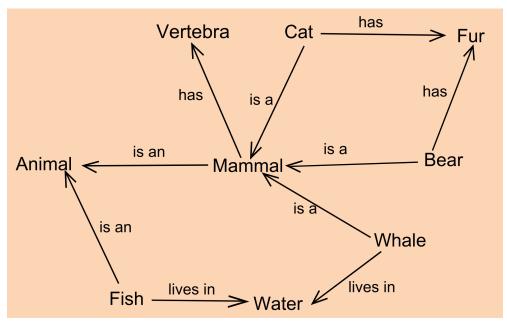
ML4NLP

Introduction to Lexical Semantics and Distributed Representations



Dan Goldwasser Purdue University

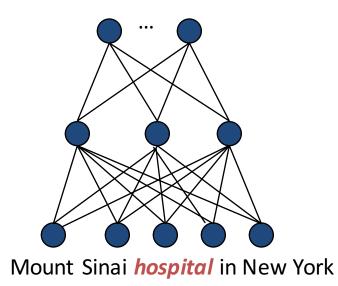
dgoldwas@purdue.edu

Learning Hidden Layer Representation

- NN can be seen as a way to learn a feature representation
 - Weight-tuning sets weights that define hidden units representation most effective at minimizing the error
- Backpropagation can define new hidden layer features that are not explicit in the input representation, but which capture properties of the input instances that are most relevant to learning the target function.
- Trained hidden units can be seen as newly constructed features that re-represent the examples so that they are linearly separable

DL as Representation Learning

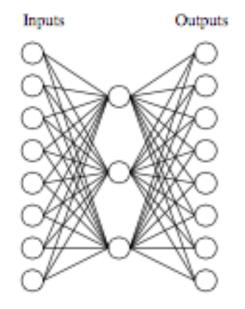
How did we account of representation learning so far?



Auto-associative Network

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

Auto-associative Network

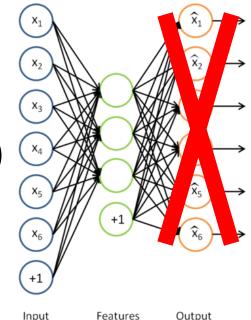


Input		Hidden			Output			
Values								
10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000		
01000000	\rightarrow	.01	.11	.88	\rightarrow	01000000		
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000		
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000		
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000		
00000100	\rightarrow	.22	.99	.99	\rightarrow	00000100		
00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010		
00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001		

Sparse Auto-Encoder

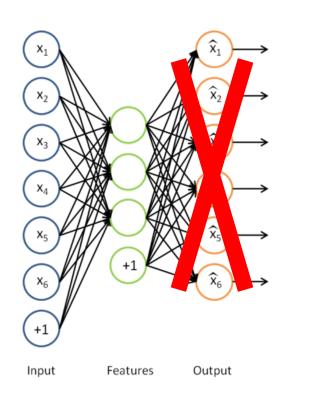
Goal: perfect reconstruction of the input vector x, by the output x'

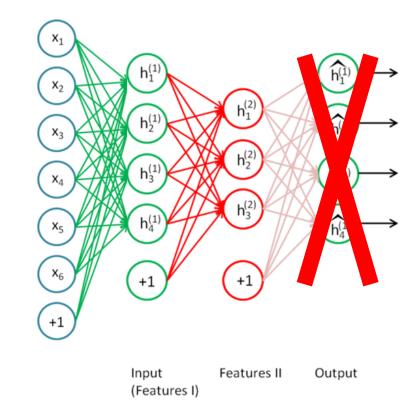
- Simple approach:
 - Minimize the error function I(h(x),x)
 - After optimization:
 - Drop the reconstruction layer



Stacking Auto Encoder

- Add a new layer, and a reconstruction layer for it.
- Repeat.





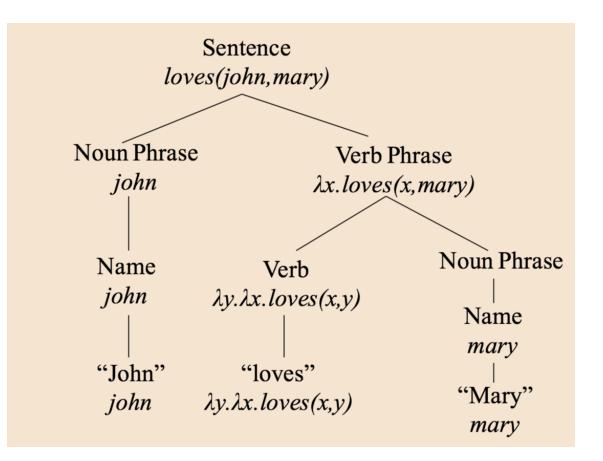
From Auto-Encoders to Word Embeddings

 So far the representations that we learned were compressed representation of the original inputs.

– Why is that better?

- Ideally we would like to "inject" some meaning into these representations.
 - What could be a simple requirement for this representation?

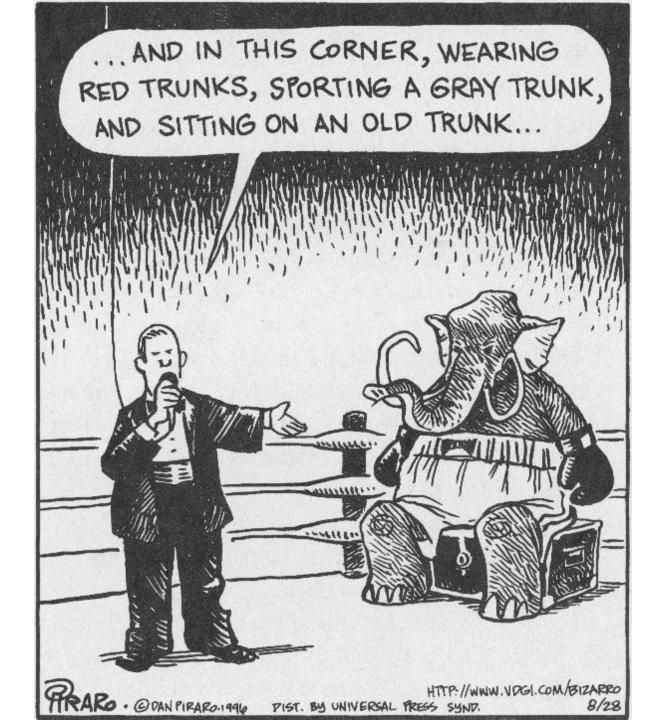
Compositional Semantics



- First some definitions –
- Word form : inflected word appearing in text
- Lemma: stem of the word
- Several word forms will have the same lemma

 Banking, Banked, Banks
- Do all of these have the same *meaning*?

- Lemmas can mean different things
 - John waited by the river bank.
 - John waited by the River bank.
- The word "bank" has different senses
- A sense is a discrete representation of the words meaning.
- Homonymy: words that share a form but have unrelated meanings



Ok, so what?

the spirit is willing but the flesh is weak

English

Disclaimer: "MT Myth", but still a nice example..

- "The bank is the oldest building in Lafayette. It opened in 1852"
- "The bank refused John's loan"

- Polysemy: word that has several related meanings
- Happens systematically:
 - Building-organization, Food-animal, author-book

- "I sat of the sofa, it was big"
- "I sat on the couch, it was large"

- Words that have similar meaning are synonyms
- There are often small differences:
 - "Garbage can" vs. "Rubbish bin"
 - "Water" vs. H2O
 - "Big" vs. "large" (My *big/large* brother)

- Words with opposite meanings are **antonyms**.
 - Short Long
 - Big Small
- Words are hyponyms if one word is a subclass of the other.
 - Car is a **hyponym** of vehicle.
- The other direction is called a **hypernym**
 - Vehicle is a **hypernym** of a car.

- Hyponyms define a IS-A hierarchy
 - A cat is-a mammal is-an animal.
 - Hyponyms are transitive:
 If cat is a mammal AND mammals are animals
 Then a car is-an animal.
- A very useful resource: WordNet
 - A comprehensive hierarchy of concepts
 - New York is-a city

https://wordnet.princeton.edu/

WordNet

- Lexical database organized hierarchically
- Defines the possible senses of each word
- WordNet provides a SynSet for each word

Noun

- <u>S:</u> (n) bank (sloping land (especially the slope beside a body of water)) "the pulled the canoe up on the bank"; "he sat on the bank of the river and watched the currents"
- S: (n) depository financial institution, bank, banking concern, banking company (a financial institution that accepts deposits and channels the money into lending activities) "he cashed a check at the bank"; "that bank holds the mortgage on my home"
- <u>S:</u> (n) bank (a long ridge or pile) "a huge bank of earth"

WordNet Noun Relations

Relation	Also called	Definition	Example
Hypernym	Superordinate	From concepts to superordinates	$break fast^1 \rightarrow meal^1$
Hyponym	Subordinate	From concepts to subtypes	$meal^1 \rightarrow lunch^1$
Member Meronym	Has-Member	From groups to their members	$faculty^2 \rightarrow professor^1$
Has-Instance		From concepts to instances of the concept	$composer^1 ightarrow Bach^1$
Instance		From instances to their concepts	$Austen^1 \rightarrow author^1$
Member Holonym	Member-Of	From members to their groups	$copilot^1 \rightarrow crew^1$
Part Meronym	Has-Part	From wholes to parts	$table^2 \rightarrow leg^3$
Part Holonym	Part-Of	From parts to wholes	$course^7 ightarrow meal^1$
Antonym		Opposites	$leader^1 \rightarrow follower^1$

Lexical Semantics

- It's convenient to think about WordNet as "ground truth"
- We can define Lexical semantics tasks, with respect to WordNet:
- Given a sentence, can you:
 - Determine the right sense of each word?
 - Answer questions?
 - Identify synonyms, or other relations

Word Similarity

- It's often more realistic to discuss word similarity instead of synonyms.
 - Synonym: binary relationship
 - Similarity: "soft" assignment
 - Sim(w1,w2) ~ 1 if words are synonyms
 - Sim(w1,w2) > 0, if words are related
- For example Information retrieval engines need to identify similarity between content and query terms.

Word Similarity

Two broad approaches:

• Thesaurus-based algorithms.

- Assume a comprehensive knowledge base (e.g., wordnet)
- Do words appear nearby in the hypernym hierarchy? Similar definition?

• Distributional algorithms.

- Assume a large collection of text (*not annotated!*)
- Do the words appear in similar contexts?

Hypernym path based Similarity

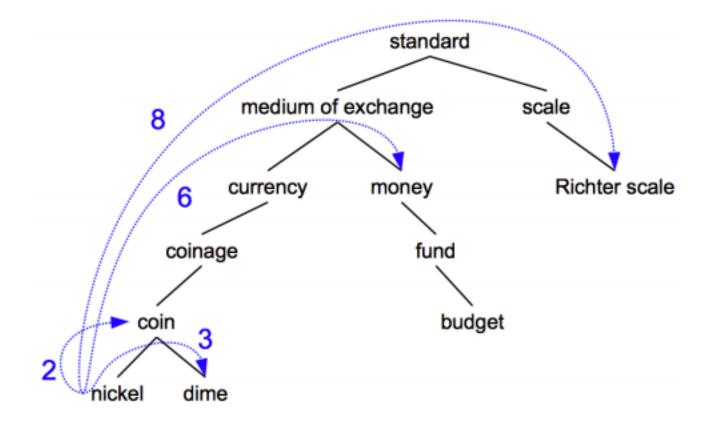


Image taken from D Jurafsky Slides on Lexical similarity

Hypernym path based Similarity

- The simple heuristic assumes uniform cost for each hop.
 - Nodes higher in the hierarchy are more abstract.
 - Ignore content of word definition
- Several works looked into improving it :
 - Resnik'95, Lin'98, Lesk's algorithm.

Hypernym path based Similarity

• Pros

- Simple, exploits existing knowledge
- Tends to have *high precision*.

• Cons

- Depends on language specific knowledge
- Does not evolve with language (*low recall*)

Distributional Similarity

A bottle of tesgüino is on the table Everybody likes tesgüino Tesgüino makes you drunk We make tesgüino out of corn.

> **Question:** What is tesgüino?

Firth 1957: *"You shall know a word by the company it keeps"*

Example from Jurafsky and Martin

Distributional Models

- Key idea: word meaning is defined by it's context.
- This method, also known as the Vector Space model, maintain a vector of context words, for each word.
 w = (f₁, f₂, f₃, f₄, ..., f_n)
- Given a large corpus, maintain the context words counts for each word.
 - Define context window size.

Distributional Models

w = ($f_1, f_2, f_3, f_4, ..., f_n$)

- Instead of the raw counts, we prefer to have a *normalized score*.
- Positive Point-wise Mutual Information

PMI(x,y) = Log P(x,y)/P(x)P(y)

- Intuition: are words x,y more likely to appear together than independently?
- **Positive PMI**: round all negative scores to 0.

Distributional Similarity

A bottle of tesgüino is on the table Everybody likes tesgüino Tesgüino makes you drunk We make tesgüino out of corn.

Question: What is tesgüino?

> Tesgüino = (Bottle = 123, Table =54, drunk = 141, Corn = 91, ...) Bourbon = (Bottle = 231, Table =41, drunk =231, corn =121, ...) Vodka = (Bottle = 311, Table =82, drunk =321, corn =0, ...)

Distributional Similarity

Given the vector based representation of words we can compute their similarity easily -

$$\cos(v, w) = \frac{v \cdot w}{|v| |w|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

Using Positive PMI, ensure that Cosine similarity will have non-negative values

A machine learning perspective

- So far we looked at words as discrete objects.
 - For example, when building a sentiment classifier, each word was represented as a different coordinate
- "Great" = [0,0,0,0,0,0,0,1,0,0,...0]
- "Awesome" = [0,0,0,1,0,0,...,0]
 - This is known as "one hot" representation.

A machine learning perspective

- Using "one-hot" representation, the connections between words are lost.
- We typically designed complex feature functions to get over that:
 - Maintain a dictionary of related words according to
 - Meaning (identify synonyms)
 - Word group (slang, function words, positive, negative,..)

A machine learning perspective

- Can we use vector based methods to represent words other decision tasks?
 - We can potentially overcome lexical sparseness problems!
 - We will try to answer this question in the coming lectures.

Word Embedding

- Basic idea: represent words in a continuous vector space.
 - Similar idea as using PMI
- Key difference:
 - Find low dimensional **dense** representation
 - Instead of counting co-occurrence, use discriminative learning methods
 - Predict surrounding words

Word2Vec

- "AI fields such as NLP, <u>machine learning</u>, vision, have increased in popularity in recent years"
- For each word, predict other words in window C
- **Training Objective**: maximize the probability of context word, given the current word.

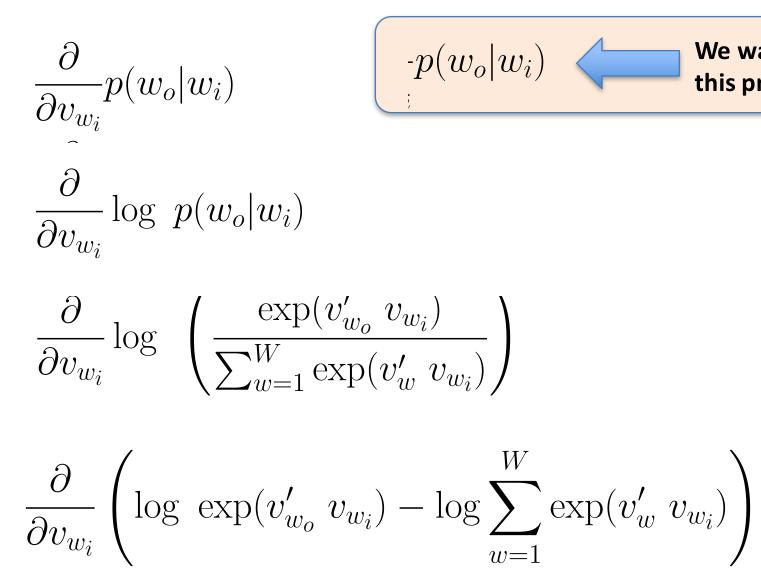
$$J(\theta) = \frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j < c} \log p(w_{t+j} | w_t)$$

Word2Vec

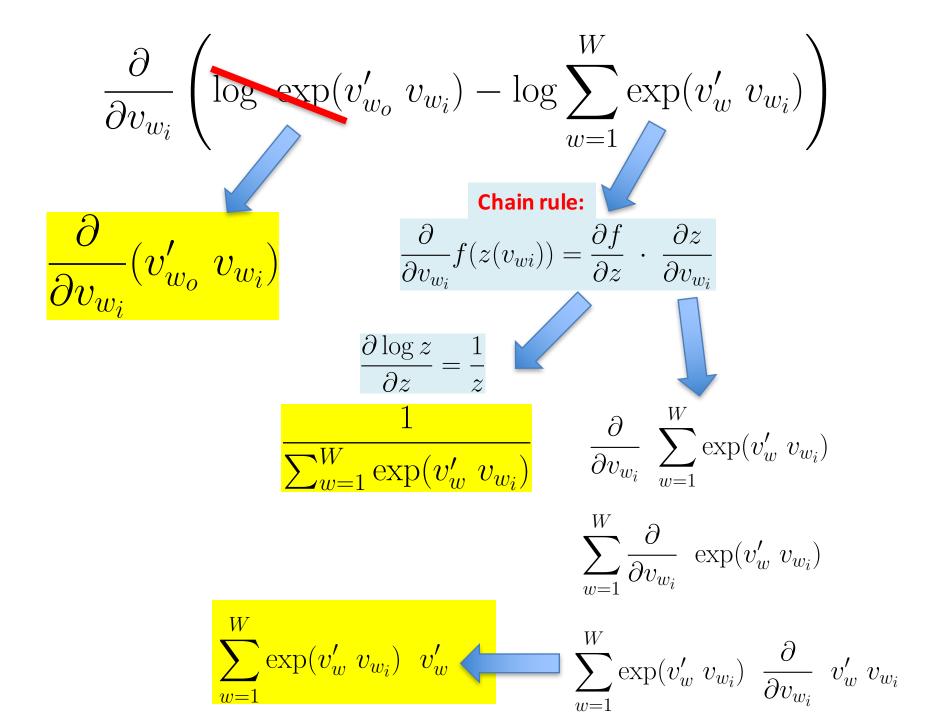
- We want to evaluate $p(w_o|w_i)$
- For each word maintain two vectors
 Inside word and outside word (context)
 - V represent inside, V' outside.

$$p(w_o|w_i) = \frac{\exp(v'_{w_o}v_{w_i})}{\sum_{w=1}^{W} \exp(v'_{w}v_{w_i})}$$

Word2Vec: Update rule



We want to maximize this probability



Putting it all together ..

$$v'_{w_o} - \sum_{x=1}^{W} \frac{\exp(v'_x v_{w_i})}{\sum_{w=1}^{W} \exp(v'_w v_{w_i})} v'_x$$

$$v'_{w_o} - \sum_{x=1}^W p(x|w_i) \; v'_x$$

Similarly, you have to derive the update rule for the outside vectors..

Gradient Descent for W2V

$$J(\theta) = \frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j < c} \log p(w_{t+j} | w_t)$$

$$\theta_{j}^{new} = \theta_{j}^{old} - \alpha \frac{\partial}{\partial \theta_{j}^{old}} J(\theta)$$

You can use stochastic gradient descent to speed up the process.

Efficient Implementation

• For non-trivial vocabulary, the normalization factor is too costly to compute accurately.

$$p(w_o|w_i) = \frac{\exp(v'_{w_o}v_{w_i})}{\sum_{w=1}^{W} \exp(v'_{w}v_{w_i})}$$

- Skip-gram with negative sampling
 - Binary logistic regression for a small subset:
 - True pair, small subset of negative examples.

Skip-gram with Negative Sampling

• New objective function:

$$\log \sigma(v'_{w_o} v_{w_I}) + \sum_{i=1}^k \mathbb{E}_{w_i \sim P_n(w)} \left[\log \sigma(-v'_{w_i} v_{w_I})\right]$$

Maximize the probability of center + context words Minimize the probability of random words

Note:

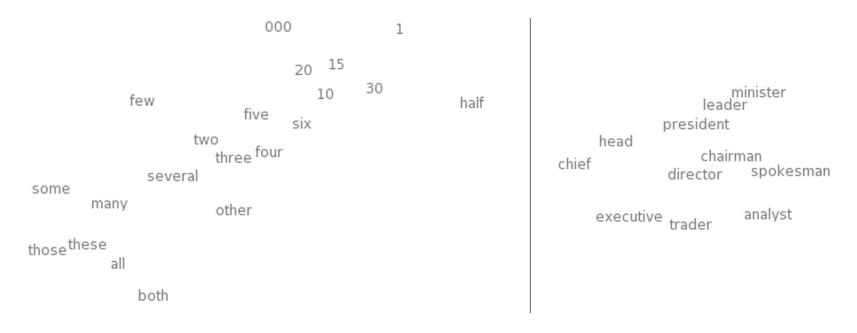
- Only pick a **small subset** of negative examples
- samples are drawn from a distribution: $P_n(w)$
- P_n (w) captures unigram statistics, modified to increase the probability of sampling low frequency words.

Continuous Bag-of-Words

- Very similar idea:
 - Instead of predicting context words, based on center word,
 - Predict center word using context words
 - Sum up the surrounding words vectors
- Resulting word vectors capture similar information.

Word Embedding

- Word embedding: move to a low dimensional, real valued dense representation of the input
 - Key idea: similar words should have similar vectors



Turian et-al 2010

Word2Vec

Enter word or sentence	(EXIT to break): Chinese river
Word	Cosine distance
Yangtze_River	0.667376
Yangtze	0.644091
Qiantang_River	0.632979
Yangtze_tributary	0.623527
Xiangjiang_River	0.615482
Huangpu_River	0.604726
Hanjiang_River	0.598110
Yangtze_river	0.597621
Hongze_Lake	0.594108
Yangtse	0.593442

Word Representation Arithmetic

Czech + currency	Vietnam + capital	German + airlines	Russian + river	French + actress
koruna	Hanoi	airline Lufthansa	Moscow	Juliette Binoche
Check crown	Ho Chi Minh City	carrier Lufthansa	Volga River	Vanessa Paradis
Polish zolty	Viet Nam	flag carrier Lufthansa	upriver	Charlotte Gainsbourg
СТК	Vietnamese	Lufthansa	Russia	Cecile De

Word Representation Arithmetic

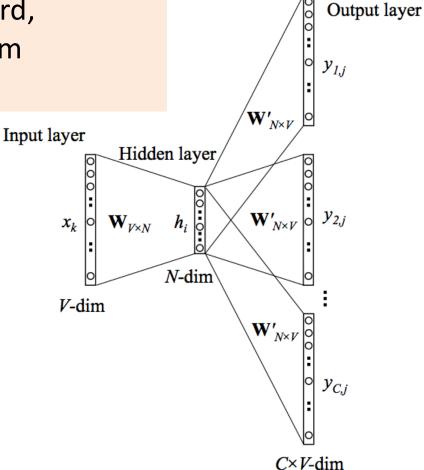
Paris - France + Italy = Rome

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

Words2Vec: Skip-gram model

We can tell the W2V story a little differently:

The vectors representing each word, correspond to weights coming from two layers in a NN



Words2Vec: CBOW model

