAST-LECTURE(U, end) A LAST-POST(U, end) — —SUCCESS(U)

TABLE 5: Rules from the PSL-DIRECT model

5.1 Datasets and Experimental Setup

We evaluate our models on seven Coursera MOOCs at University
of Maryland: Surviving Disruptive Technologies, Women and the
Civil Rights Movement, two iterations of Gene and the Human
Condition, and three iterations of Developing Innovative Ideas
for New Companies. These courses cover a broad spectrum of
topics spanning across humanities, business, and sciences. We
refer to these courses as DISR, WOMEN, GENE-1, GENE-2, INNO-
1, INNO-2 and INNO-3, respectively. DISR is 4 weeks, WOMEN is
5 weeks, GENE is 8 weeks, and INNO is 4 weeks in duration. Our
data consists of anonymized student records, grades, and online
behavior recorded during each course duration.

Figure 2 shows the number of participants in different course-
related activities. Of the total number of students registered,
around 5% of the students in DISR-TECH and WOMEN, 14% in
GENE-1, 21% in GENE-2, 7% in INNO-1, 15% in INNO-2, and
5% in INNO-3 complete the course. In all the courses, the most
prominent activity exhibited by students while on the site is view-
ing lectures. Hence, we rank students based on number of lectures
viewed, as a baseline (denoted LECTURE-RANK in our tables)
for comparison. The other prevalent activities include submitting

quizzes and viewing forum content. Observing the statistics, DISR
and WOMEN have a higher percentage of total registered students
participating in forums compared to GENE and INNO courses. We
also run various classical machine learning models (SVM, Logistic
Regression, Multi-layer Perceptron, Linear Regression, Decision
Trees) using all the features included in our model except the
features that these models are not capable of representing (struc-
tural features) and compare against against the best performing
one (indicated as classical ML model in Tables 8 and 9). These
models use all the features except structural features that capture
specific structural relationships among different users/posts that
are unique to statistical relational models such as HL-MRFs.

We evaluate the model on the following metrics: area under
the precision-recall curve for positive and negative labels and area
under the ROC curve. We use ten-fold cross-validation, leaving
out 10% of the data for testing and revealing the rest for training
the model weights. Statistically significant differences, evaluated
using a paired t-test with a rejection threshold of 0.01, are typed
in bold.
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PSL-LATENT RULES (PART 1)

Rules combining behavioral features

POST-ACTIVITY(U) A REPUTATION(U) — ACTIVE-ENGAGEMENT(U)
VOTE-ACTIVITY(U) A REPUTATION(U) — PASSIVE-ENGAGEMENT(U)
VIEW-ACTIVITY(U) A REPUTATION(U) — PASSIVE-ENGAGEMENT(U)
POST-ACTIVITY(U) A VIEW-ACTIVITIY(U) A VOTE-ACTIVITIY(U) — SUCCESS(U)
REPUTATION — ACTIVE-ENGAGEMENT(U)

—POST-ACTIVITY(U) — —ACTIVE-ENGAGEMENT(U)

—VOTE-ACTIVITY(U) — —PASSIVE-ENGAGEMENT(U)

—VIEW-ACTIVITY(U) — —PASSIVE-ENGAGEMENT(U)

POST-ACTIVITY(U) A =REPUTATION(U) — —ACTIVE-ENGAGEMENT(U)

POSTS(U, P) A REPUTATION(U) — ACTIVE-ENGAGEMENT(U)
VIEWED-LECTURE(U) — PASSIVE-ENGAGEMENT(U)

—VIEWED-LECTURE(U) — —PASSIVE-ENGAGEMENT(U)

VIEWED-LECTURE(U) A ONTIME(U) — PASSIVE-ENGAGEMENT(U)
VIEWED-LECTURE(U) A “ONTIME(U) — —PASSIVE-ENGAGEMENT(U)
VIEWED-LECTURE(U) A POST-ACTIVITY(U) — PASSIVE-ENGAGEMENT(U)
SUBMITTED-QUIZ(U) — PASSIVE-ENGAGEMENT(U)

SUBMITTED-QUIZ(U) — —PASSIVE-ENGAGEMENT(U)

SUBMITTED-QUIZ(U) A ONTIME-QUIZ(U) — PASSIVE-ENGAGEMENT(U)

Rules combining behavioral and linguistic features

POSTS(U, P) A POLARITY(P) — ACTIVE-ENGAGEMENT(U)

POSTS(U, P) A =POLARITY(P) — —ACTIVE-ENGAGEMENT(U)

Rules combining behavioral and structural features

POSTS(Uq, P1) A POSTS(U2, P2) A ACTIVE-ENGAGEMENT(U1) A SAME-THREAD(P1, P2) — ACTIVE-ENGAGEMENT(U2)
POSTS(Uq, P1) A POSTS(U2, P2) A ACTIVE-ENGAGEMENT(U;1) A SAME-FORUM(P1, P2) — ACTIVE-ENGAGEMENT(U>)
Rules combining behavioral and temporal features

LAST-POST(U, start) — DISENGAGEMENT(U)

LAST-LECTURE(U, start) — DISENGAGEMENT(U)

LAST-QUIZ(U, start) — DISENGAGEMENT(U)

LAST-POST(U, mid) — DISENGAGEMENT(U)

LAST-LECTURE(U, mid) — DISENGAGEMENT(U)

LAST-QUIZ(U, mid) — DISENGAGEMENT(U)

LAST-POST(U, end) — DISENGAGEMENT(U)

LAST-POST(U, end) — ACTIVE-ENGAGEMENT(U)

LAST-LECTURE(U, end) — DISENGAGEMENT(U)

LAST-LECTURE(U, end) — PASSIVE-ENGAGEMENT(U)

LAST-QUIZ(U, end) — DISENGAGEMENT(U)

LAST-QUIZ(U, end) — PASSIVE-ENGAGEMENT(U)

LAST-QUIZ(U, end) N LAST-LECTURE(U, end) A LAST-POST(U, end) — SUCCESS(U)
LAST-QUIZ(U, end) A LAST-LECTURE(U, end) A LAST-POST(U, end) — —SUCCESS(U)

TABLE 6: Rules from the PSL-LATENT model capturing dependencies between observed features and latent engagement variables
PSL-LATENT RULES (PART 2)

Rules combining latent engagement variables
PASSIVE-ENGAGEMENT(U) — SUCCESS(U)
—PASSIVE-ENGAGEMENT(U) — —SUCCESS(U)

ACTIVE-ENGAGEMENT — SUCCESS(U)

—ACTIVE-ENGAGEMENT — —SUCCESS(U)

PASSIVE-ENGAGEMENT(U) A ACTIVE-ENGAGEMENT — SUCCESS(U)
PASSIVE-ENGAGEMENT(U) A “ACTIVE-ENGAGEMENT — SUCCESS(U)
PASSIVE-ENGAGEMENT(U) A —“ACTIVE-ENGAGEMENT — —SUCCESS(U)
—PASSIVE-ENGAGEMENT(U) A ACTIVE-ENGAGEMENT — SUCCESS(U)
—PASSIVE-ENGAGEMENT(U) A ACTIVE-ENGAGEMENT — —SUCCESS(U)
—PASSIVE-ENGAGEMENT(U) A =ACTIVE-ENGAGEMENT — —SUCCESS(U)
DISENGAGEMENT — —SUCCESS(U)

TABLE 7: Rules from the PSL-LATENT model capturing dependencies between latent engagement variables and student success
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x10*

I # students registered

10 | I # students posting in forums
[ # students viewing lectures
8- | [# students submitting quizzes
[ # students viewing forums

6 [ 1# students surviving

DISR WOMEN GENE-1 GENE-2 INNO-1 INNO-2

INNO-3

Fig. 2: Comparison of number of students participating in course-
related activities in seven courses.

5.2 Student Performance Analysis

We conduct experiments to assess how effective our models are in
predicting student performance, as measured both by their official
grade and whether they complete the course requirements. We
also look at the key factors influencing student performance in the
online setting as determined by our model. We filter the dataset
to include only students that participated in at least one of the
possible course related activities. For these students, we label the
ones who earn a certificate from the course as positive instances
(PERFORMANCE = 1.0) and students that did not as negative
instances (PERFORMANCE = 0.0). In our datasets, we observe
that the percentage of students with performance = 1.0 is around
40 — 50% of the filtered set of students. These labels are used as
ground truth to train and test the models. Our experimental results
are summarized in Tables 8, and show performance values for the
DIRECT and LATENT PSL models compared to the LECTURE-
RANK and CLASSICAL ML MODEL baseline. We observe that
the LATENT PSL model performs better at predicting students
performance, outperforming both the DIRECT, LECTURE-RANK,
and CLASSICAL ML MODEL models.

To better understand which behavioral factors provide more
predictive information, we examine the weights our models
learned at training time. The rules involving viewing lectures
and viewing forum posts have highest weights in the DIRECT
learned model, indicating the importance of these features in
predicting performance. The other prominent features which get
high weights in the learned model are posting in forums, and
reputation of student in the forums. In the LATENT model, rules
corresponding to passive engagement have highest weights in the
learned model for predicting performance. This emphasizes the
importance of passive forms of engagement in online settings.
This is followed by rules corresponding to active engagement,
indicating that active forms of engagement are also predictive of
student success in online courses, but fall second to passive forms
of engagement. Rules corresponding to disengagement gain high
weights for predicting student drop out.

5.3 Student Survival Analysis

Our experiments in the student survival models are aimed at
measuring student survival by understanding factors influencing
students’ survival in the course, engagement types and changes
in engagement, and the effectiveness of prediction at different
time periods of the course. For survival analysis, we consider all
registered students in the course. We observe that the percentage
of survived students is around 5 — 10% in the total number of
students. Note that while we filter students based on their activity

10
COURSE ~ MODEL AUC-PR AUC-PR AUC-ROC
Pos. Neg.
LECTURE-RANK 0.630 0.421 0.512
DISR CLASSICAL ML MODEL  0.397 0.623 0.505
DIRECT 0.739 0.546 0.667
LATENT 0.749 0.575 0.692
LECTURE-RANK 0.263 0.761 0.503
WOMEN CLASSICAL ML MODEL  0.260 0.769 0.521
DIRECT 0.557 0.881 0.767
LATENT 0.732 0.959 0.909
LECTURE-RANK 0.503 0.482 0.476
GENE-1 CLASSICAL ML MODEL  0.476 0.528 0.499
DIRECT 0.814 0.755 0.817
LATENT 0.943 0.879 0.931
LECTURE-RANK 0.466 0.522 0.482
GENE-2 CLASSICAL ML MODEL  0.491 0.528 0.512
DIRECT 0.806 0.783 0.831
LATENT 0.923 0.941 0.932
LECTURE-RANK 0.376 0.651 0.507
INNO-1 CLASSICAL ML MODEL  0.380 0.621 0.501
DIRECT 0.714 0.858 0.815
LATENT 0.850 0.920 0.899
LECTURE-RANK 0.536 0.984 0.938
INNO-2 CLASSICAL ML MODEL  0.545 0.530 0.537
DIRECT 0.785 0.790 0.811
LATENT 0.892 0.876 0.881
LECTURE-RANK 0.239 0.813 0.543
INNO-3 CLASSICAL ML MODEL  0.240 0.799 0.533
DIRECT 0.586 0.930 0.835
LATENT 0.833 0.983 0.945

TABLE 8: Performance of LECTURE-RANK, DIRECT and LATENT
models in predicting student performance

for predicting performance, here we apply no filtering and consider
all students enrolled in the course. By not filtering the students
based on their activity enables our models to be used directly
off-the-shelf for predicting survival without the need for any pre-
processing. As can be observed from Figure 2, a high proportion
of students drop out from MOOCs, leading to a huge class
imbalance in the data. By using a combination of filtering (for
predicting performance) and no filtering (for predicting survival),
we demonstrate the utility of our models in two settings: i) when
there is little or no class imbalance, and ii) when class imbalance
is present. Due to the huge class imbalance in the data, models
that can identify students who will survive the course are more
valuable in this setting. The LECTURE-RANK and CLASSICAL ML
MODEL baselines can predict dropouts reasonably well, but its
comparatively low precision and recall for positive survival (AUC-
PR pos.), with CLASSICAL ML MODEL sometimes performing
worse than LECTURE-RANK, indicates that using these models are
suboptimal for predicting survival. We consider all student activity
during the entire course to predict whether each student takes
the final quiz. The scores for our DIRECT and LATENT survival
models, CLASSICAL ML MODEL, and LECTURE-RANK baselines
are listed in Table 9. The strength of our models comes from
combining behavioral, linguistic, temporal, and structural features
for predicting student survival. Our models DIRECT and LATENT
significantly improve on the baselines, and the LATENT model
outperforms the DIRECT model.

5.4 Early Survival Prediction

Predicting student survival can provide instructors with a powerful
tool if these predictions can be made reliably before the students
disengage and drop out. We simulate this scenario by training our
model over data collected early in the course. We divide the course
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COURSE MODEL AUC-PR AUC-PR AUC-
Pos. Neg. ROC
LECTURE-RANK 0.333 0.998 0.957
DISR CLASSICAL ML MODEL ~ 0.343 0.998 0.957
DIRECT 0.393 0.997 0.936
LATENT 0.546 0.998 0.969
LECTURE-RANK 0.508 0.995 0.946
WOMEN CLASSICAL ML MODEL ~ 0.049 0.951 0.500
DIRECT 0.565 0.995 0.940
LATENT 0.816 0.998 0.983
LECTURE-RANK 0.688 0.984 0.938
GENE-1 CLASSICAL ML MODEL ~ 0.139 0.861 0.500
DIRECT 0.793 0.997 0.976
LATENT 0.818 0.985 0.944
LECTURE-RANK 0.610 0.983 0.916
GENE-2 CLASSICAL ML MODEL  0.247 0.965 0.788
DIRECT 0.793 0.985 0.939
LATENT 0.848 0.997 0.980
LECTURE-RANK 0.473 0.992 0.930
INNO-1 CLASSICAL ML MODEL  0.569 0.992 0.936
DIRECT 0.597 0.995 0.950
LATENT 0.694 0.997 0.968
LECTURE-RANK 0.653 0.984 0.928
INNO-2 CLASSICAL ML MODEL  0.644 0.984 0.928
DIRECT 0.680 0.985 0.930
LATENT 0.753 0.988 0.936
LECTURE-RANK 0.353 0.994 0.922
INNO-3 CLASSICAL ML MODEL  0.141 0.986 0.792
DIRECT 0.492 0.995 0.937
LATENT 0.822 0.999 0.984

TABLE 9: Performance of LECTURE-RANK, DIRECT and LATENT
models in predicting student survival

COURSE ~ MODEL start mid end start-mid
LECTURE-RANK  0.204 0.280 0.324 0.269
DISR DIRECT 0.304 0.400 0.470 0.372
LATENT 0.417 0.454 0.629 0.451
LECTURE-RANK 0.538 0.518 0.415 0.533
WOMEN DIRECT 0.593 0.647 0.492 0.596
LATENT 0.674 0.722 0.733 0.699
LECTURE-RANK  0.552 0.648 0.677 0.650
GENE-1 DIRECT 0.647 0.755 0.784 0.692
LATENT 0.705 0.755 0.789 0.778
LECTURE-RANK 0.449 0.431 0.232 0.699
GENE-2 DIRECT 0.689 0.645 0.494 0.761
LATENT 0.754 0.755 0.809 0.820
LECTURE-RANK  0.221 0.118 0.403 0.378
INNO-1 DIRECT 0.383 0.304 0.846 0.692
LATENT 0.571 0.460 0.854 0.778
LECTURE-RANK  0.232 0.464 0.456 0.301
INNO-2 DIRECT 0.438 0.600 0.637 0.565
LATENT 0.605 0.676 0.794 0.648
LECTURE-RANK  0.104 0.188 0.203 0.113
INNO-3 DIRECT 0.202 0.405 0.478 0.293
LATENT 0.309 0.574 0.803 0.428

TABLE 10: Early prediction performance of LECTURE-RANK,
DIRECT and LATENT models in time-periods start, mid, end, and
start-mid

into three equal parts according to the duration of the course:
start, mid, and end. We combine start and mid time periods to get
data till mid part of the course, which we refer to as start-mid.
start-end refers to data collected over the entire course. In all,
we consider five time-periods in our experiments: start, mid, end,
start-mid, and start-end. The student survival labels are the same
as for the complete dataset (i.e., whether the student submitted
the final quizzes/assignments at the end of the course), but our
models are only given access to data from the early parts of the
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course. All features are re-calculated to include data from only the
specific time period in consideration. For example, POSTS(U,P) is
modified to only include posts in that specific time period.

Table 10 lists the performance metrics for our two models
using different splits in the data. Similar to the results in Table 9,
the change in the AUC-PR (Neg.) scores are negligible and close
to optimal for all models because of class imbalance. To highlight
the strength our models, we only report the AUC-PR (Pos.) scores
of the models. Early prediction scores under start, mid, and
start-mid indicate that our model can indeed make early survival
predictions reliably. As the data available is closer to the end of
the course, models make better predictions. Similar to the previous
experimental setting, the LATENT model achieves the highest
prediction quality. We observe that the LATENT model consistently
outperforms the DIRECT model on all time periods across seven
courses. The LATENT model also significantly outperforms the
DIRECT model in the start time period, making it a very useful tool
for instructors to predict student survival early on in the course.

From the results, it appears that the middle phase (mid) is the
most important phase to monitor student activity for predicting
whether the student will survive the length of the course. Our
model produces higher AUC-PR values when using data from the
mid phase, compared to the settings where we use data from the
start phase, and an almost equal value when compared to start-
mid. We hypothesize that this is due to the presence of a larger
student population in the start phase that fails to remain engaged
until the end. This phenomenon is typical in both traditional and
online classrooms where students familiarize themselves with the
course and then decide whether to stay or drop out. Eliminating
data collected from this population helps improve our prediction
of student survival, as indicated by an increase in performance
values for mid.

5.5 Survival Prediction on Unseen Courses

So far, we demonstrated the predictive ability of our models
in predicting survival on courses by training on data from the
same course. But for new courses which haven’t yet accumulated
performance and survival data for students, it is not possible to
train on data from the same iteration of the course. Models trained
on other courses, but having good predictive power in predicting
student success on new or previously unseen courses will be very
beneficial. Predicting student survival on courses in progress helps
instructors monitor and track student engagement and initiate
interventions promptly before students disengage and dropout. We
demonstrate the extensibility of our models in predicting survival
on new courses by training on data from one course and testing on
a different course.

Table 11 gives the performance metrics for DIRECT and LA-
TENT models, training on the course indicated by TRAIN COURSE
and testing on data from TEST COURSE. The scores indicate that
both our models can predict survival on new courses reliably. We
experiment on two different combinations of train and test courses:
i) the train and test courses are drawn from different iterations of
the same course, ii) the train and test courses are drawn from
different courses. For example, the first three rows in Table 11
provide results for training on a different iteration of the same
course. The last two row gives results for training on INNO-1
and testing on GENE-2, and training on GENE-2 and testing on
INNO-2, respectively. The second experiment is especially helpful
for predicting survival in new courses, which do not have any
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previous iterations to train on. In both these cases, we observe that
our models achieve good predictive performance comparable to
training on the same course.

TRAIN TEST MODEL AUC-PR AUC-PR AUC-ROC
Pos. Neg.

INNO-1 INNO-2  DIRECT 0.721 0.989 0.945
} } LATENT  0.713 0.987 0.933
INNO-1 INNO-3 DIRECT  0.506 0.996 0.940
; } LATENT  0.719 0.998 0.978
GENE-1 GENE.y  DIRECT 0.737 0.987 0.934
; . LATENT  0.762 0.995 0.962
INNO-1 GENE.2  DIRECT 0.709 0.986 0.932
LATENT  0.853 0.997 0.979
GENE-2 INNO-2 DIRECT 0.723 0.990 0.945
LATENT 0.683 0.985 0.922

TABLE 11: Prediction performance of DIRECT and LATENT
models in training on one course and testing on another course.

TRAIN TEST
COURSE TIME PERIOD COURSE TIME PERIOD MODEL AUC-PR
Pos.
DIRECT 0.628
INNO-1 start-end INNO-2 start
LATENT 0.658
DIRECT .61
INNO-1 start INNO-2 start ¢ 0.618
LATENT 0.652
DIRECT .31
INNO-1 start-end INNO-3 start ¢ 0318
LATENT 0.400
DIRECT 0.363
INNO-1 start INNO- start
3 LATENT 0.394
DIRECT 0.712
INNO-1 rt- ENE-2 7
o start-end G start LATENT 0.885
GENE-2 start-end INNO-2 start DIRECT 0.623
LATENT 0.657
DIRECT 0.627
GENE-2 start INNO-2 start
LATENT 0.657

TABLE 12: Early prediction performance of DIRECT and LATENT
models in training on one course and testing on another course.

5.6 Early Survival Prediction on Unseen Courses

Next, we investigate the reliability of our models in early pre-
diction when they are trained on data from a different course.
Achieving good early prediction performance in especially helpful
to courses in progress, allowing instructors to intervene before the
students disengage and dropout. Here, we consider four different
experiment settings, to understand the capabilities of our models
when trained on different training data sets. We first consider the
two experiment settings that we considered in Section 5.5: i) the
train and test courses are drawn from different iterations of the
same course, ii) the train and test courses are drawn from different
courses. For each of these settings, we consider two possible
variations on the training dataset: i) training on data from an entire
course different from the test course (indicated by start-end), and
ii) training on data from the time-period corresponding to the time-
period of the test course. Hence, in all, we consider four different
combinations of train and test datasets. We evaluate the prediction
performance on the most challenging early prediction period start,
as this time period has the least amount of data. Table 12 gives the
early prediction results. Notice that both our models achieve good
prediction performance, with the LATENT model performing better
than the DIRECT model in most cases. We observe that training
on data from different iteration of the same course often yields
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better prediction performance than training on the data from the
same iteration of the course (comparing results for time period
start in Table 10 and Table 12), which demonstrates the utility
of our models across iterations of the same course. We observe
that training on entire data from a different course is better than
training on the exact time period (indicated by start), indicating
our models can potentially be trained on existing courses and used
in earlier time periods of new courses to facilitate interventions.

5.7 Feature Analysis

0.55 T T
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(d) Feature analysis in GENE-2 course

Fig. 3: Bar graph showing AUC-PR (Pos.) value upon removal of
each feature from the DIRECT model across time periods

Here, we perform a comprehensive feature analysis to un-
derstand the predictability of each feature in predicting student
success in online courses. We group the features into sets of
features: a) post: features related to posting in forums, including
linguistic and structural features derived from forum posts, b)
view: viewing forum content, c¢) lecture: viewing lectures and
taking associated quizzes, d) temporal: temporal features, and
e) all: the entire model with all the features. We evaluate the
contribution of each feature group in predicting student success, by
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Fig. 4: Bar graph showing AUC-PR (Pos.) value upon removal of
each feature from the DIRECT model across time periods

leaving each feature group out and observing the resulting change
in the area under precision-recall curve and area under ROC
values. To do so, we omit all PSL rules that mention the feature
group. For example, to evaluate the importance of the first feature
group post, we remove all features related to posting in forums
such as POST-ACTIVITY, POSTS, POLARITY, and structural rules
connecting forum posts. Feature groups have varying levels of
predictability across the different time periods. We compare the
predictability of the feature groups across the five time periods
discuss in Section 5.4: start, mid, end, start-mid, and start-end.
Figure 3 and 4 plots the results from the experiments removing
each feature-group across the different time periods. The decrease
in value from all corresponds to the importance of each feature
group in the model.

From Figures 3 and 4, we observe that the lecture feature
group is consistently important for predicting student survival,
indicating that it is the most prevalent form of interaction of
MOOC participants on the MOOC website. This is especially
evident in the mid and end phases, where lecture is a very
important feature. In some courses, it is a very strong feature from
the start phase (DISR, WOMEN, GENE-1, and GENE-2) (Figure 3),
while in the INNO courses (4), it only becomes relevant in the mid
and end phases. Discussion forums serve as a platform connecting
students worldwide enrolled in the course, hence activity in the
discussion forums also turns out to be a strongly contributing
feature. Since, the concentration of forum posts in the courses
analyzed is more in the mid and end phases, posting in forums is
accordingly more important during the mid and end phases. Also,
in the start phase of the course, most posts are about students
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introducing themselves and getting to know other people enrolled
in the course. These posts are not very predictive of student
engagement and their subsequent performance or survival in the
course. Simply viewing content on the forums (view) is also a
strong feature, contributing consistently in all phases across all
courses. In fact, from Figures 3 and 4, we can see that the feature
strength of forum views is second only to lecture views. We also
observe that the effect of lecture viewing is less significant in some
courses, while forum viewing is more significant instead (WOMEN,
GENE-2, and INNO-3). This can be attributed to the presence
of active discussions encouraged in the course by the instructor,
starting discussion topics where many students participating. A
larger fraction of students view these posts and use them to
understand the material, hence forum viewing in these courses has
a significant impact on performance. This further ascertains the
importance of passive engagement in online courses. Temporal
features are a strong feature in the early part of the course,
particularly in the start phase across all seven courses. But, they
decline as a predictive feature in the mid and end phases. The data
suggests that this is due to the larger volume of students dropping
out in the early part of the course, making it an excellent predictor
for student survival in the start phase. As the student population
grows steady, temporal features start to decline as a predictive
feature.

We observe a similar trend when we observe the weights of
the rules in our DIRECT and LATENT models. We observe that
the rules containing features from the lecture feature-group obtain
the highest learned weights. This is followed by rules containing
the view feature group. Following this, in the latent model, are
rules containing ENGAGEMENT-PASSIVE, which is followed by
rules containing ENGAGEMENT-ACTIVE. From this we note that
ENGAGEMENT-PASSIVE is more predictive of student success
than ENGAGEMENT-ACTIVE, which conforms to the observations
in the classroom settings. The next prominent set of rules are
rules containing the post feature group. This is followed by rules
containing the temporal features in early time periods. Rules
containing all other features come after the rules mentioned above.

5.8 Gaining Insight from Latent Engagement Assign-
ments

So far, we demonstrated the utility of the latent engagement
variables in performance prediction. Going beyond measuring the
impact of engagement on performance prediction, we are inter-
ested in understanding the value of the engagement information
our model uncovers.

In this section, we further dissect the latent engagement values
to see how student engagement evolves as the course progresses.
We track the changes in engagement assignments patterns for
several interesting student populations and discuss potential ex-
planations for these changes. We categorize students that drop out
of the course according to the time period in which they dropped
out. We analyze the student engagement values predicted by the
model for three groups of students—(1) students dropping out in
the mid phase, (2) students dropping out in the end phase, and (3)
students continuing until course completion.

We train our models on data from start, mid, and end phases
of the course and record the engagement values for the students
in these three periods. We consider three groups of students: 1)
students dropping out in the mid phase, 2) students dropping
out in the end phase, and 3) students continuing till the end.
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Fig. 5: Bar-graph showing the distribution of engagement label
assignments at three time points throughout the class. We capture
engagement transition patterns by coloring the bars according to
the engagement assignments of students at the previous time point.

Students dropping out in the mid phase stop participating in
course activities sometime during middle phase. Similarly, stu-
dents dropping out in the end phase stop participating in the course
sometime during the end phase. The students are classified into
one of the engagement types by considering the dominant value of
engagement as predicted by the model. Using this we distinguish
between the different engagement types for different populations
of students and uncover their movement from one engagement
type to another and understand how engagement-mobility patterns
relate to student survival.

Figure 5 describes the student engagement values predicted
by the model for the three classes of students. For each student
group, we provide a bar graph, showing the different engagement
assignment levels at each time span (start, middle, end). The labels
D, EA and EP refer to values for latent variables DISENGAGE-
MENT, ACTIVE-ENGAGEMENT and PASSIVE-ENGAGEMENT, re-
spectively. Let us first consider Figure 5(a). In the start period, we
first categorize students into three forms of engagement D, EA,
and EP, respectively. The three engagement types are denoted by
the colors red, yellow, and green, respectively in the start period.
In the middle period, we capture the total number students in each
engagement category in the columns D, EA, and EP. In order
to track student engagement patterns, we color code the bars in
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the middle and end phases according to the previous engage-
ment assignments of the students, with the colors red, yellow,
and green capturing the number of students with engagement
type DISENGAGEMENT, ACTIVE-ENGAGEMENT, and PASSIVE-
ENGAGEMENT in the previous time period, respectively. Each bar
therefore consists of the combination of three smaller bars, colored
differently, capturing the previous engagement values.

In Figure 5(a), in the middle phase, there is almost equal
percentage of students moving from DISENGAGEMENT, ACTIVE-
ENGAGEMENT, and PASSIVE-ENGAGEMENT in the start phase.
EA students start to move toward disengagement in the middle
phase. While some EP students, who are not taking quizzes in
middle phase, still follow the course passively, placing them in
EP rather than D. We hypothesize that these students may be
more likely to respond to intervention than the already disengaged
students. In Figure 5(b), it can be seen that, out of the students
that drop out eventually in the end phase, about half of them are in
EP. Finally, Figure 5(c) suggests that most engaged students only
exhibit passive forms of engagement in the start and mid phases
of the course. While in the end phase, students tend to become
more actively engaged in the course. All these results corroborate
the importance of taking into account passive engagement. Several
education works state the importance of passive forms of engage-
ment and their subtlety [8], [9], [10], [11]. With our thorough
construction of features contributing to passive engagement, we
are able to observe similar trends in the online setting. In all these
classes of students, passive engagement is a more prevalent type of
engagement than active, stressing the fact that careful observation
of passive engagement (which includes subtle activities such as
viewing forum posts) can help MOOC instructors assess student
health.

6 CONCLUSION

In this work, we take a step toward helping MOOC instructors and
optimizing experience for MOOC participants by modeling latent
student engagement using data-driven methods. We formalize,
using HL-MRFs, that student engagement can be modeled as
a complex interaction of behavioral, linguistic and social cues,
and we model student engagement types as latent variables over
these cues. We demonstrate the effectiveness and reliability of
our models through a series of experiments across seven MOOCs
from different disciplines, analyzing their predictive performance
on predicting student success, early prediction of student survival,
survival prediction on unseen courses, and a detailed feature
analysis capturing the contribution of each feature group in
predicting student success. Our models construct interpretations
for latent engagement variables from data and predict student
course success indicators reliably, even at early stages in the
course, particularly on previously unseen courses, making them
very useful for instructors to assess student engagement levels.
These results are a first step toward facilitating instructors’ in-
tervention at critical points for courses in progress, thus helping
improve course retention rates. The latent formulation we present
can be extended to more sophisticated modeling by including
additional latent factors that affect academic performance such
as motivation, self-regulation and tenacity. Our models can also
be integrated into an automatic framework for monitoring student
progress and initiating instructor interventions. These compelling
directions for future interdisciplinary investigation can provide a
better understanding of MOOC students.
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