
ML4NLP
Introduction to Deep Learning for NLP

CS 590NLP

Dan Goldwasser
Purdue University

dgoldwas@purdue.edu



Deep	Learning	in	NLP
So	far	we	used	linear	models

They	work	fine,	but	we	made	some	assumptions
The	problems	are	linear,	or	we	are	willing	to	work	in	
order	to	make	them	linear
Feature	engineering	is	a	form	of	expressing	domain	
knowledge
We	are	fine	working	with	very	very	high	dimensional	
data

It’s	easy	to	get	there.	
Everything	is	mostly	linear	at	that	point.

What	could	go	wrong?



Deep	Learning	Architectures	for	NLP

• The	key	question	we	follow	– how	can	you	
build	complex	(compositional?)		meaning	
representation,	for	larger	units	than	words,	
to	support	advanced	classification	tasks?

• We	will	look	at	several	popular	architectures.	
–We	will	build	on	a	“recently	introduced	model	
from	the	70’s”	
• NN	made	a	come-back	in	the	last	5	years.



Neural	Networks	
• Robust	approach	for	approximating	functions
– Functions	can	be	real-valued,	discrete	or	vector	valued

• One	of	the	most	effective	general	purpose	learning	
methods
– A	lot	of	attention	in	the	90’s,	making	a	comeback!

• Especially	useful	for	complex	problems,	where	the	input	
data	is	hard	to	interpret
– Sensory	data	(speech,	vision,	etc)

• Many	successful	application	domains
• Interesting	spin:	Learning	input	representation
– So	far	we	thought	about	the	feature	representation	 as	being	
fixed

4



Neural	Network

• Simply	put,	NN’s	are	functions	f: XàY
– f	is	a	non-linear	function
– X	is	a	vector of	continuous	or	discrete	variables
– Y	is	a	vector of	continuous	or	discrete	variables

• Very	expressive	classifier
– In	fact,	NN	can	be	used	to	represent	any	function

• The	function	f	is	represented	using	a	network	
of	logistic	units

Introduction	 to	Machine	Learning.	Fall	2015 5



Multi	Layer	Neural	Networks

• Multi-layer	network	were	designed	to	overcome	the	
computational	(expressivity)	limitation		of	a	single	
threshold	element.	

• The	idea	is	to	stack	several	
layers	of	threshold	elements,	
each	layer	using	the	output	of	
the	previous	layer	as	input

6

activation

Input

Hidden

Output

Multi-layer	networks	can	represent	
arbitrary	functions,	but	building	
effective	learning	methods	for	such	
network	was	[thought	to	be]	difficult.	



Example:	NN	for	speech	vowel	
recognition

Introduction	 to	Machine	Learning.	Fall	2015 7



Introduction	 to	Machine	Learning.	Fall	2015 8

Pomerleau ‘89

ALVINN:	autonomous	land	vehicle	in	a	
NN



ALVINN:	autonomous	land	vehicle	in	a	
NN

Introduction	 to	Machine	Learning.	Fall	2015 9



Basic	Units	in	Multi-Layer	NN

• Basic	element:	linear	unit
– But,	we	would	like	to	represent	nonlinear	functions

• Multiple	layers	of	linear	functions	are	still	linear	functions

– Threshold	units	are	not	smooth	(we	would	like	to	use	
gradient-based	algorithms)

Introduction	 to	Machine	Learning.	Fall	2015 10

activation

Input

Hidden

Output



Basic	Units	in	Multi-Layer	NN

• Basic	element:	sigmoid	unit
– Input	to	a	unit	j is	defined	as:	Σwijxi
– Output	is	defined	as	:	σ (Σwijxi)
• σ is	simply	the	logistic	function:	

Introduction	 to	Machine	Learning.	Fall	2015 11

Note:	similar	to	previous	
algorithms,	We	encode	the	
bias/threshold,	as	a	“fake”	
Feature	that	is	always	active



Basic	Units	in	Multi-Layer	NN

• Basic	element:	sigmoid	unit
– You	can	also	replace	the	logistic	function	with	
other	smooth	activation	functions

Introduction	 to	Machine	Learning.	Fall	2015 12



Widrow-Hoff	Rule	(LMS)	

• Incremental	update	rule,	providing	an	
approximation	to	the	goal

• Where:

• And	td	is	the	target	output	for	example	d

Introduction	 to	Machine	Learning.	Fall	2015 13



Basic	Units	in	Multi-Layer	NN

• Key	issue:	limited	expressivity!
– Minsky and	Papert (1969)	published	an	influential	
books	showing	what	cannot	be	learned	using	
perceptron

• These	observation	discouraged	research	on	
NN	for	several	years

• But..	we	really	like	linear	functions!
• How	did	we	deal	with	these	issues	so	far?

Introduction	 to	Machine	Learning.	Fall	2015 14



Basic	Units	in	Multi-Layer	NN

Introduction	 to	Machine	Learning.	Fall	2015 15

In	fact	,	Rosenblatt	(1959)	asked:	“What pattern recognition problems 
can be transformed  so as to become linearly separable”



Multi	Layer	NN
• Another	approach	for	increasing	expressivity:	

Stacking	multiple	sigmoid	units	to	form	a	network
• Compute	the	output	of	the	network	using	a	‘feed-
forward’	computation

• Learn	the	parameters	of	the	network	using	the	
backpropagation algorithm	

• Any	Boolean	function	can	be	represented	using	a	
two	layer	network

• Any	bounded	continuous	function	can	be	
approximated	using	a	two	layer	network

Introduction	 to	Machine	Learning.	Fall	2015 16



Multi	Layer	NN:	forward	computation
• Observe	an	input	vector	x
• Push	x	through	the	network:
– For	each	hidden	unit	compute	the	activation	value

– For	each	output	value,	compute
the	activation	value	coming	from
the	hidden	units
– Prediction:

• Categories:	winner	take	all
• Vector:	take	all	output	values
• Binary	outputs:	Round	to	nearest	0-1	value

Introduction	 to	Machine	Learning.	Fall	2015 17

activation

Input

Hidden

Output

Loss Function:

Ji(w) =
∑

k

(yi − ŷik)
2

Output Layer :

ŷk = σ(sk) = σ(
∑

j

w2

kjhj)

Hidden Layer :

hj = σ(tj) = σ(
∑

i

w1

ji xi)

Recall:
σ′(z) = σ(z)(1− σ(z))

Loss Function:

Ji(w) =
∑

k

(yi − ŷik)
2

Output Layer :

ŷk = σ(sk) = σ(
∑

j

w2

kjhj)

Hidden Layer :

hj = σ(tj) = σ(
∑

i

w1

ji xi)

Recall:
σ′(z) = σ(z)(1− σ(z))



• Write a linear function that represent an 
AND function over two Boolean variables 

• Can you write a linear function to represent 
XOR?

• Describe a NN that represents the XOR 
function



Our	old	nemesis	– XOR!

Learning	internal	representations	by	error	propagation
D.	E.	Rumelhart G.	E.	Hinton	R.	J.	Williams.	1986



Let’s	build	our	own	NN!

• So	far	we	have	seen	an	architecture	for	
predicting	a	word,	given	it’s	context.
– How many input units?
– How many hidden layers?
– How many output units?

• What was the point of the hidden units for this 
classification problem?



Let’s	build	our	own	NN!

• Let’s	revisit	a	familiar	problem,	and	design	a	NN
– Named	Entity	Recognition
• Binary	case:	given	a	sentence,	decide	which	words	are	NE	
and	which	are	not
• Multi-class	case:	decide	if	a	word	is	a	Loc,	Per,	Org,	None

• What	is	the	right	architecture?	



NN	for	NER

Mount	Sinai	hospital in	New	York

Is	the	center	word	a	Named	Entity?

Binary	case:	
Single	output	unit,	can	be	interpreted	as	a	threshold	function	



NN	for	NER

Mount	Sinai	hospital in	New	York

Is	the	center	word	a	Named	Entity?

…

Multiclass	case:	winner-takes-all



• Recall another old nemesis of linear models –
– NEGATION!
– “I like rice but not beans” ”I like beans but not rice”

• Why would BoW models have difficulties?
– What was the solution for linear models?
– What was the “price” we had to pay? (I want a number!)

• How would a 1-hidden layer network help?
– What is the price we pay now? (I want a number!)



NN	for	NER

Mount	Sinai	hospital in	New	York

Is	the	center	word	a	Named	Entity?

…

Multiclass	case:	winner-takes-all

So	far	we	assumed	BoW features	(binary,	frequency)	,	but	NN	lend	
themselves	nicely	to	continuous	representations	of	input	objects



Example	– Word	Embedding



NN	for	NER

Mount	 						Sinai						hospital in						New								York

Is	the	center	word	a	Named	Entity?

…

Multiclass	case:	 winner-takes-all

We	can	also	replace	the	
”one-hot”	representation,
And	use	pre-trained	word	
vectors!

…



NN	for	NER

Mount	 						Sinai						hospital in						New								York

…

…

How	many	parameters	do	we	have	to	train?

Let’s	assume	our	word	embedding	are	in	R10

x ∈ R
50

W
1
∈ R

3×50

W
2
∈ R

3×4x ∈ R
50

W
1
∈ R

3×50

W
2
∈ R

3×4

x ∈ R
50

W
1
∈ R

3×50

W
2
∈ R

3×4



NN	for	NER

Mount	 						Sinai						hospital in						New								York

…

…

How	many	parameters	do	we	have	to	train?

Let’s	assume	our	word	embedding	are	in	R10
x ∈ R

50

W
1
∈ R

3×50

W
2
∈ R

3×4

x ∈ R
50

W
1
∈ R

3×50

W
2
∈ R

3×4

Loss Function:

Ji(w) =
∑

k

(yi − ŷik)
2

Output Layer :

ŷk = σ(sk) = σ(
∑

j

w2

kjhj)

Hidden Layer :

hj = σ(tj) = σ(
∑

i

w1

ji xi)

Recall:
σ′(z) = σ(z)(1− σ(z))

Loss Function:

Ji(w) =
∑

k

(yi − ŷik)
2

Output Layer :

ŷk = σ(sk) = σ(
∑

j

w2

kjhj)

Hidden Layer :

hj = σ(tj) = σ(
∑

i

w1

ji xi)

Recall:
σ′(z) = σ(z)(1− σ(z))

Forward	computation:

x ∈ R
50

W
1
∈ R

3×50

W
2
∈ R

3×4



NN	for	NER

Mount	 						Sinai						hospital in						New								York

…

…

What	do	we	get	by	adding	an	extra	layer?

Why	not	just	use	the	word	vectors
directly?

Can	we	simplify	this	architecture	
and	not	use	a	hidden	layer?



Training	ML	NN:	Backpropagation

Introduction	 to	Machine	Learning.	Fall	2015 31

Loss Function:

Ji(w) =
∑

k

(yi − ŷik)
2

Output Layer :

ŷk = σ(sk) = σ(
∑

j

w2

kjhj)

Hidden Layer :

hj = σ(tj) = σ(
∑

i

w1

ji xi)

Recall:
σ′(z) = σ(z)(1− σ(z))

Backpropagation = Gradient descent + chain rule (applied
to the architecture of the network)

hj
Note: this is just logistic mean 
squared error regression, 
treating ‘h’ as input features 

∂J

∂w2

kj

= −2
∑

k′

(yk′ − ŷk′)(∂ŷk′) = −2(yk − ŷk)σ
′(sk)hj

We’ll compute the gradient wrt each of the models parameters:

∂

∂vwi

− log
W∑

w=1

exp(v′w vwi
)

∂

∂vwi

f (z(vwi)) =
∂f

∂z
·

∂z

∂vwi

Chain	rule:



Training	ML	NN:	Backpropagation

Introduction	 to	Machine	Learning.	Fall	2015 32

Backpropagation = Gradient descent + chain rule (applied
to the architecture of the network)

We’ll compute the gradient wrt each of the models parameters:
Now, let’s look at weights at the first layer

hj

∂J

∂w2

kj

= −2
∑

k′

(yk′ − ŷk′)(∂ŷk′) = −2(yk − ŷk)σ
′(sk)hj

∂J

∂w1
ji

=
∑

k′

−2(yk′ − ŷk′)(∂ŷk′)

=
∑

k′

−2(yk′ − ŷk′) σ
′(sk) wkj ∂hj

=
∑

k′

−2(yk′ − ŷk′) σ
′(sk) wkj σ(tj) xi

'

Loss Function:

Ji(w) =
∑

k

(yi − ŷik)
2

Output Layer :

ŷk = σ(sk) = σ(
∑

j

w2

kjhj)

Hidden Layer :

hj = σ(tj) = σ(
∑

i

w1

ji xi)

Recall:
σ′(z) = σ(z)(1− σ(z))

∂

∂vwi

− log
W∑

w=1

exp(v′w vwi
)

∂

∂vwi

f (z(vwi)) =
∂f

∂z
·

∂z

∂vwi
Chain	rule:



Training	ML	NN:	Backpropagation

Introduction	 to	Machine	Learning.	Fall	2015 33

Backpropagation = Gradient descent + chain rule (applied
to the architecture of the network)

Note that we can reuse (“back-propagate”) the computation

hj

∂J

∂w2

kj

= −2
∑

k′

(yk′ − ŷk′)(∂ŷk′) = −2(yk − ŷk)σ
′(sk)hj

∂J

∂w1
ji

=
∑

k′

−2(yk′ − ŷk′)(∂ŷk′)

=
∑

k′

−2(yk′ − ŷk′) σ
′(sk) wkj ∂hj

=
∑

k′

−2(yk′ − ŷk′) σ
′(sk) wkj σ(tj) xi

∂J

∂w2

kj

= −2
∑

k′

(yk′ − ŷk′)(∂ŷk′) = −2(yk − ŷk)σ
′(sk)hj

'

Loss Function:

Ji(w) =
∑

k

(yi − ŷik)
2

Output Layer :

ŷk = σ(sk) = σ(
∑

j

w2

kjhj)

Hidden Layer :

hj = σ(tj) = σ(
∑

i

w1

ji xi)

Recall:
σ′(z) = σ(z)(1− σ(z))

∂

∂vwi

− log
W∑

w=1

exp(v′w vwi
)

∂

∂vwi

f (z(vwi)) =
∂f

∂z
·

∂z

∂vwi
Chain	rule:



Back-Prop	Comments
• No	guarantee	of	convergence;	may	oscillate	or	reach	
a	local	minima.	
– In	practice,	many	large	networks	can	be	trained	on	large	
amounts	of	data	for	realistic	problems.	

– To	avoid	local	minima:	several	trials	with	different	random	
initial	weights	with	majority	or	voting	techniques	

• Many	epochs	(tens	of	thousands)	may	be	needed	for	
adequate	training.
– Large	data	sets	may	require	many	hours	(days)	of	CPU	

• Termination	criteria:	Number	of	epochs;	Threshold	on	
training	set	error;	No	decrease	in	error;	Increased	
error	on	a	validation	set.	

Introduction	 to	Machine	Learning.	Fall	2015 34



Over-training	Prevention	
• Running	too	many	epochs	may	over-train	 the	network	
and	result	in	over-fitting
– Keep	a	hold-out	validation	set	and	test	accuracy	after	
every	epoch	

– Maintain	weights	for	best	performing	network	on	the	
validation	set	and	return	it	when	performance	decreases	
significantly	beyond	that.

– Why	not	just	stop	once	validation	error	starts	increasing?	
• To	avoid	losing	training	data	to	validation:	
– Use	10-fold	cross-validation	to	determine	the	average	
number	of	epochs	that	optimizes	validation	performance	

– Train	on	the	full	data	set	using	this	many	epochs	to	
produce	the	final	results	

Introduction	 to	Machine	Learning.	Fall	2015 35



Over-training	Prevention	
• Too	few	hidden	units	prevent	the	system	from	
adequately	fitting	the	data	and	learning	the	concept.	

• Using	too	many	hidden	units	leads	to	over-fitting.	
• Similar	cross-validation	method	can	be	used	to	
determine	an	appropriate	number	of	hidden	units.	

• Another	approach	to	prevent	over-fitting	is	weight-
decay:	all	weights	are	multiplied	by	some	fraction	in	
(0,1)	after	every	epoch.	
– Encourages	smaller	weights	and	less	complex	hypothesis
– Equivalently:	change	Error	function	to	include	a	regularizer

Introduction	 to	Machine	Learning.	Fall	2015 36



Dropout	Training
• Proposed	by	(Hinton	et-al	2012)

Prevent	feature	co-adaptation
Encourage	“independent	 contributions”
From	different	features

• At	each	training	step,	decide	whether	to	delete	one	hidden	
unit	with	some	probability	p	

Introduction	 to	Machine	Learning.	Fall	2015 37



Dropout	training	

• Model	averaging	effect	
– Average	the	results	of	multiple	NN
– Each	NN	has	a	different	initialization	point,	resulting	in	a	different	

model
– Extremely	computationally	intensive	for	NNs!

• Much	stronger	than	the	known	regularizer

• What	about	the	input	space?
– Do	the	same	thing!	

Introduction	 to	Machine	Learning.	Fall	2015 38



• Dropout	of	50%	of	the	hidden	units	and	20%	of	
the	input	units	(Hinton	et	al,	2012)	

Introduction	 to	Machine	Learning.	Fall	2015 39



Learning	Hidden	Layer	Representation
• NN	can	be	seen	as	a	way	to	learn	a	feature	
representation
– Weight-tuning	sets	weights	that	define	hidden	units	
representation	most	effective	at	minimizing	the	error

• Backpropagation can	define	new	hidden	layer	features	
that	are	not	explicit	in	the	input	representation,	but	which	
capture	properties	of	the	input	instances	that	are	most	
relevant	to	learning	the	target	function.	

• Trained	hidden	units	can	be	seen	as	newly	constructed	
features	that	re-represent	 the	examples	so	that	they	
are	linearly	separable	

Introduction	 to	Machine	Learning.	Fall	2015 40



Auto-associative	Network	

Introduction	 to	Machine	Learning.	Fall	2015 41



Auto-associative	Network	

Introduction	 to	Machine	Learning.	Fall	2015 42



Sparse	Auto-Encoder

Goal:	perfect	reconstruction	of	the	input	vector	
x,	by	the	output	x’

• Simple	approach:
– Minimize	the	error	function	l(h(x),x)
– After	optimization:	
• Drop	the	reconstruction	layer

Introduction	 to	Machine	Learning.	Fall	2015 43



Stacking	Auto	Encoder

• Add	a	new	layer,	and	a	reconstruction	layer	for	it.	
• Repeat.

Introduction	 to	Machine	Learning.	Fall	2015 44



10,000	feet	view

• Neural	networks	are	an	extremely	flexible	way	to	
define	complex	prediction	models.
– Simple	update	rule:	propagate	the	error	on	the	
architecture	of	the	network	(essentially	DAG).

– All	deep	learning	models	share	this	property,	just	
different	DAGs!

• Key	issues:	
– Preventing	over	fitting
– Representation	learning,	pre-training	with	minimal	
supervision



10,000	feet	view

• So	far,	we	looked	at	simple	classification	
problems.
– Assume	a	word	window,	that	provides	fixed	sized	
inputs.
• In	case	you	“run	out	of	input”	– zero	padding.

• What	can	you	do	if	the	size	of	the	input	is	not	
fixed?
– Some	notion	of	compositionality	is	needed
– Simplest	approach:	sum	up	word	vectors

• Document	structure	is	lost..	Can	we	do	better?


